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Abstract: A new method is presented for the optimal control design of one-dimensional 
heat equation with the actuators being concentrated at discrete points in the spatial 
domain. This systematic methodology incorporates the advanced concept of proper 
orthogonal decomposition for the model reduction of distributed parameter systems. 
After deigning a set of problem oriented basis functions an analogous optimal control 
problem in the lumped domain is formulated. The optimal control problem is then solved 
in the time domain, in a state feedback sense, following the philosophy of adaptive critic 
neural networks. The control solution is then mapped back to the spatial domain using the 
same basis functions. Numerical simulation results are presented for a linear and a 
nonlinear one-dimensional heat equation problem. Copyright © 2002 IFAC 
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1. INTRODUCTION 

Distributed Parameter Systems (DPS) are governed 
by a set of partial differential equations. One 
approach to deal with the distributed parameter 
systems is to have a finite dimensional approximation 
of the system using a set of orthogonal basis 
functions via Galerkin projection (Holmes, 1996). 
The methodology of Galerkin projection normally 
leads to high order lumped system representations to 
adequately represent the properties of the original 
system, if arbitrary orthogonal functions are used as 
the basis functions. For this reason attention is being 
increasingly focused in the recent literature on the 
technique of Proper Orthogonal Decomposition 
(POD) (Banks et. al., 2000; Holmes et. al., 1996; 
Ravindran, 1999; Singh et. al. 2001).  

The synthesis of various nonlinear control laws using 
neural networks has been demonstrated in a variety 
of applications (Hunt, 1992; White, 1992). Towards 
designing a computational tool for finding a feedback 
form of the optimal control solution for nonlinear 
lumped parameter systems, the Adaptive Critic neuro 
control methodology has been proposed in the 
literature (Balakrishnan & Biega, 1996; Werbos, 
1992). This methodology comes up with a state 
feedback control law by the off-line training of the 
so-called ‘action’ and ‘critic’ networks, for an entire 
envelope of states. This makes it possible to 

synthesize the feedback optimal controllers for 
complex system. It allows the philosophy of 
dynamic programming to be carried out without the 
need for impossible computation and storage 
requirements.  

This paper is an attempt to combine the ideas of 
POD and adaptive critic synthesis to come up with a 
powerful computational tool for the optimal control 
of one-dimensional heat equation. First the problem 
oriented basis functions are designed from a set of 
snapshot solutions, following the idea of POD. Then 
an analogous finite dimensional optimal control 
problem is formulated in the time domain. After 
synthesizing the control in the time domain we 
generate the control function in the spatial domain 
by using the basis functions. We have presented 
numerical simulation results for one-dimensional 
linear and nonlinear heat equation problems, with an 
infinite time optimal control formulation. The 
control synthesis was carried out assuming point 
actuators in the spatial domain.  

The neuro optimal control methodology described in 
this paper retains all the powerful features of the 
adaptive critic methodology. However, we have been 
successful in completely eliminating the action 
networks. As an added benefit, we no more require 
the iterative training loops between the action and 
critic networks. So the methodology presented in this 
paper leads to a considerable saving of computations 
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besides eliminating the error associated with the 
additional neural network approximations. For this 
reason, this paper can also be thought of as an 
improvement of the adaptive critic technique.  

To the knowledge of the authors, this is the first 
neural network paper to present a systematic 
computational tool for the feedback optimal control 
synthesis of distributed parameter systems that 
incorporates the powerful technique of proper 
orthogonal decomposition. It is also the first paper to 
present a viable computational tool to address 
discrete (point) controllers in the spatial domain.  

2. ONE-DIMENSIONAL HEAT CONDUCTION 
PROBLEM WITH POINT ACTUATORS 

2.1 Problem Description 

We consider a nonlinear one-dimensional heat 
conduction problem given by: 
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The linear version of the problem is without the 

� �3 ,x t y

�

term. We assume that the control is excited 
by a set of actuators concentrated at discrete points. 
So, �,u t y  is given by: 
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We consider the cost function to be minimized is 
given by: 
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We assume that the boundary conditions are given by 
the boundary condition � � � �, 0 , 0x t x t L� �� � ; 
i.e. both the ends are insulated. For initial profiles, we 
assume that the profiles can be any profile from the 
domain of interest.  

2.2 Domain of Interest and State Profile Generation  

We assume an envelope profile  
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as the domain of interest. After fixing , 
we assume 

0 1iC� �
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To satisfy the boundary conditions, we assume a 
Fourier cosine series expansion approximation 
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After some algebra, we can write: 
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To satisfy both the inequalities of (9), we select 
random coefficients a , n 0,1, , fn N� �  and 
generate a state profile using Eq. (8). Such a profile 
is guaranteed to lie within our definition of the 
domain of interest (6).  

