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Abstract: Typical methods for signal analysis utilize the Fourier Transform-based
algorithms to estimate the spectral response of a signal. This current practice suffers
from poor frequency resolution when estimating non-stationary signals. This paper
describes some alternative methods based on time-frequency distributions from a
Cohen´s class point of view. Four distribution cases are evaluated: Wigner Ville, Choi
Williams, Bessel and Born Jordan. Continuous and discrete distributions are presented
for each case. Simplified discretised expressions for the implementation of distributions
are formulated, these leading to a reduction of the computations realized when
comparing to original definitions. Also, two parallel approaches (intrinsic parallelism
and data parallelism) for the computation of the distributions are proposed, implemented
and assessed by using a parallel DSP-based system. Finally, a further simplification by
truncating the simplified expressions is proposed; this truncation is restricted by the
error in spectral estimations. Results are applied to the development of a real-time
spectrum analyzer for Doppler blood flow instrumentation. Copyright © 2002 IFAC.
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1. INTRODUCTION

A classic method for spectral estimation is the so-
called Fourier Transform. However, its use is limited
to stationary signals giving as a result a poor
frequency resolution when estimating non-stationary
ones. Other types of spectral estimators, called time-
frequency distributions, have been developed. Unlike
conventional methods these distributions are not
limited to the use of stationary signals. Despite of
this important advantage, the number of calculations
involved in obtaining the spectral estimation
increases substantially compared to the traditional
methods. Therefore, it is desirable to simplify the
formulation of the distributions in such a way that the
computations involved can be reduced without any
loss in the spectral resolution. Furthermore, in order
to get a real time signal processing, it is also
desirable to implement the algorithms that calculate
such distributions on a high performance DSP-based
computational system. This paper deals with these
issues.

2. TIME-FREQUENCY DISTRIBUTIONS

This section formulates the so-called Cohen's class

for the time-frequency distributions.

2.1. The Cohen's Class

The Cohen´s class in terms of time frequency
distributions can be formulated as follows. Let the
time-frequency distribution kernel be defined as
φ(θ,τ). This kernel will define the particular
characteristics of each time-frequency distribution.
Then, the Cohen’s class for the time-frequency
distributions with kernel φ(θ,τ) can be defined as:
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2.2. The Wigner Ville Distribution

According to its definition (Cardoso, et. al., 1996),
the Wigner Ville distribution for the continuous case
is given by:
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Fig. 1. ADSP-21060/62 SHARC block diagram.
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and, for the discrete case, by:
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where n represents the discrete time and k the
discrete frequency; both variables are normalized.

2.3. The Choi Williams Distribution

According to its definition (Cardoso, et. al., 1996),
the Choi Williams distribution for the continuous
case is given by:
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where σ>0 is a scaling factor. And, for the discrete
case, by:

( )=knDCWD , (5)
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2.4. The Bessel Distribution

According to its definition (Cardoso, et. al., 1996),
the Bessel distribution for the continuous case is
given by:
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where α>0 is a scaling factor. And, for the discrete

case, by:

Fig. 2. ASP-P15 card, integrated by four ADSP-
21060/62 SHARC DSP.
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2.5. The Born Jordan Distribution

According to its definition (Cohen, 1989), the Born
Jordan distribution for the continuous case is given
by:
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where α>0 is a scaling factor. And, for the discrete
case, by:

( )=knDBJD ,  (9)
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3. REDUCING THE COMPUTATIONAL
COMPLEXITY OF THE DISCRETE

DEFINITIONS

In order to evaluate the different distributions for
spectral estimation, a discrete signal x(n) is
considered. Such a signal contains 2N-1 elements,
where N is a power of 2 and the element range is
from –N+1 to N-1, therefore x(0) is the central
element. Based on these elements, this section
presents a reduction in computational terms of the
number of calculations involved in the evaluation of
each of the distributions considered in this paper.

