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Abstract� The goal of Iterative Learning Control �ILC� is to improve the accuracy
of a system that repeatedly follows a reference trajectory� This paper proves that
for any causal ILC� there is an equivalent feedback that achieves or approaches
the ultimate ILC error with no iterations� Remarkably� this equivalent feedback
depends only on the ILC operators and hence requires no plant knowledge� This
equivalence is obtained whether or not the ILC includes current�cycle feedback�
The equivalence is proved for general nonlinear systems� except for the special case
of zero ultimate ILC error� which is investigated for LTI systems only� Conditions
are obtained for internal stability and convergence of ILC� as these are used to
prove equivalence in the zero error case� Since conventional feedback requires no
iterations� there is no reason to use causal ILC�
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�� INTRODUCTION

In many practical control applications� a reference
trajectory is repeated several times� For example�
a robotic manipulator might perform the same
movements thousands of times� This provides an
opportunity to increase the accuracy of the system
by learning from previous trials� This approach is
called Iterative Learning Control �ILC� and was
originally proposed in �Arimoto et al�� �	
���

The literature on ILC is vast� A survey of the
�eld citing �� papers is presented in �Moore�
�			�� ILC research includes linear time�invariant
�LTI� systems �Moore� �		��� discrete�time sys�
tems �Phan et al�� ����� and nonlinear sys�
tems �Ahn et al�� �		��� Analyses consider ILC
algorithms that contain general linear operat�
ors �Moore� �		��� as well as speci�c algorithms�
such as derivative ILC �Arimoto et al�� �	
��
and proportional ILC �Saab� �		��� Many ana�

lyses include �current�cycle feedback� in the ILC
algorithm �Chen et al�� �		�� to stabilize the
plant and improve performance� The e�ect of
disturbances and initial conditions is considered
in �Heinzinger et al�� �		�� Most ILC algorithms
are based on causal operators� although non�
causal operators have been considered in discrete�
time ILC �Phan et al�� ���� and in recent work
on continuous LTI ILC �Chen and Moore� �����

In this paper� we consider causal LTI ILC with
current cycle feedback� The LTI assumption al�
lows the use of frequency�domain techniques� Re�
lated work on LTI ILC investigates performance
and robustness �Liang and Looze� �		�� and op�
timization �Amann et al�� �		
�� A comparison
between time and frequency domain stability res�
ults appears in �Judd et al�� �		��� The design
of ILC for non�minimum phase plants is con�
sidered in �Amann and Owens� �		�� and �Roh
et al�� �		���
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This paper proves that for any causal ILC al�
gorithm� there exists a feedback control that
matches the ultimate tracking error of the ILC
without any iterations� unless the ultimate ILC
error is zero� In the latter case� there exists an
internally stabilizing controller that approaches
zero error at high gain� The purpose of this paper
is not to propose a new control method or a new
approach to feedback design� Rather� it is to show
that the performance of causal ILC is limited
to that of conventional feedback control� which
is preferred since it does not require iterations�
Hence� only non�causal ILC methods should be
considered�

This paper is organized as follows� In Section � we
introduce the general ILC and derive an expres�
sion for the ultimate tracking error� In Section ��
we obtain an equivalent feedback control that
achieves the ultimate ILC error with no iterations
for the case of nonzero ultimate ILC error� Sec�
tions � and � report conditions for ILC internal
stability and convergence� These results are used
in Section � to obtain a stable equivalent feedback
system for the zero error case� Section � concludes
the paper�

� ITERATIVE LEARNING CONTROL

In this section� we apply ILC to a nonlinear plant�
The ILC includes a current�cycle feedback term�
which may be set to zero if the plant is stable�

Let T � �� and let Lm denote the space of
piecewise continuous� square integrable functions
u � ��� T �� Rm� with norm

kuk �

vuuut
TZ
�

uT �t�u�t�dt ��� ���

The system to be controlled is modelled as

yi � Pui� ��

where ui � Lm is a control signal� P � Lm �
Ln is a causal� nonlinear time�varying operator
representing the plant� yi � Ln is the plant
output� and i � f�� �� � ���g is the trial number�
It is desired that yi follow a reference trajectory
yd � Ln and that the tracking accuracy improve
as the number of trials increases� Let us de�ne the
error in trial i as ei � yd � yi� Then� �� may be
written as

ei � yd � Pui� ���

The general ILC algorithm considered in this
paper is given by

ui � Fui�� �Cei �Dei��� ���

where F � C� and D are bounded causal operat�
ors� These operators may be nonlinear� but are
assumed to map null signals into null signals
�i�e� F ��� � �� etc�� As noted in the survey
article �Moore� �			�� this general ILC law has
appeared in several papers� usually with linear
operators assumed� The term Cei is the feedback
term and is sometimes called �curren t�cycle feed�
back� to distinguish it from Dei���

Let u� � Lm and e� � Ln denote �xed points
of the ILC system ��� and ���� These signals
satisfy ui � u� and ei � e� if ui�� � u� and
ei�� � e� �Moore� �		��� Setting ui � ui�� � u�
and ei � ei�� � e� in ��� and ��� gives

e� � yd � Pu� ���

�I � F �u� � �C �D�e�� ���

where the �nonlinear� operator C�D is de�ned as
�C�D�x � Cx�Dx� and I�F is de�ned similarly�
It is assumed that the �xed point system ���
and ��� has a unique solution for u� and e��

If �I � F ��� is de�ned� then ��� and ��� may be
written as

e� � yd � Pu� ���

u� �Ke�� �
�

where

K � �I � F ����C �D�� �	�

Note that K is a causal operator since F � C� and
D are� Since the solution to ��� and �
� is assumed
to be unique� it may be written as

e� � �I � PK���yd ����

u� �K�I � PK���yd� ����

Also of interest is the case F � I� which makes
�I � F ��� unde�ned� This case gives e� � � as
a solution to ���� but is somewhat pathological
due to the strict conditions it imposes on P for
ILC convergence� These conditions are obtained
for LTI plants in Section ��

�� EQUIVALENT FEEDBACK CONTROL

In this section� we show that when �I � F ��� is
de�ned� e� of the ILC can achieved in a single
trial using feedback control� As we are considering
only one trial of feedback control� we drop the
subscript i on the signals in ���� and write the
open�loop system as

e � yd � Pu ���



Conventional feedback control has the form

u � Ke� ����

where K is necessarily a causal operator�

Theorem �� Suppose �I � F ��� is de�ned on Lm�
and choose K as in �	�� Then the feedback con�
trol ���� applied to ��� gives u � u� and e � e��

PROOF� The closed�loop system ���� ���� is
identical to the �xed point system ���� �
� and
therefore has the identical solution u � u� and
e � e� given by ���� and �����

Remark �� Since K in the equivalent feedback
control depends only on the ILC operators C� D�
and F � no additional plant knowledge is required
to construct the equivalent feedback control�

Remark �� Since Theorem � includes the case
C � �� the equivalent feedback K exists whether
or not the ILC includes current cycle feedback C�

Remark �� The equivalent feedback achieves the
�xed point of the ILC whether or not the ILC
converges to the �xed point�

�� INTERNAL STABILITY OF ILC

Theorem � does not apply if �I � F ��� is un�
de�ned� This case is of some interest because F �
I gives e� � � in ����� In Section �� we extend
our equivalence result to the case e� � � �for LTI
systems�� It is shown that if the ILC system is
internally stable and converges to zero error� then
there is an internally stable high�gain feedback
that achieves arbitrarily small error �without it�
erations�� In this section� we obtain necessary and
su�cient conditions for internal stability of ILC�

All signals are now assumed to be on the in�nite
interval� and all operators are assumed to be
linear and time�invariant �LTI�� The space Lm is
rede�ned accordingly with T �� in ���� Since we
will be considering systems that may be unstable�
we also de�ne the extended space

Lme � fuju� � Lm� �� � �g� ����

where

u� �t� �

�
u�t�� � � t � �

�� t � �
����

The ILC system is internally stable if ei and ui
remain bounded in each trial in the presence of
bounded disturbances and noise� Let di � Lm be
an input disturbance on trial i� and let ni � Ln

be a measurement noise� We may rewrite the ILC
system ��� and ��� as

ei � yd � P �ui � di� ����

ui � Fui�� �C�ei � ni� �D�ei�� � ni��������

Since the current cycle feedback C may stabilize
the system� P � F � C� and D need not be stable to
ensure bounded ei and ui� It is assumed that the
disturbance sensitivity function

Q � �I � CP ��� ��
�

is de�ned�

Substitution of ���� into ���� gives

ui �QFui�� � QCyd � �Q � I�di

�QCni �QDei�� � QDni��� ��	�

Here� we have use the fact that QCP � I � Q�
Substitution of ��	� into ���� gives

ei � �I � PQC�yd � PQFui��� PQdi

� PQCni � PQDei�� � PQDni������

Note that I � PQC � �I � PC����

De�nition �� The closed�loop ILC system ��	�
and ��� is internally stable if for all ui�� � Lm�
di � Lm� ei�� � Ln� ni � Ln� and ni�� � Ln� the
outputs ui and ei are in Lm and Ln� respectively
�i�e� bounded for all time��

Lemma �� The ILC system ��	� and ��� is in�
ternally stable if and only if the operators Q� QF �
QC� QD� PQF � PQ� PQC� and PQD are stable�

PROOF� If each of the eight operators listed
in the lemma is stable� then each term in the
right hand side of ��	� and ��� is bounded for
all bounded inputs� and hence their sums ui and
ei are bounded� This proves su�ciency� To prove
necessity� we will show that if any of the eight op�
erators are unstable� then ui and ei are unbounded
for certain bounded inputs ui��� di� ei��� ni� ni���
Suppose that QC is unstable� Then QCyd is either
bounded or unbounded� depending on yd� If QCyd
is unbounded� and the other �ve inputs are zero�
then ui is unbounded � If QCyd is bounded� then
choose ni � Ln such that QCni is unbounded and
choose the remaining four inputs equal to zero�
again making ui unbounded� Hence� QC must
be stable for internal stability� By similar reas�
oning� the other seven operators must be stable
as well� �

Lemma � in �Goldsmith� ��� incorrectly lists
stability of PQDP as a requirement for internal
stability� Note that since



ei�� � yd � P �ui�� � di���� ���

the signals ei��� ui��� and di�� are dependent�
This is why di�� does not appear in ��	� and ����
For example� ei�� � ui�� � � implies di�� � ud�

�� CONVERGENCE OF ILC

To investigate the convergence of ILC� the di and
ni in ��	� are set to zero� which gives

ui � Q�F �DP �ui�� � �I �Q� QDP �ud��

The �xed point of �� is given by

u� � Q�F �DP �u� � �I � Q�QDP �ud����

We may shift the �xed point u� to the origin by
de�ning

vi � ui � u�� ���

Substituting ui � vi � u�� ui�� � vi�� � u��
and ��� into �� gives

vi � Q�F �DP �vi��� ���

which implies that

vi � Hiv�� ���

where

H � Q�F �DP �� ���

Note that H is proper since F � D� and P are all
assumed proper�

W e similarly de�ne a shifted error

zi � ei � e� �
�

Substitution of ���� ����� and ��� into �
� gives

zi � �Pvi �	�

Substitution of ��� into �	� gives

zi � �PHiv� ����

De�nition �� The ILC system ���� converges if for
each v� � Lm� limi��zi � �

Since kHik � kHki� a su�cient condition for
convergence is PH stable and kHk � �� We may
write H as

H � I �M� ����

where

M � I � Q�F �DP �� ���

For the remainder of this paper� it is assumed
that the system is SISO �n � m � �� and that
P and ud are not identically zero� W e will use
a common sym bol to represent a signal and its
Laplace transform� and similarly for operators�
the meaning should be clear from the context�
The norm kuk may be viewed either as the �
norm of the signal u � L or the �norm of its
Laplace transform� as these are equal� W e denote
the closed right half plane as � � fsjRe s � �g�

Lemma �� Suppose that n � m � � and the
ILC system ��	� and ��� is internally stable�
Then ���� converges only if M �s� � � for all
s � ��

PROOF� Suppose that there is an s� � � such
that M �s�� is not in �� Then the real part of
�M �s� is strictly greater than zero� and so

jH�s��j
� � j��M �s��j

� ����

� � � jM �s��j
�� ����

If H is a constant� then jHji grows unbounded
as i grows large� and the system does not con�
verge� Therefore� suppose H is not constant� Since
H is also stable� the Maximum Modulus The�
orem �Doyle et al�� �		� states that jH�s�j does
not achieve its maximum at an interior point of
�� Hence� there is an �� � R such that

jH�j���j
� � � � jM �s��j

�� ����

Since jH�j��j is continuous �H�s� is stable and
�nite�dimensional�� there exists b � ��� � �
jM �j���j�� and � � � such that

jH�j��j� � b ����

for all � � ���� �� ��� ��� Since PHi is stable for
each i � �� the size of zi is given by

kzik
� �

�

�

�Z
��

jP �j��j�jH�j��j�ijv��j��j
�d�����

�
bi

�

����Z
����

jP �j��j�jv��j��j
�d�� ��
�

Since P is not identically zero and P �s� is �nite�
dimensional� jP �j��j can be zero at only a �nite
number of points in ��� � �� �� � ��� Choose the
input v� � L such that v��j�� is nonzero over
a �nite sub�interval of ��� � �� �� � ��� Then the
integral in ��
� is nonzero� Taking the limit of
both sides of ��
� gives

lim
i��

kzik ��� ��	�

Hence� the system does not converge� �



With n � m � �� the �xed point of the ILC error
is obtained from ���� and yd � Pud as

e� � ��� P ��� F � CP �DP ����C �D��Pud�

����

Lemma �� If e� � � in ����� then F � ��

PROOF� Setting e� � � in ����� applying P��

to both sides� and rearranging gives

ud � �� � F �CP �DP ����C �D�Pud�����

Applying ���F �CP �DP � to both sides of ����
gives

��� F �ud � �C �D�Pud � �C �D�Pud����

which gives

��� F �ud � �� ����

Clearly� F � � is a solution to ����� To see
that this solution is unique� suppose there is
another solution� F �� �� Then �� � F ��� exists�
and multiplying ���� through by �� � F ��� gives
ud � �� which contradicts the assumption that
ud �� �� �

If e� � � �F � ��� then zi � ei and ���� becomes

ei � �PHiv� ����

Setting F � � in ��� gives

M � ��Q� QDP ����

�QCP �QDP� ����

For an internally stable ILC� Lemma  and ����
can be used to prove that ei in ���� converges to
zero for all v� � L only if P �s� is minimum phase
and the relative degree of P is less than or equal
to one� Non�minimumphase plants are considered
in �Amann and Owens� �		��� while the relative
degree requirement is mentioned in �Ahn et al��
�		��� In the next section� we will use Lemma 
to extend our feedback equivalence result to the
zero error case�

�� FEEDBACK EQUIVALENCE WHEN
ULTIMATE ILC ERROR IS ZERO

In Section �� conditions were obtained for ILC
to be internally stable �bounded ui and ei in
the presence of bounded noise and disturbance
inputs�� Section � reported conditions for ILC to
converge in the absence of noise and disturbance

inputs� In this section� we present the following
result� if the ILC is internally stable and converges
to zero error� then there exists an internally sta�
bilizing high�gain feedback that converges �as the
gain grows large� to zero error without iterations�

SISO systems are assumed �n � m � ��� The
equivalent feedback is required to converge to zero
error in the absence of initial conditions� noise�
and disturbances� Substitution of the feedback
control ���� into ���� along with the achievability
condition yd � Pud� gives

e� �� � PK���Pud ����

ud � u� �� � PK���ud� ��
�

Hence� the feedback K must give arbitrarily small
e and ud � u in ���� and ��
��

The second requirement on K is that it internally
stabilizes P �i�e� in the presence of initial condi�
tions� noise� and disturbances�� This requirement
is equivalent to the stability of�� � PK���� �� �
PK���K� and ���PK���P �Doyle et al�� �		��
Lemma � and Lemma  may be used to prove the
following theorem �Goldsmith� ����

Theorem �� Suppose that the ILC system ����
is internally stable and that for each v� � L�
limi�� ei � �� Then� the feedback

K � C � k�C �D� ��	�

internally stabilizes P for all k � � and gives
limk��e � � and limk��u � ud in ����
and ��
��

Remark �� As in Theorem �� K depends only on
the ILC operators C and D� not on the plant P
�although the size of the gain factor k required for
a given kek may depend on P ��

Remark �� Since Theorem  includes the case
C � �� the equivalent feedback K exists whether
or not the ILC includes current cycle feedback C�

Remark 	� The achievability assumption� yd �
Pud for bounded ud� permits tracking of unboun

ded yd when P is unstable �for example� when P

is an integrator��

Theorem  implies that even as the gain ap�
proaches in�nity� the control signal u remains
bounded� since it converges to a bounded ud� This
is because the product ke remains bounded as k
approaches in�nity and e approaches zero� Also�
for a given k� internal stability implies that u

remains bounded in the presence of initial condi�
tions� disturbances� and noise� However� for given
initial conditions or noise� kuk grows with k� so
a saturation function and�or noise �lter may be



required �if the �ltering provided by C � D is
inadequate��

�� CONCLUSION

Conventional feedback control is preferrable to
causal ILC because it can achieve in one trial
the same error that ILC achieves in an arbitrarily
large number of trials� An equivalent feedback can
always be constructed from the ILC parameters
with no additional plant knowledge� whether or
not the ILC itself includes feedback� If the ILC
converges to zero error� the equivalent feedback is
a high gain controller whose gain k plays the role
of the iteration number i in the ILC� The internal
stability and convergence �as i � �� of the ILC
guarantees the internal stability and convergence
�as k ��� of the equivalent high�gain feedback�
This result is extended to discrete�time systems
in �Goldsmith� �����

The feedback equivalence result holds only when
F � C� and D are causal �so that K is also causal
and hence implementable as a feedback operator��
However� non�causal F and D can be used in ILC
since the full signals ui�� and ei�� are available
in trial i� This approach is considered in �Phan
et al�� ���� and �Chen and Moore� ����� The
potential bene�t of non�causal ILC over con�
ventional feedback control requires investigation�
Non�causal algorithms need not be restricted to
the �xed
point algorithms currently identi�ed with
ILC� which may give limited performance even
with non�causal operators�
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