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Abstract: The application process of fluid fertilizers through variable rates implemented 
by classical techniques needs a flow meter in the primary controlled variable. This paper 
proposes an inferential control system based on Artificial Neural Network of the type 
multilayer SHUFHSWURQ for the identification and control the fertilizer flow rate. In this 
approach, there is no flow meter since the control is made through secondary variables. 
The neural network training is made by the algorithm of /HYHQEHUJ�0DUTXDUGW with 
training data obtained from measurements. The results indicate a fast, stable and low 
cost control system for precision farming. &RS\ULJKW�������,)$&�
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1. INTRODUCTION 
 

The application of fertilizers in a precise way along 
the field is of fundamental importance, in as much as 
it involves biotics, abiotics, social and economics 
aspects. 
 
According to the principles of the precision farm, the 
need of nutrients for a certain cultivation varies over 
the area and along the deepness of the soil (spatial 
variability). Thus, the rational use of the fertilizers is 
obtained when its application obeys the real necessity 
of each portion of the soil. 
 
For a typical Brazilian sugar cane grower, the costs 
involved with fertilizers represent approximately one 
fourth of the production expenses. Therefore, the 
effective management of these costs has had a 
significant impact on the eventual profit obtained 
from crop production processes. Besides, it is well 
known that so much the deficiency as the excess of 
nutrients can reduce productivity and affect the crop 
quality. For instance, the excess of nitrogen (N) in 

the soil can increase the vegetative growth, however, 
it can reduce the sucrose content in sugar beets and 
leave them more tender, turning the more exposed to 
the attack of plagues (Morgan and Ess, 1997). This 
excesses that leach through the soil often ends up in  
groundwater wells, streams and lakes - the same 
resource that provides water for most of the world 
population.  
 
In this scenario, the equipments used for fertilizers 
application should have some control systems that 
can change the fertilizer application rate in 
accordance with the real necessity of the cultivation. 
But, this affirmation doesn’t represent the reality 
because the equipments for fluid fertilizer variable 
application  rate  had have high cost for the most of 
Brazilian’s farmers and small enterprises. Even so, 
the fluid fertilizer application over the field are still 
made through average rate. 
 
This work describes a new inferential control system 
based on Artificial Neural Networks (ANN) destined 
to control the application of nitrogen (N), phosphorus 
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(P) and potassium (K) without necessity of flow 
meter devices. More specifically, it is used neural 
nets of the type multilayer SHUFHSWURQV (MLP) 
(Haykin, 1999; Kosko, 1992) for the identification 
and control of the fertilizer application system, using 
indirect measurements like tank level, centrifugal 
speed pump, and others variables and parameters that 
are related to the fertilizer flow through the 
applicator system. The network training is made by 
the algorithm of Levenberg-Marquardt (Hagan and 
Menhaj, 1994) with training data obtained from 
workbench measurements.  
 
For this purpose, the organisation of the present 
paper is as follows. In Section 2, the basic aspects 
relative to systems identification and artificial neural 
networks are described. In Section 3, a review of the 
fertilizer application systems is presented. In Section 
4, the control strategy used to the fertilizer 
application system is formulated. In Section 5, results 
are included to validate the proposed methodology.  
In Section 6, the key issues raised in the paper and 
the conclusions drawn are presented . 
 
 

2. SYSTEMS IDENTIFICATION AND 
ARTIFICIAL NEURAL NETWORKS 

 
In this context, a system identification technique is 
used to simplify the system control and make its 
implementation cheaper than conventional 
techniques. In this problem, some identification 
method 3�Z� with a convenient algorithm (in this 
case an Artificial Neural Network – ANN), finds the 
best parameterization that represents the dynamic of 
the process, as shown in Figure 1. The  
parameterization is tuned through the minimization 
of  reconstruction error obtained from the output H�N�, 
which it is used to adjust the ANN weights      
(Hagan, 1999). 
 
 

 

 

 

 

 

 

 
 

Fig. 1. Identification system with an ANN 
 

In this paper, artificial neural networks of the type 
perceptron has been used to identify the process and 
to control the fertilizers application rate. 
  
The ability of Artificial Neural Networks in mapping 
functional relationships has become them an 
attractive approach that can be used in several types 
of problem (Haykin, 1999). This characteristic is 

particularly important when the relationship among 
the process variables is non-linear and/or not well 
defined, and thus difficult to model by conventional 
techniques.  
An artificial neural network is a dynamic system that 
consists of highly interconnected and parallel non-
linear processing elements that shows extreme 
efficiency in computation. The main benefits of using 
ANN on the control system of fluid fertilizer 
application are the following: i) the ability of 
learning and therefore generalisation; ii) the facility 
of implementation in hardware; iii) the capacity of 
mapping complex systems without necessity of 
knowing the eventual mathematical models 
associated with them; and iv) the possibility of 
reducing the costs involved with the crop production 
processes. 
 