3.1. The Wigner Ville Distribution

Considering eq. (3) for estimating the Wigner Ville
distribution and evaluating it in n=0 (Fan, and Evans,
1994), an equivalent simplified expression would be
given by:
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Assuming that W(τ)W*(-τ) is a single factor then, for
each value of k in eq. (3) evaluated in n=0, there are
6N-3 complex multiplications, 2N-2 complex



additions and 1 scalar multiplication,  whereas in  eq.
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Fig. 3. Intrinsic parallel processing approach for
execution of the time-frequency distributions.

(10) there are 3N+1 complex multiplications, N
complex additions and 2 scalar multiplications.

3.2. The Choi Williams Distribution

Similarly, considering eq. (5) for estimating the Choi
Williams distribution and evaluating it in n=0, an
equivalent simplified expression would be given by:
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where the summation respect to µ for τ=0 is
x(0)x*(0).

Assuming that W(τ)W*(-τ) and the square root
multiplied by the exponential are single factors then,
for each value of k in eq. (5) evaluated in n=0, there
are 8N2-4N complex multiplications, 4N2-6N+2
complex additions and 1 scalar multiplication,
whereas in eq. (11) there are 2N2-2N+1 complex
multiplications, N2-2N complex additions and 2
scalar multiplications.

3.3. The Bessel Distribution

Considering eq. (7) for estimating the Bessel
distribution and evaluating it in n=0, an equivalent
simplified expression would be given by:
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where the summation respect to µ for τ=0 is
x(0)x*(0).

Assuming that W(τ)W*(-τ) and the square root
divided by πα|τ| are single factors then, for each
value of k in eq. (7) evaluated in n=0, there are 8αN2-
8αN complex multiplications, 4αN2-4αN-2N
complex additions and 1 scalar multiplication,

whereas in eq. (12) there are  less  than  4αN2-4αN+1
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complex multiplications, less than 2αN2-2αN-N and
2 scalar multiplications.

3.4. The Born Jordan Distribution

Considering eq. (9) for estimating the Born Jordan
distribution and evaluating it in n=0, an equivalent
simplified expression would be given by:
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where the summation respect to µ for τ=0 is
x(0)x*(0). The analysis is similar to Bessel’s.

4. PARALLEL PROCESSING OF THE TIME-
FREQUENCY DISTRIBUTIONS

As stated previously, the use of time-frequency
distributions for spectral estimation of signals opens
the possibility of analyzing non-stationary signals.
However, the associated computational cost is high.
Section 3 has described strategies in order to achieve
a reduction in the amount of calculations involved in
evaluating the original definitions for each
distribution. In this section, the use of parallel
processing techniques in order to reduce the time
required to perform the evaluations is proposed.
Previous work has been addressed to investigate
parallel processing techniques in signal analysis
(Madeira, et. al., 1999; Solano, et. al., 1999).

In this work two approaches of parallelism are
presented: intrinsic parallelism and data parallelism.
The first approach considers a single data-time
segment being processed by a number of processors,
where each processor executes a different part of the
signal analysis algorithm. In the second approach a
sequence of N data-time segments is processed in
parallel by using N processors, each processor
executing the whole algorithm over each data-time
segment. Both approaches are implemented and
assessed by using a parallel DSP-based system.
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Fig. 5. Execution time vs. signal’s length of Wigner
Ville and Bessel distributions for pipeline and
farm+pipeline parallel architectures using 4
SHARC processors.

4.1. Parallel Architecture

A parallel architecture based on the ADSP-21062
SHARC has been used for implementing the time-
frequency distribution algorithms.

The ADSP-21062 SHARC is a high-performance
signal processor using a Super Harvard Architecture
(i.e. four independent buses for dual-data,
instructions and I/O). It integrates three 32-bit IEEE
floating-point computation units (multiplier, ALU
and shifter), a 2 Mbits dual port on-chip SRAM and
multiprocessing features. It performs 40 MIPS, 120
MFLOPS peak and 80 MFLOPS sustained and 6
DMA communication links with a maximum
bandwidth of 240 MB/sec. Figure 1 depicts the
ADSP-21060/62 SHARC block diagram.

