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Abstract: Economic Dispatch (ED) problems have recently been solved by artificial 
neural network approaches. In most of these dispatch models the transmission system 
representation is totally neglected. Therefore, such procedures may calculate dispatch 
policies that do not take into account important active power constraints. Another 
drawback pointed out in the literature is that some of these neural approaches fail to 
converge efficiently toward feasible equilibrium points. This paper discusses the 
application of a modified Hopfield architecture for solving an ED problem with 
transmission system representation. The transmission system is represented through linear 
load flow equations and constraints on active power flows. Simulation results and a 
sensitivity analysis involving IEEE 14-bus test system are presented to illustrate 
efficiency of the proposed approach. Copyright © 2002 IFAC. 
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1. INTRODUCTION 
 

Economic Dispatch (ED) is the process of allocating 
generation levels to the generating units so that the 
system load is supplied entirely and most 
economically. Many ED approaches have been 
proposed in the literature to formulate and solve this 
problem. In Chowdhury and Rahman (1990) it is 
provided a review of the advances in such field. The 
economic dispatch definition above is quite large so 
that many specific optimization models applied to 
power system, such as optimal power flow, unit 
commitment, generation scheduling, etc., may be 
faced as economic dispatch models. It must be clear 
however that these models vary in complexity and 
have different scope of application. 
 
The Classic Economic Dispatch (CED) discussed in 
Chowdhury and Rahman (1990) and Happ (1977) is 
the starting point of the ED problem. CED is 
concerned with minimization of total operating costs 
while supplying entirely the system demand and 

enforcing the limits on generation levels. In CED 
procedures, the transmission network representation 
is totally neglected. Therefore, CED procedures may 
calculate dispatch policies that do not take into 
account important active power constraints such as 
active power flows in transmission lines and 
transformers; and also load flow equations in the 
transmission system. In the economic dispatch 
formulation studied in this paper a detailed 
representation of the transmission system is adopted. 
The transmission system representation is 
incorporated through linear load flow equations and 
limits on active power flows. The dispatch model 
resulting from the formulation here adopted may also 
be faced as a model for one time interval (snapshot) 
of the short-term generation scheduling problem 
(Wong and Doan, 1992). The dispatch formulation 
here adopted is solved in this work by a neural 
network approach.  
 
Some effective applications of artificial neural 
networks to the ED problem have recently been 
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presented in the literature. In Walsh and O’Malley 
(1997) an approach trying to unify unit commitment 
and generation dispatch functions is described. A 
hybrid Hopfield network is adopted such that the 
energy function of the Hopfield network is able to 
deal with discrete and continuous terms. In Park et al. 
(1993) a Hopfield neural network is proposed to 
solve CED problem with general non-convex cost 
functions. The computation effort for solving the 
problem is high due to large number of iterations to 
obtain the optimality. In Su and Chiou (1997a) an 
analytic Hopfield method reducing considerably this 
computation effort is proposed. However the method 
is not applied to non-convex cost functions. In Su 
and Chiou (1997b) a Hopfield model for ED problem 
considering prohibited zones was developed. In a 
neural network approach for solving CED with 
transmission capacity constraints was proposed. In 
Yalcinoz et al. (2001) a restructuring of the approach 
described in Yalcinoz and Short (1998) was proposed 
for solving the unconstrained ED, i.e., the ED with 
transmission capacity constraints and also the multi-
area ED problems.  
 
Most of the neural network applications described 
above fail to converge efficiently to equilibrium 
points representing the dispatch problem solutions. A 
careful analysis of the results presented in some of 
these papers reveals that infeasible solutions are 
sometimes obtained. In the modified Hopfield 
approach proposed in Silva and Nepomuceno (2001) 
to solve CED problem, the optimization and 
constraint terms involved with problem mapping 
(Section 3) are treated in different stages. The 
modified Hopfield approach guarantees the network 
convergence to a feasible optimal solution (Silva et 
al., 2000). The problems associated with speed of 
convergence, depicted in Walsh and O’Malley (1997) 
and Park et al. (1993), were also satisfactory handled 
in Silva and Nepomuceno (2001). As demonstrated 
in Silva et al. (2001) the modified Hopfield approach 
is also applicable to general non-convex cost 
functions (this includes CED problems with non-
monotonically increasing incremental cost units, as 
that studied in Jiang and Ertem (1995). 
 
This paper applies the modified Hopfield approach 
described in Silva and Nepomuceno (2001) to solve a 
more representative dispatch problem. In the problem 
being dealt with in this work, the transmission 
network is represented in detail, through linear load 
flow equations and active power flow constraints in 
the transmission system. The IEEE 14-bus test 
system is used in the case studies discussed in the 
paper. The results point out that the modified 
Hopfield approach is robust enough to represent the 
transmission system in dispatch problems. 
 
