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Abstract: The prescription of sets of trajectoriesfor controlled finite deterministic automa-
ton G is formulated via the notion of the class of specifications denoted, both individu-
ally and collectively, by SPEC. Next, the formulation and (language) specification of
structures for interacting automata are developed within the Multi-Agent (MA) product
framework (Hubbard and Caines, 1999), and specifications are defined in terms of SPECs.
Necessary and sufficient conditionsfor the synthesis of MA supervisorsare given and an
associated MA product of specificatioris introduced; finaly, illustrative examplesfor the

resultsin the paper are provided.
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1. INTRODUCTION

Systems in the areas of manufacturing, telecommuni-
cations, and transportations are often represented by
networks of interacting objects, and in many cases
specifications for such systems are naturally formu-
lated in terms of transitions between system states.
More specifically, such tasks may include visiting an
ordered sequence of states (with possible constraints
on visiting other system states) regardless of the event
seguence by which thisis achieved. For example, con-
sider the operation of paying for merchandise in a
shop. Regardless of the type of payment (credit card,
debit card, check, etc.) it must be completed success-
fully by an authorization. Such design and control
problems arise for the scalar systems represented by
finite deterministic automata, as well as for vector
(multi-agent) systems. For the latter, we use a formal
theoretic framework of Multi-Agent (MA) producsys-
tems introduced in Hubbard and Caines (1999). Fur-
ther development of the ideas for the analysis, con-
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trol, and optimization of such systemsisto befoundin
Romanovski and Caines (2001a,b). The results of this
paper constitute anatural extension of the classical su-
pervisory control results (see Kumar and Garg,(1995),
among others) for scalar systems to the more general
MA product system case. lllustrative examplesfor the
resultsin the paper are provided in Sections 3 and 4.

2. SCALAR SPECIFICATIONS FOR FINITE
AUTOMATA

Definition 1. A specification(SPEC) for agiven au-
tomaton G is a4-tuple of subsets of X, namely,
SPEC = {X[, Xr, ch, Xbad}: where

Xpe N Xpoq = 0. X1 istermed the set of initial states
(of the SPEC), X1 C X,, istermed the set of termi-
nal states, X . isanorderedsubset of X (possibly with
repetitions) termed the set of ports of call and X4 is
termed the set of bad states. |



X, isthe set of stateswhich should bevisitedin order
while X4 isthe set of states which must be avoided.
Further, unless otherwise stated, X; and X are sin-
gletons ({z;} and {z} respectively).

The term to drive a stater (of an automaton) to state
y meansthat there exists an input word of controllable
and uncontrollable events a such that when the au-
tomatonisin the state » and acceptsthe word a the au-
tomaton terminatesin state y, equivaently, y is reach-
ablefrom z viaan input sequencea € X*.

Definition 2. We say that an automaton
G=(X,%,0,x, X,) sttisfiesthe SPEC =

{z1, 27, Xpe, Xpaa} if thereexists asystem trajectory
t which satisfies:

(1) Theinitial automaton state z,, isdrivenalongt to
the state 7 without entering the set X,,..

(2) t contains all the elements of X, in the given
order.

(3) Thetrajectory ¢ from z, to the 2 does not meet
the set of potentially bad states,

where a potentially bad state is a state in X34, Or a
state from which abad stateis reachable by a sequence
of uncontrollable events. |

The solution to the problem of satisfying a specifi-
cation SPEC for a given automaton can be divided
into two steps: (a) eliminate all potentially bad states
Xpbaa (b) withintheresulting set, X — X 5,4, establish
the existence of atrgjectory that visits all elementsin
Xpc inthe order given by SPEC. Both steps were dis-
cussed and solutions were developed in Romanovski
and Caines (2001a,b).

To simplify the notation, we includetheinitial and ter-
minal stateinto X, asthefirst and last element respec-
tively andrepresenta.SPEC asapair < Xpc, Xpad >
Denote by L,,(SPEC)q the set of al trgjectories
that satisfy the above definition (a formal definition
for L,,(SPEC)a can be found in Romanovski and
Caines,

(2001by)). Evidently, L,,,(SPEC)¢ is often not prefix
closed. In fact, we have the following

Proposition 3.Let G be finite automaton for which
Xm = X,andlet < X, Xpaa > beaSPEC for G,
L(SPEC)g # 0.1f | X,.| > 2then L,,,(SPEC)¢
is not prefix closed. If X, = 0 (i.e the specifica-
tion has only bad states), then L,,,(SPEC) is prefix
closed. |