A typical feedforward ANN is depicted in Figure 2, 
with P inputs and S outputs, where each circle 
represents a single neuron. The name feedforward 
implies that the flow is one way and there are not 
feedback paths between neurons. The output of each 
neuron from one layer is an input to each neuron of 
the next layer. The initial layer where the inputs 
come into the ANN is called the input layer, and the 
last layer, i.e., where the outputs come out of the 
ANN, is denoted as the output layer. All other layers 
between them are called hidden layer. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Typical feedforward ANN 
 
Each neuron can be modelled as shown in Figure 3, 
with Q being the number of inputs to the neuron.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Single artificial neuron 
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Associated with each of the Q inputs [i is some 
adjustable scalar weight, Z �  (L=1,2,…,Q), which 
multiplies that input. In addition, an adjustable bias 
value, E, can be added to the summed-scaled inputs. 
These combined inputs are then fed into an activation 
function, which produces the output \ of the neuron, 
that is: 
 

)(
1

E[ZJ\ �
�

�
� += ∑

=
                    (1) 

 
where J�is a sigmoid function defined by J(X)=(1+H

- � )-1. 
 
The training process of the neural network consists of 
the successive presentations of input-output data 
pairs. The basic structure having one hidden layer has 
been shown to be powerful enough to produce an 
arbitrary mapping among variables. During the 
training, the data are propagated forward through the 
network, which adjusts its internal weights to 
minimise the function cost (weighted squared 
deviation between the true output and the output 
produced by the network) by using the back-
propagation technique. The details of the derivation 
of the back-propagation algorithm are well known in 
literature and its steps can be found in              
(Haykin, 1999). A review of the main steps of the 
algorithm is presented here. The function to be 
minimised is the sum of the average squared error 
((��� ) of the output vector, 
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where 1 is the number of training points and ((N) is 
the sum of squared errors at all nodes in the output 
layer, i.e., 
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For an optimum weight configuration, ((N) is 
minimised with respect to the synaptic weight Z, so 
that for each data set, 
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where Z is the weight connecting the neuron M of the 
O-layer to neuron L of the (O�±�1)-layer.  
 
Finally, the weights of the network are updated using 
the following relationship: 
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where η is a constant that determines the rate of 
learning of the back-propagation algorithm. 
 
 

3. FERTILIZER APPLICATION 
EQUIPMENTS 

 
In Brazil, the fluid fertilizer applicator equipments 
used in sugar cane controls the flow by branching 
(Figure 4). The flow of the centrifugal pump is split 
into one stream, which is redirected into the tank, and 
another stream, which is fed into the spreading 
nozzles (Miagle, 1996). The recirculation flow is 
vary important because it  sustains the stability of the 
agricultural suspensions  avoiding sedimentation and 
syneresis (Palgrave, 1991). 
 
In this case, an average application rate is used to 
apply the fertilizer across the field, and the tractor 
speed and engine speed should be fixed. Since the 
tractor does not allow controlling these variables and 
the application rate is fixed, the fertilizer quantity for 
a certain portions becomes incorrect.  
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Fluid fertilizer applicator by branching 
 
On other hand, the application process through 
variable rates can be made through control systems 
implemented by conventional techniques with 
feedback as illustrated in Figure 5. In other words, 
the measurements from a fertilizer flow meter is used 
to maintain a pre-set application rate come from a 
fertility map. All these systems are based on maps, so 
a GPS (Geographic Positioning System) or DGPS 
(Differential Geographic Positioning System)  
becomes necessary. Normally, a magnetic inductive 
flow meter is used since the fertilizer formulations 
are suspensions. However, it represents up to 36% of 
the total cost of  a fluid fertilizer applicator. Besides, 
this device presents dynamics responses very slow or 
instable for several control propose. Munack, HW� DO� 
(1999) has showed a typical response for a magnetic 
inductive device. For typical devices, the time delay 
is 0,5 to 1,2 seconds followed by a lag time of  0.25 
to more 1 second. 
 
The flow control may be controlled by control valve 
or variable speed pump. The control valve may be  
activated by electric actuator or hydraulic cylinder. 
For sphere valves with electric motor the time needed 
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for a full opening (10º to 90º) was measured as       
5.0 ... 12  s and 0.4 … 1 s for hydraulic cylinder.  
 
Consequently, the control process with feedback can 
become very slow when used electric actuator or 
marginally unstable when used hydraulic cylinder 
due to delays of response provided by magnetic 
inductive device. Besides, the electric conductivity of 
fertilisers varies depending on temperature and 
concentration. So, control systems with 
electromagnetic flow meter need frequents 
calibrations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5. Fluid fertilizer variable rate applicator system 
with conventional  feedback control. 
 
 

4. INFERENTIAL CONTROL STRATEGY 
 
In order to achieve a cheap, fast, robust and stable 
control system, an approach based on Artificial 
Neural Networks was designed and implemented, as 
illustrated in Figure 6. The control system uses 
secondary measurements to identify and control the 
fertilizer application rate. There is no flow meter 
devices in the system, indicating an inferential 
control strategy. Its schematic diagram is shown in 
Figure 7.  
 
