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Abstract: The goal of Iterative Learning Control (ILC) is to improve the accuracy
of a system that repeatedly follows a reference trajectory. This paper proves that
for any causal ILC, there is an equivalent feedback that achieves or approaches
the ultimate ILC error with no iterations. Remarkably, this equivalent feedback
depends only on the ILC operators and hence requires no plant knowledge. This
equivalence is obtained whether or not the ILC includes current-cycle feedback.
The equivalence is proved for general nonlinear systems, except for the special case
of zero ultimate ILC error, which is investigated for LTI systems only. Conditions
are obtained for internal stability and convergence of ILC, as these are used to
prove equivalence in the zero error case. Since conventional feedback requires no
iterations, there is no reason to use causal ILC.
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1. INTRODUCTION

In many practical control applications, a reference
trajectory is repeated several times. For example,
a robotic manipulator might perform the same
movements thousands of times. This provides an
opportunity to increase the accuracy of the system
by learning from previous trials. This approach is
called Iterative Learning Control (ILC) and was
originally proposed in (Arimoto et al., 1984).

The literature on ILC is vast. A survey of the
field citing 254 papers is presented in (Moore,
1999). ILC research includes linear time-invariant
(LTI) systems (Moore, 1993), discrete-time sys-
tems (Phan et al, 2000), and nonlinear sys-
tems (Ahn et al.,, 1993). Analyses consider ILC
algorithms that contain general linear operat-
ors (Moore, 1993), as well as specific algorithms,
such as derivative ILC (Arimoto et al., 1984)
and proportional ILC (Saab, 1994). Many ana-

lyses include ‘current-cycle feedback’ in the ILC
algorithm (Chen et al., 1996) to stabilize the
plant and improve performance. The effect of
disturbances and initial conditions is considered
in (Heinzinger et al., 1992). Most ILC algorithms
are based on causal operators, although non-
causal operators have been considered in discrete-
time ILC (Phan et al., 2000) and in recent work
on continuous LTI ILC (Chen and Moore, 2000).

In this paper, we consider causal LTI ILC with
current cycle feedback. The LTI assumption al-
lows the use of frequency-domain techniques. Re-
lated work on LTI ILC investigates performance
and robustness (Liang and Looze, 1993) and op-
timization (Amann et al., 1998). A comparison
between time and frequency domain stabilit y res-
ults appears in (Judd et al., 1993). The design
of ILC for non-minimum phase plamts is con-
sidered in (Amann and Owens, 1994) and (Roh
et al., 1996).



This paper proves that for any causal ILC al-
gorithm, there exists a feedback control that
matches the ultimate tracking error of the ILC
without any iterations, unless the ultimate ILC
error is zero. In the latter case, there exists an
internally stabilizing controller that approaches
zero error at high gain. The purpose of this paper
is not to propose a new control method or a new
approach to feedback design. Rather, it is to show
that the performance of causal ILC is limited
to that of conventional feedback control, which
is preferred since it does not require iterations.
Hence, only non-causal ILC methods should be
considered.

This paper is organized as follows. In Section 2, we
introduce the general ILC and derive an expres-
sion for the ultimate tracking error. In Section 3,
we obtain an equivalent feedback control that
achieves the ultimate ILC error with no iterations
for the case of nonzero ultimate ILC error. Sec-
tions 4 and 5 report conditions for ILC internal
stability and convergence. These results are used
in Section 6 to obtain a stable equivalent feedback
system for the zero error case. Section 7 concludes
the paper.

2. ITERATIVE LEARNING CONTROL

In this section, we apply ILC to a nonlinear plant.
The ILC includes a current-cycle feedback term,
which may be set to zero if the plant is stable.

