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Abstract: In this paper, a framework for maintaining formations of large number of
mobile autonomous vehicles based on rigidity is proposed. The aim of this paper
is to explore strategies for maintaining formations with more limited communi-
cation/sensing requirements. An inductive construction method for provably rigid
formations is proposed, and a method for optimum angle measures between vehicles
is developed. The method scales with the number of vehicles and is flexible to support
many rigid formation shapes. Copyright c©2002 IFAC
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1. INTRODUCTION

Current interest in the problem of coordinating
the motion of large number of mobile autonomous
vehicles by means of distributed control has raised
a number of issues about forming, maintaining
and real-time modification of vehicle formations of
all types. By a formation is usually meant a collec-
tion of vehicles moving through real two or three
dimensional space in such a way that the distance
between every pair of vehicles remains unchanged
over time, at least under ideal conditions. One
way to retain a formation over time is for each
vehicle to maintain a fixed distance between itself
and every other vehicle in the formation. For all
but the smallest of formations such a strategy
would obviously be impractical, since it would
require each vehicle to sense its distance from each
other vehicle in the formation. It is thus of inter-
est to explore strategies for maintaining forma-
tions with more limited communication/sensing
requirements. To do this in a systematic manner,

it is necessary to develop a framework for mod-
elling vehicle formations which characterizes the
communication/sensing links needed to maintain
the formation. The aims of this paper are to sug-
gest such a framework, to draw attention to a large
existing literature within mathematics which is
applicable to problems of this type, and to develop
some specific new results along these lines. So far
in the literature, formations with small number
of vehicles have been addressed (see for example
(Desai, et al., 2001) and (Pappas, et al., 2001)).

In §2 we define the concept of a “point formation”
and explain how it can be used as a high-level
model of a formation of vehicles. We explain what
it means for a point formation to be rigid. The
ideas of a point formation and a rigid point for-
mation are essentially the same as the concepts of
a “framework” and a “rigid framework” studied
in mathematics as well as within the theory of
structures in mechanical and civil engineering (see
for example (Roth, 1981), (Whiteley and Tay,
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1985)). The slightly different terminology used in
this paper more closely describes the applications
we have in mind. In §3 we outline two well-known
conditions for testing the rigidity of a formation.
The first involves evaluating the generic rank of
a parameter dependent matrix while the second
requires one to enumerate certain properties of a
graph. In §4 we turn to the issue of constructing
rigid formations for a given set of points. We
explain the Henneberg construction in §4.1, point
out some of the construction limitations, and then
in §4.2 develop a way around these limitations
using a new construction based on the Delaunay
triangulation. Finally in §4.3 we develop a method
based on polygonal triangulations to handle the
constraints imposed by objects other than vehi-
cles.

2. POINT FORMATIONS

By a d-dimensional point formation at p
∆
=

column {p1, p2, . . . , pn}, written Fp, is meant a set

of n points {p1, p2, . . . , pn} in IRd together with
a set L of m maintenance links, labelled (i, j),
where i and j are distinct integers in {1, 2, . . . , n};
the length of link (i, j) is the Euclidean distance
between points pi and pj . By a trajectory of
Fp is meant a continuously parameterized, one-

parameter family of points {q(t) : t ≥ 0} in IRnd

which contains p.

A point formation Fp = ({p1, p2, . . . , pn},L) pro-
vides a natural high-level model for a set of n-
vehicles moving in formation in real 2 or 3 di-
mensional space. In this context, the points pi

represent the positions of the vehicles in IRd at
time t and the links in L correspond to dis-
tances between specific vehicles which are to be
maintained over time. In practice, actual vehi-
cle groups cannot be expected to move exactly
in formation because of sensing errors, vehicle
modelling errors, etc. The ideal benchmark point
formation against which the performance of an
actual vehicle formation is to be measured is
called a reference formation. Such a formation is
said to undergo rigid motion along a trajectory

q([0,∞))
∆
= {column {q1(t), q2(t), . . . , qn(t)} : t ≥

0} if the Euclidean distance between each pair of
points qi(t) and qj(t) remains constant all along
the trajectory. Let us note that Fp undergoes
rigid motion along a trajectory q([0,∞)) just in
case each pair of points q(t1), q(t2) ∈ q([0,∞))
are congruent in the sense that there exists a
distance preserving map T : IRd → IRd such that
T (qi(t1)) = qi(t2), i ∈ {1, 2, . . . , n}. The set of
points Mp in IRdn which are congruent to p is
known to be a smooth manifold. It is clear that
any trajectory along which Fp undergoes rigid
motion must lie completely withinMp; conversely

any trajectory of Fp which lies within Mp is one
along which Fp undergoes rigid motion. It can
be shown that in the generic case when the set
of points {p1, p2, . . . , pn} is not contained in any
proper hyperplane within IRd, the dimension of

Mp is d(d+1)
2 (Roth, 1981). Thus under this

condition the dimension of Mp is 6 for d = 3 and
3 for d = 2.