In this system there are two ANN. The output of 
ANN 1 produces the application rate in function of 
the GPS or DGPS coordinates (Ulson, HW� DO� 2000). 
The last one (ANN 2) estimates the fluid fertilizer 
flow rate (T � ). The fertilizer flow rate T�[�W� is 
controlled through a sphere valve with electric 
actuator. The flow rate T�[�W� is a nonlinear function 
of the valve position (α), hydraulic suction head (= � ), 
speed pump (ω), nozzle diameter ('%), number of 
nozzles in operation (1%), fertilizer temperature (7S) 
fertilizer specific mass, fertilizer apparent viscosity, 
particles size in suspension (undissolved nutrients 
and clay added), etc. This factors affect all loss load 
in the hydraulic system. Therefore, there are no 
precise mathematics models that describe the 
hydraulic process. 
 

So an Artificial Neural Network (ANN 2) of the type 
multilayer perceptrons is used for the identification 
and control of the fluid fertilizer application rate.  
 
The net training is made off-line by the algorithm of 
Levenberg-Marquardt (Hagan and Menhaj, 1994) 
with training data obtained from workbench 
measurements. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6. Block diagram of the inferential control 
system based on ANN for fluid fertilizer application. 
 
 

5. DISCUSSION AND RESULTS 
 

For evaluation of the inferential control system, some 
preliminary tests were accomplished with two NPK 
fertilizer as following:   
 
i) Fluid fertilizer: NPK 32-0-0 (uan) 
 
This test was realized under the following conditions: 
 

��ANN 2 topology:   
- Architecture: multilayer perceptron (MLP)    
- Number of hidden layers: 1   
- Number of neurons of the hidden layer: 25  

��Data set training: 871 vectors  
��Data test pattern: 200 vectors 
��Cultivation: sugar cane 
��Fertilizer temperature: 26.5 °C 
��Application width: 3.6 meters 
��Number/diameter of nuzzles: 4/∅5 mm 
��Tractor speed: 5 … 12 km/h 
��Valve angle position: 5 … 90°   
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Fig. 7. Basic schematic diagram of the system control bases on ANN for  application of fluid fertilizer 
 
It is observed in Figure 8 that the proposed neural 
approach provides flow rates near to real values. The 
correlation coefficient (R-value) between measured 
flow rates and those provide by the ANN 2 is close 
to 1, which indicates a good ANN generalization. 
The mean relative error obtained was 2,91% and its 
standard deviation was 3,56%. Some relative errors 
are appreciable, but during the application operation 
their life time is very low, so their effect is not 
significant. 
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Fig. 8. Correlation between measured flow rate and 
provided by the ANN 2. 
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Fig. 9. Behaviour of the intelligent system control. 

The Figure 9 shows the system behaviour under 
agricultural field operation. The desired flow rate is 
close to the flow rate estimated by the ANN. The 
fertilizer volume required in the area was 41,0 l and 
the measured volume was 39,60 l. So, the volume 
error was 3,53%. This value indicates a good 
precision for maps-based variable rate fertilizer 
applicator proposed in this paper. 
 
ii) Fluid fertilizer: NPK 15-0-15 (suspension) 
 
This test was realized under the following 
conditions: 
 

��ANN 2 topology:   
- Architecture: multilayer perceptron (MLP)    
- Number of hidden layers: 1   
- Number of neurons of the hidden layer: 25  

��Data set training: 675 vectors  
��Data test pattern: 150 vectors 
��Cultivation: sugar cane 
��Fertilizer temperature: 26.5 °C 
��Application width: 3.6 meters 
��Number/diameter of nuzzles: 4/∅5.5 mm 
��Material of the nuzzles: inox 316 
��Tractor speed: 5 … 15 km/h 
��Valve angle position: 10 … 90°  
��Flow rate range: 5…50 l/min  

 
The test result for suspensions indicates a precision 
close to the uran. The mean relative error obtained 
was 2,76% and its standard deviation was 3,75%. 
However, for agricultural suspensions, the nuzzles 
should be made of porcelain to minimize the erosion 
due to abrasion. To avoid clogging in the control 
valve, the operational angle (α) must be greater than  
10°. 
 
An important aspect in this approach is the transient 
response of the system when a step excitation is 
applied. The settling time observed in Figure 10 
decreases the precision of the applicator in the field 
boundary. This problem can be minimized whether  
the system always to keep its operation close to 
desired flow rate value. So, it is necessary electric 
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on-off valves near the nuzzles to start the application 
in the field boundary. 
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Fig. 10. Step response of the intelligent control 
system using a control valve with 12 s for full 
opening. 
 
 

6.   CONCLUSIONS 
 

The proposed method provides a systematic 
approach to control the application of fluid fertilizer 
across the field and others agricultural products such 
as: solid fertilizers, pesticides and seeds. The test 
results demonstrate that the proposed approach is an 
efficient alternative to the conventional models that 
are usually used in these processes. The main 
advantages in using the proposed approach are:       
i) the flow meter can be removed, allowing a 
reduction up to 36% in the equipment cost               
ii) simplicity of implementation, iii) very good 
precision for precision farming, iv) economy of 
agricultural inputs, v) reduction of environmental 
impacts and vi) effective obtainment of economical 
and operational gains.  
 
In sake of a better understanding, the system has still 
been developed. Several fluid fertilizer formulation  
will be considered to validate the proposed 
approach.  
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