Let T > 0, and let L™ denote the space of
plecewise continuous, square integrable functions
% :[0,7] — R™, with norm

[[ull =

The system to be controlled is modelled as

Yi = Pu”ia (2)

where u; € L™ is a control signal, P : L™ —
L™ is a causal, nonlinear time-varying operator
representing the plant, y; € L™ is the plant
output, and ¢ € {0,1,2,...} is the trial number.
It is desired that y; follow a reference trajectory
yg € L™ and that the tracking accuracy improve
as the number of trials increases. Let us define the
error in trial ¢ as e; = yq4 — yi. Then, (2) may be
written as

€; :yd—PU,i. (3)

The general ILC algorithm considered in this
paper is given by

u; = Fu;_1 + Ce; + De;_1, (4)

where F, C, and D are bounded causal operat-
ors. These operators may be nonlinear, but are
assumed to map null signals into null signals
(i.e. F(0) = 0, etc.) As noted in the survey
article (Moore, 1999), this general ILC law has
appeared in several papers, usually with linear
operators assumed. The term Ce; is the feedback
term and is sometimes called ‘curren t-cycle feed-
back’ to distinguish it from De;_;.

Let uo € Ly, and eo € L, denote fixed points
of the ILC system (3) and (4). These signals
satisfly u; — ue and e; = ey if u;_1 = Uy and
€i—1 = €x (Moore, 1993). Setting u; = ui—1 = Uoo
and e; = €;_1 = e in (3) and (4) gives

€0 = Yd — Pug (5)
(I — Flue = (C + D)ew, (6)

where the (nonlinear) operator C+ D is defined as
(C+D)z = Cz+Dz, and I—F is defined similarly.
It is assumed that the fixed point system (5)
and (6) has a unique solution for u and eq.

If (I — F)~! is defined, then (5) and (6) may be

written as

€0o =Yg — Puwe (7)
U = Key, (8)

where
K =(I-F)™(C+ D). (9)

Note that K is a causal operator since ¥, C, and
D are. Since the solution to (7) and (8) is assumed
to be unique, it may be written as

e = (I + PK) 'y, (10)
Uoo = K(I + PK) ya. (11)

Also of interest is the case F = I, which makes
(I — F)~! undefined. This case gives ec = 0 as
a solution to (6), but is somewhat pathological
due to the strict conditions it imposes on P for
ILC convergence. These conditions are obtained
for LTI plants in Section 5.

3. EQUIVALENT FEEDBACK CONTROL

In this section, we show that when (I — F)~! is
defined, e of the ILC can achieved in a single
trial using feedback control. As we are considering
only one trial of feedback control, we drop the
subscript ¢ on the signals in (3), and write the
open-loop system as

e =yg — Pu (12)



Conventional feedback control has the form

u = Ke, (13)
where K is necessarily a causal operator.

Theorem 1. Suppose (I — F)~! is defined on L™,
and choose K as in (9). Then the feedback con-
trol (13) applied to (12) gives u = 4y and e = ey

PROOF. The closed-loop system (12), (13) is
identical to the fixed point system (7), (8) and
therefore has the identical solution v = u., and
€ = e given by (10) and (11).

Remark 1. Since K in the equivalent feedback
control depends only on the ILC operators C, D,
and F, no additional plant knowledge is required
to construct the equivalent feedback control.

Remark 2. Since Theorem 1 includes the case
C = 0, the equivalent feedback K exists whether
or not the ILC includes current cycle feedback C.

Remark 3. The equivalent feedback achieves the
fixed point of the ILC whether or not the ILC
converges to the fixed point.

4. INTERNAL STABILITY OF ILC

Theorem 1 does not apply if (I — F)~! is un-
defined. This case is of some interest because F =
I gives e, = 0 in (10). In Section 6, we extend
our equivalence result to the case e, = 0 (for LTI
systems). It is shown that if the ILC system is
internally stable and converges to zero error, then
there is an internally stable high-gain feedback
that achieves arbitrarily small error (without it-
erations). In this section, we obtain necessary and
sufficient conditions for internal stability of ILC.