Definition 4. Anautomaton G | spgrc =

(Y,X%,61,Y,,Y,,) is caled arestriction of G accord-
ing to SPEGT () Y = X — Xppea, (i) 61 = § lv,
where | denotesthe restriction operation of thedomain
of apartial function to theindicated set, and (iii) Y, =
Xo_Xpbadem =X, _Xpbad- O

Proposition 5. Let G be finite automaton, X,,, = X,
andlet < 0, X;,q > beaSPEC for G. L,,(SPEC )¢
is controllablew.r.t. G if and only if Xp.q = Xppaa-

Proof. Let L,,,(SPEC)¢ be controllable, and let
0*(x,,a) = x & Xpaq. Thenfora € L, (SPEC)q
and for any uncontrollable event « defined at state x
wehavethat au € L, (SPEC)g andhenced(z,u) ¢
Xpaa- Thus, thereis no uncontrollable event that |eads
fromz & Xp.q to astate from Xp,4. By definition
Xbad = Xpbad-

Let Xpad = Xpbaa- Then whenever z € Xp,q and
an uncontrollable u is defined at z, §(z,u) ¢ Xpad,
or, in other words, for any a« € L,,(SPEC)s and
au € L(G) wehavethat au € L,,,(SPEC)¢. O

Corollary 6. Let G befiniteautomaton, for which X,,, =
X.Let < 0, Xp,q > beaSPEC for G, and assume
L (SPEC)g # 0. Thereis X;-enabling supervisor
for L,,(SPEC)q if andonly if Xpqq = Xppad- O

Corollary 7. In the setup of the previous proposition,
L(G) | sprc isthemaximal controllable sublanguage
w.rt. G. O

3. SUPERVISION OF MA SYSTEMS

Thestandard interaction for the supervisor-system pair
is that of the synchronous product (see Kumar and
Garg, (1995), for example). An automaton

S = (Y,%,0s,y0,Ym) representing the supervi-
sor operates with the plant G = (X, X = X. U
Y., 0,0, X,,), and theresulting languageisthe scalar
synchronous product L(S)||sL(G) (see Kumar and
Garg, 1995).

Analternativeisto consider control of asystem G with
asupervisor S actingin unison, as anindividual agent,
leading to the combined evolution L(S)||araL(G).
In what follows it is assumed that all languages are
prefix-closed, hence both the terms L(S||,4G) and
L(S)||ara L(G) can beused equivaently (notethelat-
ter is only defined for prefix closed languages). This
assumption extends to specification languages (e.g. K
below). It is aso assumed that the goal states X, and
Y,, aretheentirestates X andY . This hasthe effect of
simplifying the algebrai c derivationsby alleviating the
need for anon-markingconditionfor the supervisor (as
in Kumar and Garg, 1995) and isolating the controlla-
bility criteria.

Theresults regarding controllability of alanguage and
the synthesis of synchronous product based supervi-
sors apply almost directly for scalar specifications K
when the MA product isused in lieu of the scalar syn-
chronous product. For vector specifications, however,
controllability is not enough for the synthesis of MA-
supervisors. Thisis dueto thefact that in MA-product



we often cannot disable an isolated (disablable) event,
but only the controllable components of agiven event.

Let the plant model consists of the MA product of au-
tomata and |et the components be
Gi = (XZ, Eic U Eiu,(si,l’oi,Xmi),i = ]., 2..., N

whereY; arethedisableeventsand ¥; aretheundis
ablableevents. It isassumed that (for thecase N = 2),

S ()%, =0, S, ()55, =0,
which forcesthe events of theform [a . .. a]? to beun-
controllable or controllable in both components. The

Definitions 8 and 9 below are written for V = 2, but
easily generalised for an arbitrary N.