2.3 Snapshot Solution Generation 

To generate snapshot solutions we follow the 
procedure outlined below. 
�� Fix  and generate a random state 

profile. 
0 iC� �1

�� Generate a random control profile as well, 
similar to the state profile generation and select 
the values at the control application points.  

�� Holding the control as constant, simulate the 
original system Eq.(1), possibly using a finite 
difference technique [Smith], for some finite 
time. 

�� Randomly select some profiles at arbitrary 
instants of time and assume that those are the 
snapshot solutions. 

We propose to repeat the steps outlined above a 
number of times and to collect some snapshot 
solutions each time till enough snapshots are 
collected.  

2.4 Finite Dimension Approximations 

With the snapshot solutions we design the problem 
oriented POD basis functions (Ravindran, 1999; 
Holmes, et. al. 1996]. Then we expand � �,x t y  and 

� �,v t y  as: 
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Substituting Eq.(10) and Eq.(2) in Eq.(1), taking the 
inner product with  we get i�
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Using the boundary conditions, we have 
� � � �,0 , 0j jt t L� �� � � � , which leads to   
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We define a nonlinear function: 
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We assume 
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We define  
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Using Eq. (11), (13) and (16) for i N , we 
obtain: 
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where � �ˆnlf X  is a nonlinear function that comes 

from the nonlinear term in Eq.(1). For the linear 
problem this term will be absent. For the cost 
function, we observe: 
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Thus the cost function in Eq.(4), can be written as: 
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From Eq.(17) and (20) we have an optimal control 
formulation in the lumped parameter framework. 

2.5 Optimality Conditions 

Following the standard optimal control theory for 
lumped systems (Bryson, 1975). The optimal control 
equation can be derived as: 
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Similarly the costate equation can be derived as:
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where  is the Lagrange multiplier. For the linear 
problem the optimal control equation remains same 
as Eq. (21). However, the costate equation (22) does 
not contain 

�

ˆ/nlf X� � .  

2.6 Choice of Neural Network Structure 

For this particular problem we have taken five 
 neural networks, one each for each of the 

costates. A �  neural network means 5 neurons 
in the input layer, 5 neurons in the first hidden layer, 
5 neurons in the second hidden layer and 1 neuron in 
the output layer. For activation functions, we have 
taken a tangent sigmoid function for all the hidden 
layers and a linear function for the output layer.  
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3. NEURAL NETWORK SYNTHESIS 
We propose a set of neural networks, which solve 
the optimal control problem contained in Eq. (17), 
(21) & (22), with appropriate boundary conditions.   

3.1 State generation for neural network training 

Once the snapshot solutions are generated and POD 
basis functions are designed, we observe that 
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So we use all the snapshots in Eq.(23) and fix the 
minimum and maximum values for the individual 

elements of . Let  denote the vector of 

maximum values for  and  the vector for 
minimum values. Then fixing a positive constant 
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can notice that for C ,  

. Thus, for some , 

 and  will include the domain of interest 
for initial conditions. Hence, to begin the synthesis 
procedure, we fix a small value for the constant  
and train the networks for the states, randomly 
generated within . Once the critic networks 

converge for this set, we choose C  close to  and 

again train the networks for the profiles within  

and so on. We keep on increasing the constant C  

this way till the set  includes domain of interest 
for the initial conditions. In this paper, we have 
chosen , 
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 and continued till i , where 

. However, any other scheme should also be 
fine. 
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3.2 Neural Network Training 

For better capturing of the relationship between  

and , we have synthesized separate networks for 

each element of the vector . We synthesize the 
neural networks in the following manner [Figure 1]. 
1. Fix C  and generate  

2. For each element  of  follow the steps 
below 

�� Input  to the networks to get . Let 

us denote it as  

�� Calculate , knowing  and , 
from optimal control equation (21) 

�� Get from the state equation (17), using 

and U  

�� Input  to the networks to get  

�� Calculate , form the costate equation 

(22). Denote this target output as  

3. Train the networks, with all  as input and all 

corresponding�  as output 
4. If proper convergence is achieved, stop and 

revert to step 1, with . If not, go to step 1 

and retrain the networks with a new . 

We have taken the convex combination 
 as the target output for 

training, where 0  is the learning rate for the 
neural network training. Moreover, to minimize the 
chance of getting trapped in a local minimum, we 
have followed the batch training philosophy, where 

the network is trained for all of the elements of  
together. For our heat conduction example problems, 
we have chosen 

iS

5.0�� . 