All signals are now assumed to be on the infinite
interval, and all operators are assumed to be
linear and time-invariant (LTT). The space L™ is
redefined accordingly with T' = oo in (1). Since we
will be considering systems that may be unstable,
we also define the extended space

LT = {u|u, € L™, VY7 > 0}, (14)
where
u(t), 0<t<r
wt) = {051 (15)

The ILC system is internally stable if e; and u;
remain bounded in each trial in the presence of
bounded disturbances and noise. Let d; € L™ be
an input disturbance on trial ¢, and let n; € L™

be a measuremen t noise. We may rewrite the ILC
system (3) and (4) as

e =yq — P(ui +d;) (16)
ui = Fu;_1 4+ C(e; + ni) + D(ei—1 + ni—1)(17)

Since the current cycle feedback C may stabilize
the system, P, F, C, and D need not be stable to
ensure bounded e; and u;. It is assumed that the
disturbance sensitivity function

Q={I+cp)! (18)

is defined.
Substitution of (16) into (17) gives

ui =QFui_1+ QCya+ (Q — I)d;
+QCni —QDei_1+Q@Dn;—y. (19)

Here, we have use the fact that QCP = I — Q.
Substitution of (19) into (16) gives

e, = (I - PQC)yd - PQFU,i_l - Ple
— PQCn; + PQDe;_1 — PQDni_l.(20)
Note that I — PQC = (I + PC)~ 1.

Definition 1. The closed-loop ILC system (19)
and (20) is internally stable if for all u;_; € L™,
d; € L™, e;_1 € L™ n; € L™, and n;_; € L™, the
outputs u; and e; are in L™ and L™, respectively
(i.e. bounded for all time).

Lemma 1. The ILC system (19) and (20) is in-
ternally stable if and only if the operators @), QF,
QC, QD, PQF, PQ, PQC, and PQD are stable.

PROOF. If each of the eight operators listed
in the lemma is stable, then each term in the
right hand side of (19) and (20) is bounded for
all bounded inputs, and hence their sums u; and
e; are bounded. This proves sufficiency. To prove
necessity, we will show that if any of the eight op-
erators are unstable, then u; and e; are unbounded
for certain bounded inputs u;_1,d;, e;_1, 7, ni_1.
Suppose that QC is unstable. Then QQCy; is either
bounded or unbounded, depending on y4. If @Cy4
is unbounded, and the other five inputs are zero,
then u; is unbounded . If @Cy4 is bounded, then
choose n; € L™ such that QCn; is unbounded and
choose the remaining four inputs equal to zero,
again making u; unbounded. Hence, QC must
be stable for internal stability. By similar reas-
oning, the other seven operators must be stable
as well. O

Lemma 1 in (Goldsmith, 2002) incorrectly lists
stability of PQ DP as a requirement for internal
stability. Note that since



€;_1 :yd—P(Ui—1+di—1)a (21)

the signals e;_1, u;_1, and d;_; are dependent.
This is why d;_1 does not appear in (19) and (20).
For example, e;_1 = u;_; = 0 implies d;_1 = uq.

5. CONVERGENCE OF ILC

To investigate the convergence of ILC, the d; and
n; in (19) are set to zero, which gives

wi = Q(F — DPYui_1 + (I — Q + QDP)ug(22)
The fixed point of (22) is given by

oo = Q(F — DP)uco + (I — Q + QDP)uy.(23)

We may shift the fixed point us to the origin by
defining

Vi = Uj — Uoo- (24)
Substituting u; = v; + Ueo, Ui—1 = Vi—1 + Uso,
and (23) into (22) gives
v = Q(F - DP)Ui_l, (25)
which implies that
v; = H'vy, (26)
where
H=Q(F — DP). (27)

Note that H is proper since F, D, and P are all
assumed proper.