Definition 8. Multi-Agent Product (Supervisory Case)

Gil||lmaGa =

= (XIXX27 EC UEUy(SMAa (xolaxOZ)aXml Xsz)
where,

EU:{{ZM a€¥, andbes,,} (1)

XCZ{M| a€F orbe Ny} o)

x a 01(x,a)| .

y] ! M): [52(%6)] o
d1(z,a)! A 02(y,b)! Ala=bV

(=02(y, @)t A =61 (2, b)!) ),

and undefined otherwise. Thenotation §; (z, a)! means
that § isdefined at (z, a). O

<s<z@@

[ NP

Fig.1: Mechanica disabling

Onral

Other constructionsof product systems can befoundin
Kam at al., (1997), Hartmanis and Stearns, (1966) and
Li and Wonham, (1993). It is easy to see that it is pos-
sible that some uncontrollable events defined for the
automaton Gy (or G'2) can be prevented by synchro-
nization asis shown on Fig.1. Moreover, even though
the specification K = {a} C L(G;1) = {a,b} isnot
controllable (we assume that b is uncontrollable), we

havethat L(G||ar4S) = { Z }, since {2] cannot
occur by the construction of the MA product.

In order to eliminate the prevention of uncontrollable
event mechanically (i.e. by construction of the MA-
product), we need to introduce a X ;-enablingMA-
product. For the construction of supervisor S, it can be

considered as an MA-analogy of scalar ¥¢7-enabling
(Kumar and Garg, 1995).

Assume that the MA-product of G; and G2, hamely,
G1|lmaGe =

=(Z =Y xX,¥ = SUSu, oma, 20 =
(Yo, %0),Ym x Xp,) is defined, and §%, 4 is a natural
extension of 6,74 on X*, whichisdefined as

[gg = {M] lveSh,we Sk, v] = |wl}.
Definition 9. For any vector state z € Z,

73(*:11,2(‘1) = { [Z] € X|dmalz, Z} M, a €.
Similarly,

Pézl,z(d) = { [2] € X|oamalz, 2})'}, deX,.

where Z; = Yy, U X, defined for automata G,
i=1,2 O

We generalise the notion of component-wise projec-
tion (see Hubbard and Caines, (1999), Romanovski
and Caines (2001a))

P;: (X1 x...x Xn)* — XF tOPg, asfollows:

Definition 10. Let the MA product G'1 || 4G be de-
fined. For any vector word

s=[a1, . an,ans1, - au]? € L(Gil[aaGa),

[a1,-..,an]T € L(Gy),[an+1,--- ,am]T € L(Gs),
Pa, (S) = [ala v 7aN]T7

and P, isdefined similarly. |

Definition 11. Xiy-enabling M A-product.
G1||maG2 is Xy-enablingif the following condition
holds:

whenever

z€Z,s€X w; € Xyg,,1=1,2

aresuch that 6%, ,(z0,s) = z and P, (s)w; € L(G;),
then it is the case that

Pal.(wi) £ 0.

Note that the condition of the above definitionimplies
0 # sPg(wi) C L(G1)||maL(Gs). Inother words,
if the vector state z is reachable from the initia state
zo Of G1||araG2 and some uncontrollable (vector or
scalar) event w; € Yue, (orws € EUG2) is defined
for a component of z that belongsto G; (or, respec-
tively, to G2), thentheremust besomeevent v, € X¢,
(respectively, v; € X¢,) suchthat §u4(z, [wy,v2]T)
isdefined (respectively, §ara (2, [v1, we]T) isdefined).

Definition 12. An MA supervisor S for G is called
MA Xy-enabling if and only if S||paG is a Xy-
enabling MA product. O



Lemma 13.Let K and L be prefix-closed languages.
Then,
KCL =

= K||maLl = K||maK = {[Z] la € K}.

ad

For an MA supervisor we assume X g C Y.

Definition 14. AnMA supervisor S for G iscalled MA
Yy-enablingif and only if S||ar4G isaXy-enabling
MA product. O

Definition 15. Let G bean MA-product system and K
be a prefix-closed vector specification. K iscaled MA
controllable(w.r.t. G) if and only if the the following
conditions are true:

(1) K iscontrollable(i.e. KXy N L(G) C K);

(2 Va € Xg,s € K,z € X{0;(x0,8) =xANsae
LG)Nsa ¢ K} = Fa; €%;,,i=1,...,N
such that ([sPéil’z(ai)] NK=0) O

We paraphrase the Condition 2 of the above definition
as follows: if a controllable vector event o defined at
agiven vector state z, takes us out of the specification
K, there must be some controllable component of «,
say a;, such that any vector event that is defined at «
and has a; asacomponent, takesusout of K. Notethat
if K isascalar specification, the Condition2istrivialy
true.

Theorem 1.Let K C L(G) be aregular (i.e. finitely
generated) vector specification for an MA product sys-
tem G.