The paper is organized as follows. In Section 2, the 
formulation of the dispatch problem is introduced. In 
Section 3, the modified Hopfield network is 
presented, and valid-subspace technique, used to 
design the network parameters, is described. A 

mapping of the economic dispatch problem using the 
modified Hopfield network is presented in Section 4. 
In Section 5, simulation results are presented to 
validate the developed approach. In Section 6, the 
main conclusions about the paper are presented. 
 
 

2. DESCRIPTION OF THE ECONOMIC 
DISPATCH MODEL ADOPTED 

 
The Economic Dispatch formulation adopted here is 
mathematically described by the following equations: 
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where: 
CT  is the total fuel cost. 
NG is the set of dispatchable generating units. 

Ci(Pi) = ai + bi.Pi + ci.
2

iP is the fuel cost of the 

generating unit i. 
Pi is the real power output of generating unit i. 

iii cba  and ,  are cost coefficients for unit i. 

P is the vector of active power injections. 
B is the network susceptance matrix. 
θ is the vector of voltage angles. 

min
iP is the minimum generation output of unit i. 
max

iP is the maximum generation output of unit i. 

Fi(θ)=(θk – θl) / xkl is the active power flow in branch 
(line or transformer) i connecting buses k and l. 

θk is the voltage angle at bus k. 
xkl is the reactance of branch i connecting buses k and l. 
  
The ED model described in (2) represents linear load 
flow equations. Equation (3) and (4) represent the 
limits on active power generation and on active 
power flows in transmission system. The active 
power flows in the system are represented by linear 
equations. The cost function (1) is sometimes 
expressed as a cubic polynomial (Jiang and Ertem, 
1995). For fossil fired plants it is also sometimes 
represented as segmented piecewise quadratic 
function (Park et al., 1993). This is not a problem for 
the approach proposed here once it may cope with 
general non-convex cost functions. 

 
 

3. THE MODIFIED HOPFIELD NETWORK 
 
Artificial Neural Networks attempt to achieve good 
performance via dense interconnection of simple 
computational elements. Hopfield’s networks have 
been applied to several classes of optimization 
problems and have shown promise for solving such 
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problems efficiently. The node equation for the 
continuous-time network is given by: 
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vi(t) = gi(ui(t)) 

where: 
ui(t) is the current state of the i-th neuron. 
Tij is the weight connecting the j-th to i-th neuron. 
vj(t) is the output of the j-th neuron. 

b
ii  is the offset bias of the i-th neuron. 

η.ui(t) is a passive decay term. 
gi(ui(t)) is an activation function each neuron. 
 
It can be verified in Hopfield (1984) that the 
equilibrium points of the network correspond to 
values v(t) for which the energy function (7) 
associated with the network is minimized: 

E(t) = 
2

1− vT(t).T.v(t) –  vT(t).ib 

A mapping of the economic dispatch problem using a 
Hopfield network consists of determining the weight 
matrix T and the bias vector ib to obtain equilibrium 
points, which are the problem solutions. A modified 
energy function Em(t) is used here. This function is 
defined as follows: 

Em(t) = Econf(t) + Eop(t) 

where Econf(t) is a confinement term that groups the 
constraints given by (2), (3) and (4); and Eop(t) is an 
optimization term that conducts the network output to 
the equilibrium points. This method is in contrast to 
most neural approaches used in economic load 
dispatch problems, which become inefficient because 
they treat these terms as a single function of energy.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Modified Hopfield network.  
 
The operation of the modified Hopfield network 
consists of three main steps, which are shown in Fig. 
2. These steps can be explained as follows: 
Step (I): Minimization of Econf, corresponding to the 
projection of v(t) in the valid subspace defined by: 

v(t+1) = Tconf .v(t) + iconf 

where: Tconf  is a projection matrix (Tconf. Tconf = Tconf) 
and the vector iconf is orthogonal to the subspace 
(Tconf.iconf = 0). An analysis of the valid-subspace 
technique is presented in Aiyer et al. (1990). 

Step (II): Application of a nonlinear “symmetric 
ramp” activation function constraining v(t) in a 
hypercube: 
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Step (III): Minimization of Eop, which involves 
updating of v(t) in direction of an optimal solution 
(defined by Top and iop) corresponding to network 
equilibrium points, which are the solutions for the 
economic load dispatch problem, by applying the 
gradient in relation to the energy term Eop: 
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 ∆v = – ∆t.∇Eop(v) = ∆t.(Top.v + iop) 

Therefore, minimization of Eop consists of updating 
v(t) in the opposite direction of the gradient of Eop.  
 