On the other hand, figure 2 shows the ASP-P15 card.
This is a standard PCI full length card with 4 Analog
Devices ADSP-2106x SHARC DSPs with up to
768Kbytes of zero wait state SRAM and 64Mbytes
of fast page mode DRAM. A SHARCPAC module
site provides for processor or I/O expansion. This
development system programmed in C language and
hosted in a personal computer has been used to
implement the parallel approaches presented in this
work.

4.2. Intrinsic Parallelism Approach

In this approach, the time-frequency distribution
algorithms are carried out on single data-time
segment of the signal. Parallelism is achieved by
means of partitioning and allocating the composing
processes of the algorithms on a number of
processors. For the intrinsic parallelism approach, a
3-stages pipeline is proposed. The first stage
calculates the analytic signal xa(t) of the real signal.
The second stage calculates the generalized time-
indexed auto-correlation function R′x(t,ω) for t=0 of
xa(t), this being the integral respect to µ in eq. (1).
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t
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t
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Fig. 6. Time diagram of the data parallel processing
approach.

Finally, the third stage calculates the Fourier
transform of R′x(0,ω), this being the time-frequency
distribution TFD(t,ω) for t=0 of the real signal.
Figure 3 shows the pipeline structure of the process.

The calculations for first and third stages are
relatively simple and a Fast Fourier Transform (FFT)
algorithm is used. Second stage involves a more
complex processing, then this stage is being
paralleled by using a parallel farm computational
model. Here, each node calculates a set of operations
of the generalized time-indexed auto-correlation
function. Although the expressions for the evaluation
of each of the time-frequency distributions are
different, the second stage can be adapted easily
adding or subtracting processors according to the
needs. Figure 4 shows the time diagram of the
processes that are being executed on each pipeline
stage.

Figure 5 shows the time performance of the Wigner
Ville and the Bessel distributions for two different
parallel architectures (pipeline and farm+pipeline).
Wigner Ville implemented on pipeline architecture
performs better than the same implemented on
farm+pipeline architecture; whereas Bessel
implemented on farm+pipeline architecture performs
better than the same implemented on a pipeline
architecture. Observe that their generalized time-
indexed auto-correlation functions are substantially
different: Wigner Ville’s one has a lower complexity
than the Bessel’s one. Finally, note that the Choi
Williams and the Born Jordan distributions behave
close to the Bessel distribution.

4.3. Data Parallelism Approach

This approach regards the execution of a number N
of data-time segments in parallel using an array of N
processors. Each processor has a copy of the whole
three-stage algorithm described previously and
executes the analysis on a dedicated segment. As one
dedicated processor is used for process each segment,
the number of data-time segments to be processed
depends on the available processors. A parallel star
computational model has been used with N nodes,
where N is the number of data-time segment to be
analyzed simultaneously. Figure 6 shows the time
diagram of the processes than are being executed on
each star’s node.
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Fig. 7. a) Execution time vs. signal’s length of
Wigner Ville distribution for data parallel
architecture using 1 to 4 SHARC processors. b)
Similar explanation for Bessel distribution.

Figure 7 shows the time performance for Wigner
Ville and Bessel time-frequency distributions using
this data parallel approach.

5. TRUNCATING THE DISCRETE TIME
FREQUENCY DISTRIBUTION.

It is possible to achieve a further reduction in the
calculation time of the Choi Williams, Bessel and
Born Jordan discrete distributions by truncating the
summation respect µ in eq. (11), (12) and (13)
respectively.

Although such a truncation is destructive, it can be
experimentally characterized. This work considers a
simulated non-stationary Doppler signal proposed in
(Cardoso, et. al., 1996), that is, a band limited
stochastic signal with Gaussian probability density
function which models a signal sampled at the center
of a normal carotid artery. This signal is shown in
figure 8 and its time frequency distribution in figure
9.