(1) K admitsa X -enabling MA supervisor S such
that P (L(S)||maL(G@)) = K ifandonly if K is
MA controllable.

(2) If K isnot MA controllable, then there exists a
maximal (w.r.t. theinclusion partial order) speci-
fication K; C K whichis MA controllablew.r.t.
G.

Pr oof.
Part 1. We construct an S = (Xs,X = Xo U
Y, 67, 20) by thefollowing rules:

(1) Xs = {[s](Rk)|s € K}, where Rk is an
equivalence relation induced by K according to
the Myhill-Nerode construction (see Kumar and
Garg (1995)). Since K isregular, Ry isof finite
index.

(2) Forany statex € Xg any vector event a € X,

(55(;10, a) = [sa](Rk)

if and only if sa € K. For each vector event a
such that sa ¢ K we disable (i.e. do not define)
any controllable a; at each component z; of z €
X for which

57952,1@((11-) NK =10

Other words, we make L(S) = K. Since K is
controllable, S|y 4G is Xy-enabling MA product,
s0 S is Yy-enabling . By Lemma 12 we have that
Pa(L(S)||lmaL(G)) = K.

Assume that such S exists. Then K is controllable
since S||a; 4G is Yy-enabling MA product. Assume
there exist avector state z € X, vector word s € K,
and an event a € X4 for which the Condition 2 of
the theorem is not true. We cannot leave this event in
S since then L(S) # K. On the other hand, by the
disabling of any component of vector event a we dis-
able some event that belongsto K since for any ¢ =
1,...N
57952,1@((1,-) NK#D

But, again, L(S) # K and sOPg(L(S)||maL(G)) =
L(S) # K. Contradiction.

Part 2. Consider two cases:

Case 1. K iscontrollable but not MA controllable. In
this case the algorithm for finding a Ky is the follow-
ing: westart withtheinitial statex, . If al vector events
defined at this state satisfy the Condition 2 of the defi-
nition of MA controllability, we moveto all states that
aredirectly accessible (i.e. by onetransition) from z,,.
Suppose at state 2 condition 2 is violated. We remove
eventsfrom K asfollows. Foreachs € K,a € X such
that 0* (o, s) = x, and sa ¢ K, we find acomponent
a; such that the cardinality of the set 57)51-1,z (a;))NK is
minimal and remove from K all elements of the type
57’53@ (a;); then move to the states which are still ac-
cessible by the elements in the reduced language K.
Continue the procedure until all states accessible from
x, satisfy Condition 2. Note that since K is control-
lable, theresulting set K; will also be controllableand
satisfy the condition 2 by construction, so K; will be
MA controllable.

Case 2. Let K be uncontrollable w.rt. G. Thereis a
procedure (see Kumar and Garg (1995), among others)
for finding the maximal controllable sublanguage of
K, denoted by K. Asitisshown in Romanovski and
Caines (2001a), K1, in general, does not satisfy the
Condition 2. Inorder to obtain K, we apply to K] the
algorithm described above. |

Lemma 16.Let the specifications K, and K, be con-
trollable w.r.t. the automata G, and G5 respectively.
Then K ||ara K2 iscontrollablew.rt. G ||araGa.

Proof. Let s = [Sl,SQ]T S L(K1||MAK2) N
L(G1]|maG2), [u,v]! € Sy, and [s1, 2]  [u,v]t €
L(G1||maG2). Then syu € L(G;) and, since K is
controllable w.rt. G, syu € K;i. Similarly, sou €
Ks. As aresult, [s1,s2] [u,v]T = [s1u,s20]T €
K1||MAK2. O

Proposition 17.Let the specifications K; and K, be
MA controllablew.r.t. theautomataG, and G- respec-



tively. Then K’ = K || a4 K2 iISMA controllablew.r.t.
G = G1||s14Go.