A formation Fp is said to be rigid if rigid motion
is the only kind of motion it can undergo along
any trajectory on which the lengths of all links
in L remain constant. Thus if Fp is rigid, it is
possible to “keep formation” by making sure that
the lengths of formation’s maintained links do not
change as the formation moves. It is possible to
associate with any point formation Fp a graph

GF
∆
= {V,L} whose vertex set is the set of

labels of the points in Fp and whose edge set is
L. The definition of rigid formation implies that
every formation Fp whose graph GF is complete is
automatically rigid. The converse however is not
generally true.

In practice, autonomously functioning vehicles
would typically be expected to maintain not only
relative distance to nearby vehicles but also rela-
tive heading. More often than not desired heading
and relative position specifications can be con-
verted into desired position constraints with re-
spect to a suitably defined “virtual vehicle”. For
example, three vehicles v1, v2, v3 all heading north
in IR2 with a maintained distance of 100 meters
between nearest neighbors plus the constraint that
the trailing two vehicles each maintain a relative
heading of 30o west with respect to its nearest
neighbor, determines a straight line formation as
shown in Figure 1a. The same formation can
equivalently be specified in terms of lengths alone
by introducing two virtual vehicles and four ad-
ditional links as shown in Figure 1b. For analysis
purposes, such equivalent point formation repre-
sentation enables one to address rigidity ques-
tions, etc. within the framework outlined above.

3. CONDITIONS FOR RIGIDITY

The question of whether or not a given for-
mation is rigid has been studied for a long
time. One approach to the question starts by
examining what happens to a given formation
Fp = ({p1, p2, . . . , pn},L), along the trajectory
{q1(t), q2(t), . . . , qn(t)} : t ≥ 0} on which the

Euclidean distances dij
∆
= ||pi−pj || between pairs

of points (qi, qj) for which (i, j) is a link, are
constant. Thus along such a trajectory

(qi−qj)
′(qi−qj) = d2ij , (i, j) ∈ L, t ≥ 0 (1)

Assuming a smooth trajectory, we can differenti-
ate to get



Fig. 1. Line Formation (a) Heading Determined
Formation (b)Equivalent Distance Deter-
mined Formation

(qi − qj)
′(q̇i − q̇j) = 0, (i, j) ∈ L, t ≥ 0 (2)

These equations can be evaluated at p and rewrit-
ten in matrix form as

R(q)q̇ = 0 (3)

where q̇ = column {q̇1, q̇2, . . . , q̇n}, and R is a
specially structured m×dn array called a rigidity

matrix. Because any trajectory of Fp which lies
within Mp is one along which Fp undergoes rigid
motion, (2) automatically holds along any trajec-
tory which lies within Mp. From this it follows
that the tangent space to Mp at q, written Tq

must be contained in the kernel of R(q). Since p

must be on any such trajectory, it must be true
that Tp ⊂ kernel R(p). In the generic case when
{p1, p2, . . . , pn} is not contained in any proper
hyperplane within IRd, the dimension of Mp and

thus Tp is d(d+1)
2 (Roth, 1981). Thus under this

condition the dimension of kernel R(p) is at least
6 for d = 3 and at least 3 for d = 2. In other
words, if {p1, p2, . . . , pn} is not contained in any
proper hyperplane within IRd, then

rank R(p) ≤

{
3n− 6 if d = 3

2n− 3 if d = 2

Since trajectories which lie totally withinMp are
trajectories along which Fp moves rigidly, it is
natural to expect that rigidity of Fp would be
implied if the preceding were to hold with equality.
Unfortunately there are counterexamples which
prove that this is not the case. Fortunately in the
“generic case,” the preceding does indeed lead to
a test for rigidity. By the generic case we mean the
case when (1) {p1, p2, . . . , pn} is not contained in
any proper hyperplane within IRd and (2) p is a
point in IRdn at which the rank of R(q) is maximal
over all q ∈ IRdn. Points which maximize R(q) are
called regular points and the rank of R(q) at any
such point is called R’s generic or maximal rank.
We can now state the following theorem (Roth,
1981):