W e similarly define a shifted error

2 =€ —€x

(28)

Substitution of (3), (10), and (26) into (28) gives

e —Pvi (29)
Substitution of (26) into (29) gives
2z = —PH'v (30)

Definition 2. The ILC system (30) converges if for
each vo € L™, lim;_y002; =0

Since ||HY|| < ||H|)*, a sufficient condition for
convergence is PH stable and ||H|| < 1. We may
write H as

(31)
where

(32)

For the remainder of this paper, it is assumed
that the system is SISO (n = m = 1) and that
P and ug4 are not identically zero. We will use
a common sym bol to represent a signal and its
Laplace transform, and similarly for operators;
the meaning should be clear from the context.
The norm ||u|| may be viewed either as the 2-
norm of the signal v € L or the 2-norm of its
Laplace transform, as these are equal. W e denote

the closed right half plane as @ = {s|Re s > 0}.

Lemma 2. Suppose that n = m = 1 and the
ILC system (19) and (20) is internally stable.
Then (30) converges only if M(s) € Q for all
s €.

PR OOF. Suppose that there is an so € Q such
that M(so) is not in . Then the real part of
— M (s) is strictly greater than zero, and so

|H(s0)[* = |1 — M(s0)/?
> 1+ |[M(s0)[*.

(33)
(34)

If H is a constant, then |H|* grows unbounded
as ¢ grows large, and the system does not con-
verge. Therefore, suppose H is not constant. Since
H is also stable, the Maxim um Modulus The-
orem (Doyle et al., 1992) states that |H(s)| does
not achieve its maximum at an interior poirt of

Q. Hence, there is an wg € R such that
|H(jwo)|? > 1+ |M(s0)|*. (35)

Since |H(jw)| is continuous (H(s) is stable and

finite-dimensional), there exists & € (1,1 +
| M (jwo)|?) and § > 0 such that
|H(jw)[> > b (36)

for all w € [wg — 6, wo + 8]. Since PH' is stable for
each ¢ > 1, the size of z; is given by

lailP = o [ PGP ) oolie) Pats)

—oo
. wotd
i

b
>_
- 2m

wo—4

| P(jw)[*vo(jw)|*duw. (38)

Since P is not identically zero and P(s) is finite-
dimensional, |P(jw)| can be zero at only a finite
number of points in [wo — §,wo + §]. Choose the
input vo € L such that vg(jw) is nonzero over
a finite sub-interval of [wo — §,wo + 6]. Then the
integral in (38) is nonzero. Taking the limit of

both sides of (38) gives
(39)

lim ||z;]|] = oo.
— 00

Hence, the system does not converge. 0O



With n = m = 1, the fixed point of the ILC error
is obtained from (10) and yq = Pug as

e =[1— P(1— F+ CP+ DP)"'(C + D)]Puy.
(40)

Lemma 3. If o = 0 in (40), then F = 1.

PROOF. Setting e5, = 0 in (40), applying P~
to both sides, and rearranging gives

uqg = (1 — F +CP + DP)"*(C + D)Puqy.(41)

Applying (1— F+CP+ DP) to both sides of (41)

gives

(1 — F)ug + (C + D)Pug = (C + D)Puy,(42)

which gives

(1— F)ug=0. (43)

Clearly, F = 1 is a solution to (43). To see
that this solution is unique, suppose there is
another solution, F # 1. Then (1 — F)~?! exists,
and multiplying (43) through by (1 — F)~1! gives
ug = 0, which contradicts the assumption that

U,d;éo. O

If eoo = 0 (F = 1), then z; = ¢; and (30) becomes

e; = —PH"v (44)
Setting F = 1 in (32) gives

M=1-Q+QDP (45)
=QCP +QDP. (46)

For an internally stable ILC, Lemma 2 and (46)
can be used to prove that e; in (44) converges to
zero for all vg € L only if P(s) is minimum phase
and the relative degree of P is less than or equal
to one. Non-minim um phase plants are considered
in (Amann and Owens, 1994), while the relative
degree requirement is mentioned in (Ahn et al.,
1993). In the next section, we will use Lemma 2
to extend our feedback equivalence result to the
ZEro error case.