Previous work has established the optimal parameters
that minimize both the instantaneous frequency and
the RMS bandwidth estimation errors. They are σ=5,
α=2 and α=1 for the Choi Williams, Bessel and
Born Jordan distributions, respectively. Note that
they depend on the considered signal.

Considering a signal with a SNR of 20dB and a
window’s length of 127, the following results have
been obtained. A truncation of µ=20, µ=40 and µ=20
in eq. (11), (12) and (13)  respectively,  results  in  an

Fig. 8. Simulated non-stationary Doppler which
models a signal sampled at the center of a
normal carotid artery (up), its instantaneous
frequency (center), and its RMS bandwidth
(down).

Fig. 9. Time frequency distribution of a simulated
non-stationary Doppler which models a signal
sampled at the center of a normal carotid artery.

increase of less than 5% in the estimation error of
both the pseudo instantaneous mean frequency and
the RMS bandwidth. The elapsed times involved in
computation of the truncated distributions are only
86%, 98% and 97% of the elapsed time without
truncation for eq. (11), (12) and (13) respectively.
These results are shown in figures 10, 11 and 12.
Similar results are valid for or noiseless signals.

6. CONCLUSIONS

Conventional methods for spectral estimation are
limited to the analysis of stationary signals to
produce a good estimate, however, these methods
offer poor resolution when dealing with non-
stationary signals. This paper has presented some
alternative methods based on the so-called time
frequency distributions for spectral analysis. Four
methods based on the Cohen's class have been
analyzed: Wigner Ville, Choi Williams, Bessel and
Born Jordan distributions.

This work has proposed a simplification in the
complexity of the expressions utilized for calculating
the time-frequency distributions giving as a result a
reduction of at least half the operations involved in
the original definition (equations 10 to 13).
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Fig. 10. Increment in error estimation (%) and
elapsed time (%) vs. index truncation for Choi
Williams TFD (1 SHARC processor).

Bessel TFD (SNR=20dB, Window length 127)
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Fig. 11. Increment in error estimation (%) and
elapsed time (%) vs. index truncation Bessel TFD (1
SHARC processor).

Born Jordan TFD
(SNR=20dB, Window length 127)
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Fig. 12. Increment in error estimation (%) and
elapsed time (%) vs. index truncation for Born Jordan
TFD (1 SHARC processor).

Two approaches of parallelism have been presented:
intrinsic parallelism and data parallelism (sections
4.2 and 4.3 respectively). In the first approach
parallelism has been achieved by means of
partitioning and allocating the composing processes
of the time frequency distribution algorithms on a
number of processors. A single data-time segment
has being processed by a number of processors, each
processor executing a dedicated part of the signal
analysis algorithm. Here, a pipeline scheme with
three stages is utilized, corresponding to the second
stage to deal with the more expensive computational
process (evaluation of the generalized time-indexed
auto-correlation function). A generalized scheme has
been implemented on a parallel DSP based system,
which can be adapted easily according to the time-
frequency distribution under consideration. As a
result, the Wigner Ville distributions shows a better
performance in a pipeline parallel architecture, while
the Choi Williams, Bessel and Born Jordan
distributions perform better in a farm+pipeline

scheme.

The second parallel approach, data parallelism, deals
with several data-time segments that are processed by
a number of processors. Here, the whole signal
analysis algorithm for each data-segment has been
calculated by each processor. In contrast with the
first approach, multiple data-time segments are
processed in parallel. This approach has shown better
flexibility and scalability than the intrinsic
parallelism one. An advantage of this approach is that
the communications between processors are reduced
only to the distribution of the input data to each one
of the processors, at the beginning of the loop, and at
the end of the process when each processor sends
back the results to the master processor, this leading
to a higher performance than the intrinsic parallelism
approach.

Also, this work has proposed a truncation in the
simplified expressions in order to improve the time
performance keeping a reasonable accurate in the
spectral estimations (section 5). This approach is
especially suitable for Choi Williams distribution.

Results are applied to the development of a real-time
spectrum analyzer for Doppler blood flow
instrumentation.
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