Theorem 1. Let Fp be a formation whose point
set {p1, p2, . . . , pn} is not contained in any proper
hyperplane within IRd. Suppose p is point in IRdn

at which the rank of R(q) achieves its maximal
rank. Then Fp is a rigid formation if and only if

rank {R(p)} =

{
3n− 6 if d = 3

2n− 3 if d = 2

The hypotheses of the preceding theorem lead nat-
urally one to the following concept. A formation
Fp is said to be generically rigid if it is rigid and
if there is an open neighborhood of points about
p in IRdn at which Fp is also rigid. The concept of
generic rigidity does not depend on the distances
between the points of Fp and for this reason, it is a
desirable specialization of the definition of a rigid
formation for our purposes. For generic rigidity,
there is the following simplification of Theorem 1.

Theorem 2. A formation Fp is generically rigid if
and only if

rank {R(p)} = generic rank {R(p)}

=

{
3n− 6 if d = 3

2n− 3 if d = 2

The generic rigidity question thus can be reduced
to developing a test for computing the generic
rank of a matrix. The generic rank question is
very closely related to the question of structural
controllability treated some time ago in (Corf-
mat and Morse, 1976) and (Anderson and Hong,
1982). In particular, in the latter, explicit con-
structions are given for determining the generic
rank of an arbitrary matrix net of the form

M(p) = M0 + p1M1 + · · ·+ pnMn

over the linear space of all n-vectors p =
column {p1, p2, · · · , pn}. Unfortunately these con-
structions are computationally complex and re-
veal little about the structure of generically rigid
formations.

As noted above the concept of generic rigidity
does not depend on the precise distances between
the points of Fp. It is perhaps not surprising
then, that the generic rigidity question can be
posed solely in terms of the graph GFp

without
any reference to Fp’s actual points. The following
theorem settles the generic rigidity question for
d = 2 in strictly graph theoretic terms. To state
the theorem, we need the following idea. A graph

G
∆
= {V,L} with n vertices is said to be a

generically rigid graph for IRd if there is an open
dense set of points p ∈ IRdn at which Fp is a rigid
formation with graph G.

Theorem 3. (Laman, 1970) A graph G
∆
= {V,L}

with n vertices is a generically rigid graph on IR2



if and only if L contains a subset E consisting
of 2n − 3 edges with the property that for any
nonempty subset Ē ⊂ E , the number of edges in
Ē cannot exceed 2k − 3 where k is the number of
vertices of G which are endpoints of edges in Ē .

The generalization of Laman’s theorem to higher
dimensions, including most especially d = 3 has
been proved to be quite elusive. At present, this
is the most general result known for characterizing
generic rigidity in graph theoretic terms.

4. CONSTRUCTION METHODS FOR
GENERICALLY RIGID POINT FORMATIONS

In this section we turn to the question of how to
construct a generically rigid point formation. We
begin by reviewing inductive constructions that
applies to isostatic point formations. By isostatic
point formation is meant a rigid point formation
such that removing any maintenance link gives a
non-rigid point formation. Similarly a generically

isostatic point formation is a generically rigid
point formation such that removal of any main-
tenance link gives a generically non-rigid point
formation. A generically isostatic graph is defined
in a similar manner. Generically d-isostatic means
isostatic condition in d -dimension. The degree of
a vertex i of a graph is the number of incident
vertices to i.

4.1 The Henneberg Construction of Formations

In the sequel we explain the Henneberg construc-
tion method which is an inductive approach that
creates generically d -isostatic point formations
both in real 2 and 3 dimensional space while main-
taining rigidity. The construction makes use of the
following theorems (Whiteley and Tay, 1985).

Theorem 4. Let G
∆
= {V,L} be a a generic graph

with a vertex i of degree d; let G∗ ∆
= {V∗,L∗}

denote the subgraph obtained by deleting i and
the edges incident with it. Then G is generically d-
isostatic if and only if G∗ is generically d-isostatic.