As seen in Fig. 2, each iteration has two distinct 
stages. First, as described in Step (III), v is updated 
using the gradient of the term Eop alone. Second, 
after each updating, v is directly projected in the 
valid subspace. This is an iterative process, in which 
v is first orthogonally projected in the valid subspace 
defined in (9), and then thresholded so that its 

elements lie in the range ]lim  , [lim supinf
ii . 

 
 

4. FORMULATION OF ECONOMIC DISPATCH 
PROBLEM BY MODIFIED HOPFIELD NETWORK 
 
As observed in Section 2, an economic dispatch 
problem is a problem of minimizing a cost function 
in presence of linear constraints of the inequality 
and/or equality type. Since equality constraints can 
be easily converted to inequality constraints (Bazaraa 
and Shetty, 1979), it is used (by simplicity) only 
inequality constraints. Consider the following 
constrained optimization problem, with m-constraints 
and n-variables, given by the following equations: 

Minimize Eop(v) = CT 

Subject to: Econf(v): AT.v ≤ b 

zmin ≤ v ≤ zmax 

where A ∈ ℜnxm, b ∈ ℜm, and c, v, zmin, zmax ∈ ℜn. 
The conditions in (13) and (14) define a bounded 
convex polyhedron. In this case, the vector v, which 
corresponds to the variables in (1) {i.e. vT = [PT FT ]}, 
must remain within this polyhedron if it is to 
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represent a valid solution for the optimization 
problem (12). A solution can be obtained by a 
modified Hopfield network, whose valid subspace 
guarantees the satisfaction of the condition (13). 
Moreover, the initial hypercube represented by the 
constraints in (14) is mapped by the ‘symmetric ramp’  
function (10) used as network activation function . 
 
The terms Tconf and iconf are calculated by 
transforming the inequalities in (13) into equalities 
by introducing a slack variable w ∈ ℜn for each 
inequality constraint: 
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where wj are slack variables, treated as the variables 
vi  and δij is defined by the Kronecker impulse 
function: 
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After this transformation, the problem defined by 
(12), (13) and (14) can be rewritten as: 

Minimize Eop(v) = CT 

subject to Econf(v): (A+)T. v+ = b+ 

zmin  ≤  vi
+  ≤ zmax  , i ∈ {1..n} 

0 ≤  vi
+  ≤ zmax  , i ∈ {n+1..N+} 

where N+ = n + m, and v+T = [vT  wT] ∈ ℜN+ is a 
vector of extended variables. Note that Eop does not 
depend on the slack variable w. If the rows of A+ are 
linearly independent, a solution for (18) is given by: 

v+ = A+.( A+T
.A+)-1.b+ 

and the expression of the valid subspace in (9) must 
take into account this solution, i.e., 

iconf = A+.( A+T
.A+)-1.b+ 

From (22), the parameter Tconf is derived as follows: 

v+ = Tconf.v+ + iconf 

v+ = Tconf.v+ + A+.( A+T
.A+)-1.b+ 

Inserting the value of (18) in (24), the expression for 
Tconf is given by: 

Tconf  = I – A+.(A+T
.A+)-1. A+T 

where I is identity matrix. 
 
The parameters Top and iop in this case are such that 
the vector v+ is updated in the opposite gradient 
direction that of the energy function Eop. Since 
conditions given by (18), (19) and (20) define a 
bounded convex polyhedron, the objective function 
(17) has a unique global minimum (|Top=0|). Thus, 
using (7) and (11), the equilibrium points of the 
network can be calculated by assuming the following 
values to Top and iop: 
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The simulation results describing performance of the 
proposed approach are presented in the next section. 

 
 

5. SIMULATION RESULTS 
 
This section shows some simulation results involving 
IEEE 14-bus system in which 5 generating units 
supply the total demand (259 MW). Table 1 provides 
the parameters associated with the generating units. 
Some case studies are proposed as follows to analyze 
the sensitivity of the proposed Hopfield approach 
with respect to some specific modeling 
characteristics (constraints, objective function, etc.). 
 

Table 1  Input Parameters 
 

Unit ai bi ci min
iP  

(MW) 

max
iP  

(MW) 

1 550 8.10 0.00028 0 680 
2 126 8.60 0.00284 0 120 
3 240 7.74 0.00324 0 180 
6 309 8.10 0.00056 0 360 
8 240 7.74 0.00324 0 180 

 
The dispatch computed by the modified Hopfield 
network proposed in this paper is shown in Table 2.  
 