ˆ
k

1�k�

i

1.0�

� �

c
kS

1 2, , ,i ia a
�

2 2
it
j�� �

4

2, N�

t

0.1� �

One can notice, since U is supposed to be a known 

function of  and , after successful training 
of the networks, we can directly calculate the 

associated optimal control U  from Eq.(21) and 

hence 

ˆ
kX

ˆ
k

� �, yv t  from Eq.(14) and � �,u t y  from 
Eq.(2). 

3.3 Convergence Condition 

Before changing C  to C  and generating new 
profiles for further training, it should be assured that 
proper convergence is arrived for C . For this 

purpose  is fixed to the same values that have 
been used for the training of the networks. Generate 
a set of profiles, exactly the same manner used to 

generate . Moreover, fix a tolerance value (we 

have fixed tol ) 

1�i

i

iC

iS

c
iS

1. By using the profiles from , generate the 
target outputs, as described in Section 3.2. Say 
the outputs are 
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2. Generate the actual output from the networks, 
by simulating the trained networks with the 
profiles from . Say the values of the outputs 
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4. NUMERICAL RESULTS 
For the numerical experimentation we have assumed 
all variables in a compatible unit system. We chose 

, 1q r� � L �
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,
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. We assumed that the controllers 
are separated in the spatial dimension with 

. We assumed a control update scheme 

with . Accordingly in the fourth order 
Runge-Kutta method for the time integration of state 
and costate equations in the neural network synthesis 
process, we assumed � � . In our simulations 
of the systems, we have collected the state profile at 
every  for control calculations and held 
that control profile constant in an explicit finite 
difference simulations [Smith] till next update of the 
control. In the finite difference scheme for 
generating the snapshot solutions we assumed 

. However for simulating 
the system after control synthesis, we have assumed 

.  It should be noted that 
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the choice of values of �  and �  satisfies the 
standard CFL condition for numerical stability for 

linear parabolic systems � �  
[Smith] in both the cases.  
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The first objective was to show that the approach is a 
viable tool for the optimal control synthesis of the 
distributed parameter systems. We notice that the 
problems we considered for numerical 
experimentation represent infinite time regulator 
problems. So both the state and control over the 
entire spatial domain should proceed towards zero as 
time progresses. Further since the aim was to present 
a synthesis tool in a state feedback sense in a domain 
of interest, this feature should be observed for all 
initial conditions in the domain of interest. However, 
since its impossible to present separate results for a 
large number of initial profiles (because of space 
limitations), we chose some representative profiles as 
initial conditions for the simulation purposes. One of 
the two such test profiles was generated with 

. The other initial 
profile was generated at random.  
� � �0, 0.2 0.2 /x y Cos y� � �

In Figures 2-9 we present the state and associated 
control histories for the two representative initial 
conditions. We can see the expected trend of the state 
and control developing towards zero with the 
increase of time. The task of driving the state to zero 
in the entire spatial domain was achieved with no 
difficulty. Even though we have presented the results 
only from limited typical initial profiles, the same 
behaviour was observed from a large number of 
arbitrarily chosen random initial conditions in the 
domain of interest. This shows that the control 
synthesis methodology presented can be implemented 
in a feedback sense.  

5. CONCLUSIONS 

In this paper a systematic computational tool for the 
optimal control synthesis of a one-dimensional 
nonlinear and a linear heat conduction problem has 
been presented. The powerful proper orthogonal 
decomposition methodology has been used in 
designing problem-oriented basis functions, which 
were used in a Galerkin projection to come up with a 
low-dimensional lumped model representation of the 
infinite dimensional system. Using this low 
dimensional model we synthesized the optimal 
control, in a state feedback sense in the domain of 
interest, following the philosophy of adaptive critic 
neural networks. The synthesized control in time 
domain was then extended to the spatial domain 
using the same basis functions. This was done 
assuming a set of discrete controllers in the spatial 
domain. We point out that the neural networks 
synthesized offline can be implemented online, since 
the computation of control only uses the networks. 

 
Figure 1: Schematic of neural network synthesis 

 
Figure 2: State of the nonlinear system from a 
sinusoidal initial condition 

 
Figure 3: Associated control of the nonlinear system 
from the sinusoidal initial condition 

 
Figure 4: State of the nonlinear system from a 
random initial condition 

     



 
Figure 5: Associated control of the nonlinear system 
from the random initial condition 

 
Figure 6: State of the linear system from a sinusoidal 
initial condition 

 
Figure 7: Associated control of the linear system 
from the sinusoidal initial condition 

 
Figure 8: State of the linear system from a random 
initial condition 

 
Figure 9: Associated control of the linear system 
from the random initial condition 
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