Theorem 5. Let G
∆
= {V,L} be a graph with a

vertex i of degree d + 1, let Vi be the set of

vertices incident to i, and let G∗ ∆
= {V∗,L∗} be

the subgraph obtained by deleting i and its d + 1
incident edges. Then G is generically d-isostatic
if and only if there is a pair j, k of vertices of Vi

such that the edge (j, k) is not in L∗ and the graph
G′ = (V∗,L∗

⋃
(j, k)) is generically d-isostatic.

This inductive construction starts from a single
maintenance link at the first step and then it

Fig. 2. Creating an isostatic point formation in 3
dimensional space

either adds a new vertex with d maintenance links
to the existing point formation, or it removes an
existing maintenance link by adding a new vertex
connecting it to the end points of the removed
maintenance link and to other d − 1 vertices
in the existing point formation. The resulting
point formations that we get after each step are
generically rigid. A sample point formation in 3
dimensional space created by this construction
method is depicted in Figure 2.

4.2 The Delaunay Triangulation of Formations

While the Henneberg construction method creates
rigid point formations, it lacks imposing geomet-
rical constraints while creating them. Some of the
formations created with this method will not be
of much practical use. Because the method does
not consider the lengths of maintenance links and
the angles between them. Now we are going to de-
velop a way around these limitations using a new
construction based on the Delaunay triangulation.

A triangulation in the plane is a partition of a
point set into triangles that meet only at shared
maintenance links. A triangulation in 3-space is
a partition of a points set into tetrahedra that
meet only at shared faces. Figure 3 depicts the
triangulation of a ten-vehicle formation. Now that
we have inductive construction methods for iso-
static point formations, we will investigate the
rigidity of triangulated point formations. First we
will investigate a simpler triangulation method,
triangulation by the plane sweep method, which
we will use to create the Delaunay triangulation.

Triangulated Point Formations by the Plane Sweep

Method. In this well-known method, in order to
sort a set of points in the plane, an imaginary
vertical line sweeps through them. The points of
{p1, p2, . . . , pn} are added by x-coordinate order
(using y-order to break ties) for sweeping. The
triangles for a new vertex pi are constructed using
the boundary maintenance links of the current
triangulated point formation visible from pi. To
prove the rigidity of the triangulations created by



Fig. 3. Triangulation of a ten-vehicle formation

Fig. 4. Triangulated point formations by (a)
the plane sweep method (b) the Delaunay
method

the plane sweep method, we will use the following
lemma from rigidity theory.

Lemma 6. (Whiteley and Tay, 1985) If GF1
=

(V1,L1) and GF2
= (V2,L2) are generically rigid

graphs sharing at least d vertices, then G =
(V1

⋃
V2,L1

⋃
L2) is generically d-rigid.

Theorem 7. Assume G is the resulting graph of
triangulation constructed by the plane sweep
method. Then G is generically rigid.

PROOF. G2 is a single maintenance link on
two vertices. Assume that Gn is generically rigid.
Gn+1 is constructed from Gn by adding triangle(s)
to the existing graph. The triangles for a new
vertex i are constructed using the boundary edges
of the current triangulation visible from i. Each
added triangle tijk and the existing graph Gn

share two vertices j and k. The resulting graph is
generically rigid by Lemma 6. ¤

Neither the Henneberg construction method nor
Lemma 6 consider the the angles between main-
tenance links. We want to avoid skinny triangles
with small angles created by the plane sweep
method as shown in Figure 4a. To meet our goals,
we apply maintenance link flipping on triangu-
lated point formations so that the circumcircle

of any triangle/tetrahedron in the point forma-
tion does not include any other vertex in it. By
circumcircle, we mean the circle/sphere passing
through the vertices of a triangle/tetrahedron.

This maintenance link flipping results in a spe-
cial kind of triangulation which is known to be
the Delaunay triangulation. We prove that the
maintenance link flipping preserves the rigidity
of the initial triangulated point formation. The
Delaunay triangulation maximizes the minimum
angle of all triangulations/tetrahdra of a given
vertex set.

Creating the Delaunay Triangulated Point Forma-

tion. Let V be a set of n ≥ 3 vertices in R2.
We can compute the Delaunay triangulated point
formation as follows: First we determine some
triangulation of V. The plane sweep method can
be used for initial triangulation. Then, while there
are two opposite triangles tijk and tikl that are
not locally Delaunay, we flip the diagonal, that
is, we replace the two triangles with triangles tijl

and tjkl. The Delaunay triangulation of the same
vertex set of Figure 4a is shown in Figure 4b.