Table 2  Simulation Results 
 

Unit  Pi  (MW) 
1 30.004 
2 34.276 
3 75.043 
6 53.839 
8 65.782 

 
Figure 2 shows the cost evolution during the 
convergence of the modified Hopfield network. The 
network reached the lowest cost solution after around 
thirty iterations. Thus, problems related to the 
convergence speed of are effectively handled by the 
proposed approach. 
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Fig. 2. Evolution of the cost function – Case I. 

In case study II, the maximum generation limit for 
unit 8 was changed to 20 MW in order to evaluate the 
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network behavior when generation limits should be 
enforced. The dispatch calculated by the proposed 
model is depicted in table 3. As seen in the table the 
generation output for unit 8 was conveniently set to 
its maximum value.  
 
Table 3  Enforcing Generation Constraints – Case II 

 
Unit Pi  (MW) 

1 30.033 
2 34.305 
3 120.716 
6 53.870 
8 20.000 

 
The evolution of the cost function for this case study 
is presented in Fig. 3. The neural network reached the 
solution in approximately forty iterations. 
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Fig. 3. Evolution of the cost function – Case II. 
 
In case study III, the Hopfield network behavior 
when active power flow limits are to be enforced, is 
analyzed. In this case the limits in two system lines 
(connecting buses 1-5 and 7-9) were set to zero, 
simulating a line contingency. The new dispatch 
calculated by the proposed approach is depicted in 
Table 4. The dispatch is completely rearranged so as 
to supply the system demand. Fig. 4 shows the 
evolution for cost function in this case. From this 
figure it can be noted that the number of iterations 
was really few (the method took only 8 iterations) 
due to the enforcement of active power flow 
constraints. In this case, the number of iterations is 
extremely small if compared with other neural 
approaches (Walsh and O’ Malley, 1997; Park et al., 
1993), which present thousands of iterations to reach 
equilibrium points. 
 

Table 4  Line Contingency – Case III 
 

Unit  Pi  (MW) 
1 23.363 
2 27.199 
3 29.153 
6 156.840 
8 22.362 

1 2 3 4 5 6 7 8
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Fig. 4. Evolution of the cost function – Case III. 
 
In case study IV, the parameter b of the cost function 
of unit 8 was multiplied by 3, in order to make this 
generator more expensive. The aim of such study is 
to evaluate how the generation cost structure affects 
the dispatch calculated by the modified Hopfield 
approach. Since the network calculates the lowest 
cost generation and since the generation cost was 
increased for unit 8, the generation level of such unit 
must be reduced when compared to case study I. This 
result is confirmed by inspecting Tables 5 and 2. 
 

Table 5. Changing the Cost Structure of  
Generator 8 – Case IV 

 
Unit  Pi  (MW) 

1 25.175 
2 27.939 
3 135.203 
6 46.115 
8 24.507 

 
 Figure 4 shows the evolution of the cost function for 
case study IV. The method took approximately sixty 
iterations to reach the equilibrium point. 
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Fig. 4. Cost function for a constraint of cost 
parameter. 

  
The modified Hopfield network presented here treats 
optimal and constraint terms in different stages. The 
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terms Tconf and iconf (belonging to Econf) of the 
modified Hopfield network were developed to force 
the validity of the structural constraints associated 
with the economic load dispatch problem, and the 
terms Top and iop (belonging to Eop) were projected to 
find the optimal solution associated with the cost 
function.  
 
Thus, the main advantages of using a modified 
Hopfield network to solve economic load dispatch 
problems are i) consideration of optimization and 
constraint terms in distinct stages with no 
interference with each other, ii) use of the unique 
energy term (Econf) to group all constraints imposed 
on the problem, and iii) lack of need for adjustment 
of weighting constants for initialization. 
 
No alteration in the parameter initialization structure 
was necessary during the simulations performed in 
the case studies. The network output vector v was 
initialized with zeros. It should be noted that the 
increase in the number of constraints (generating 
units) does not degrade the performance of the 
network, but rather shows its efficiency. This 
consideration only emphasizes the robustness of the 
proposed    approach. 
 

 
6. CONCLUSIONS 

 
The proposed neural method can solve efficiently 
economic dispatch problems involving the 
transmission system representation. As shown in the 
sensitivity analysis made throughout the studies 
presented in this paper, the modified Hopfield 
network has been globally stable and it has not 
required any special treatment for initialization. 
Simulated Results have confirmed the validity and 
robustness of the proposed approach. 
 
In addition to providing a new approach for 
economic dispatch problems, the proposed algorithm 
presents the following advantages: i) improved 
accuracy of equilibrium points representing the 
solutions of ED problems; ii) inclusion of constraint 
terms in single energy term, represented by Econf(t); 
iii) simplicity of implementation of economic load 
dispatch problem in digital computers; and iv) lack of 
need for adjustment of weighting constants for 
initialization. 
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