6. FEEDBACK EQUIVALENCE WHEN
ULTIMATE ILC ERROR IS ZERO

In Section 4, conditions were obtained for ILC
to be internally stable (bounded u; and e; in
the presence of bounded noise and disturbance
inputs). Section 5 reported conditions for ILC to
converge in the absence of noise and disturbance

inputs. In this section, we present the following
result: if the ILC is internally stable and converges
to zero error, then there exists an internally sta-
bilizing high-gain feedback that converges (as the
gain grows large) to zero error without iterations.

SISO systems are assumed (n = m = 1). The
equivalent feedback is required to converge to zero
error in the absence of initial conditions, noise,
and disturbances. Substitution of the feedback
control (13) into (12), along with the achievability
condition yg = Pug, gives

e=(1+ PK) 'Puyy (47)
ug —u=(1+ PK) tu,. (48)

Hence, the feedback K must give arbitrarily small
e and uq — v in (47) and (48).

The second requirement on K is that it internally
stabilizes P (i.e. in the presence of initial condi-
tions, noise, and disturbances). This requirement
is equivalent to the stability of(1 + PK)~1, (1 +
PK) 'K, and (1+ PK)~1P (Doyle et al., 1992).
Lemma 1 and Lemma 2 may be used to prove the

following theorem (Goldsmith, 2002).

Theorem 2. Suppose that the ILC system (44)
is internally stable and that for each vg € L,
lim; _, o0 €; = 0. Then, the feedback

K=C+k(C+D) (49)
internally stabilizes P for all k& > 0 and gives
limp,oe = 0 and limg,eu = ug in (47)
and (48).

Remark 4. As in Theorem 1, K depends only on
the ILC operators C' and D, not on the plant P
(although the size of the gain factor k required for
a given ||e|| may depend on P).

Remark 5. Since Theorem 2 includes the case
C = 0, the equivalent feedback K exists whether
or not the ILC includes current cycle feedback C.

Remark 6. The achievability assumption, yg =
Pug for bounded ug4, permits tracking of unboun-
ded yq when P is unstable (for example, when P
is an integrator).

Theorem 2 implies that even as the gain ap-
proaches infinity, the control signal u remains
bounded, since it converges to a bounded ug4. This
is because the product ke remains bounded as k
approaches infinity and e approaches zero. Also,
for a given k, internal stability implies that u
remains bounded in the presence of initial condi-
tions, disturbances, and noise. However, for given
initial conditions or noise, ||u|| grows with %, so
a saturation function and/or noise filter may be



required (if the filtering provided by C + D is
inadequate).

7. CONCLUSION

Conventional feedback control is preferrable to
causal ILC because it can achieve in one trial
the same error that ILC achieves in an arbitrarily
large number of trials. An equivalent feedback can
always be constructed from the ILC parameters
with no additional plant knowledge, whether or
not the ILC itself includes feedback. If the ILC
converges to zero error, the equivalent feedback is
a high gain controller whose gain &k plays the role
of the iteration number ¢ in the ILC. The internal
stability and convergence (as ¢ — oo) of the ILC
guarantees the internal stability and convergence
(as k — oo) of the equivalent high-gain feedback.
This result is extended to discrete-time systems

in (Goldsmith, 2001).

The feedback equivalence result holds only when
F, C, and D are causal (so that K is also causal
and hence implem entable as a feedback operator).
However, non-causal F and D can be used in ILC
since the full signals u;_; and e;_; are available
in trial 4. This approach is considered in (Phan
et al., 2000) and (Chen and Moore, 2000). The
potential benefit of non-causal ILC over con-
ventional feedback control requires investigation.
Non-causal algorithms need not be restricted to
the fized-point algorithms currently identified with
ILC, which may give limited performance even
with non-causal operators.
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