Lemma 8. Maintenance link flipping applied on a
triangulated point formation created by the plane
sweep method preserves generic rigidity.

PROOF. We first show that the maintenance
link that is flipped can not be shared by two
triangles tijk and tijl that are added at the same
step when the vertex i was added in the plane
sweep method. Assume that i is added to the
graph Gn and we get the graph Gn+1. Since tijk

and tijl are added at the same step, the links
{j, k} and {j, l} are visible from the vertex i.

Since Gn is convex, the angle k̂jl in Gn is more
than 180 ◦. Therefore the quadrilateral ijkl is not
convex and the Delaunay diagonal flip can not
be applied on (i, j). This completes the first part
of the proof. Now assume that the maintenance
link that is flipped is shared by two triangles
tijk and tlik that are added at different steps
when the vertices i and l were added in the plane
sweep method respectively. Assume that (i, k)
that is flipped is a diagonal in the quadrilateral
ijkl. Flipping the diagonal changes the order of
the vertices that were added. Since Lemma 6 is
still satisfied, maintenance link flipping preserves
rigidity. ¤

Theorem 9. The Delaunay triangulated point for-
mation is rigid.

PROOF. The proof follows immediately from
Theorem 7 and Lemma 8. ¤

Remark 10. The Delaunay triangulated point for-
mations and its rigidity properties can be ex-
tended to 3 dimensional space.



Fig. 5. Polygonal triangulated point formation
around an object

4.3 Rigid Formations with Visibility Constraints

Now we extend triangulated point formations
with occlusions imposed by objects other than
vehicles, i.e. some vehicles may be carrying an
object while others are escorting. This will impose
additional constraints on maintenance links, such
as some maintenance links have to be included
in the point formation while some others have to
be excluded. To solve this problem, we propose
the use of triangulations of simple polygons and
polygons with holes from computer graphics.

In the triangulation of a simple polygonal point
formation, the boundary forms a simple, polygo-
nal, closed curve. In the case of polygonal point
formation with holes, the boundary maintenance
links may form several disjoint polygonal Jordan
curves. The triangulation must use the links of
the boundary as maintenance links in the trian-
gulation. Thereafter we are going to use the term
polygon for both simple polygon and polygon with
holes. The following lemma applies to any poly-
gon, and hence every polygonal point formation
can be triangulated.

Lemma 11. (Fortune, 1995) Every polygon with
more than three sides has a diagonal.

Theorem 12. Triangulated polygonal point for-
mations are generically rigid.

PROOF. Let Fp denote a polygonal point for-
mation with only boundary maintenance links.
We can find the remaining maintenance links as
follows. By Lemma 11, once we have found a
single diagonal of Fp, we can split the polygon into
two, and recursively triangulate each part. Let
t1, ..., tn denote the resulting triangles. Each tri-
angle shares a maintenance link at least with one
other triangle, where the shared maintenance link
is a diagonal of Fp. Since each ti (i = 1, ..., n) is
sharing at least 2 vertices with the rest of the point
formation, starting from t1 and adding t2, . . . , tn
generates a generically rigid point formation at
each step by Lemma 6. ¤

With this method we are able to impose the polyg-
onal boundary maintenance links surrounding an
object as constraints as seen in Figure 5.

5. CONCLUDING REMARKS

In this paper, we developed methods to construct
rigid point formations for modelling communica-
tion/sensing links needed to maintain formations
of autonomous vehicles. We proposed inductive
construction methods which are provably rigid
at each step of construction without a need to
test at every step. While the Henneberg con-
struction method creates rigid point formations,
it lacks imposing constraints while creating them.
To overcome this difficulty, we used the Delau-
nay triangulation to optimize angle measures and
to avoid large maintenance links. We extended
triangulated point formations to polygonal trian-
gulations to handle the obstructions imposed by
objects other than vehicles. Significant features
of the developed model are that it scales with
the number of vehicles, it is flexible to support
many rigid formation shapes, and robust in main-
taining rigid shapes with visibility constraints in
the environment. Future research will focus on
extending these models to real-time modifications
in point formations such as splitting a formation,
maintaining rigidity in case of vehicle removals
and creating the Delaunay triangulations without
redundant links.
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