Proof. Due to the above lemma, it is enough to prove
that the Condition 2 of the definition of MA control-
[ability is true. Assume that for some vector state z
of MA product G ||y 4 G2, Some vector word s such
that 63, 4(xo,s) = z and s € Ki||pakK2, and some
controllable vector event a defined at = we have that
sa € L(G1||maG2), but sa ¢ Ki||maK-. Denote
r = [11,22)T, wherer; € X1,20 € X, Pg, (sa) =
si1a1, Pg,(sa) = ssas. Then ether sya; ¢ K, or
sqas € K, orboth. Since K1 isMA controllablew.r.t.
G4, wehavethat there exists a controllable component
ay; of a; such that 81P6117x1(a1i) NnNK, = (0. But
that implies sP; ", (a1,) N K = 0. In the second case
(aswell asin the third) we get the same result by MA
controllability of K. Thus, K = Ki||pa K> is MA
controllablew.rt.G = G1||aaGo. O

Let K, be the specification for G, K, be the spec-
ification for G. Naturally, we assume that K; C
L(G,1), K2 C L(G,), and we consider the MA prod-
uct Ki||apra Ko w.rt. Gi||araG2, which is formally
defined as follows:

Definition 18. The MA specification K ||as 4 K2 for
the MA product G ||y 4G2 IS given by
(K1|lmaK2) N L(G1||maG2). ad

Proposition 19.L et the specifications K; and K5 be
MA controllablew.r.t. theautomataG, and G» respec-
tively by the MA supervisors S; and S, respectively.
If G1]|maG2 isaXy-enabling MA product, then the
MA specification K1 ||ara K> has an MA supervisor
Sl||MAS2 W.I.L. G1||MAG2.

Proof. Denote G = G1||maGa, K = Ki||pmaKos,
S = S1||maS2. Wehavethat L(S) C L(G) andsince
G is Zy-enabling, S||aaG is Ty-enabling. More-
over, we havethat P, (S||maG) = Ki,
PGz(S”MAG) = K>, that glV%PG(SHMAG) =K.

Example 1. Consider the vector specification K, =
{la,c]T, [b,d]T} for G1||araG2, given on Fig.2. K,
fails to satisfy the condition 2 of the theorem, and it
isimpossibleto disable any component without losing
some element of K. Consider the additional specifi-
cation for G, Ky = {c}. Then vector specification
Ki|lmaKs = {[a,c,c]''} is MA controllable w.r.t.
G1||maGzl|rmaGa. O

Gl lwS:

Fig.2: Examples of MA Products

4. VECTOR SPECS FOR MA PRODUCT
SYSTEMS

There are two ways to analyse the specifications for
MA product systems. Since the MA product is afinite
deterministic automaton, we can construct specifica-
tions directly for such automaton and directly apply
the results from Romanovski and Caines (2001b). The
other approachisto giveaspecificationforan MA sys-
tem via specifications for its component systems.

Example 2. Consider the complex system of inter-
action of customer and sales department in the small
shop. It is clear that whenever the customer has suc-
cessfully paid for the item, we must remove it from
the shelf. The specification isto keep shelfsnon-empty
when a customer isin the shop.

The behaviour of the Customer (G1) is represented in
Fig.3. Here, theeventsout, full stock (i.e. thedemand
of a customer to show al items available), activate,
complete, incomplete are not controllable, and the
other events, stay, try again and re fuse are control-
lable.

The scheme for a“shop” includes two automata:
“Counter” (G2) which represents a mechanism for
paying and “Shelf” (G3), which carries information
about items available. General automatafor “ Counter”
and “Shelf” are given in Fig.3 also. We denote by
W AIT¢, the set of events {stay, out, full stock}
defined at the state Idle of the automata G2. The
eventscomplete;, (i = 1...3), full stock;, (j = 1,2
and re fill are controllable.

To be specific, we assume here that the capacity of
the shelf is 3 items, and allow 3 attempts to complete
the procedure of paying before the final refusal. It is
clear that a similar automaton can be constructed for
an arbitrary number of attempts and an arbitrary shelf
capacity.

We represent the behaviour of the whole system asthe
MA product of G1, G2, and G3, denoted by G.



Evidently, our specification can be represented by the (1997). Synthesis of Finite State Machines: Functional
following SPEC: < 0, {[Enter, *, 0|1} >, where OptimizationKluwer Academic Publishers, London.
* s any state of the automaton G2. According to the Y.Li andW.M.Wonham. (1993). Control of Vector Discrete-

Proposition 3, L,,,(SPEC) is prefix closed. Denote Event Systems | Base Model. IEEE Transactions on

K = L,(SPEC)¢g. Further, Xy,q = Xpbad since
we can get to the state Enter of the automata G1 only
by controllable event stay, so K is controllable by the
Proposition 5. We a so note that K is MA controllable
since the only vector event that takes us out of K is
(stay, stay, stay)” defined at the state

[Get, Idle, 0]T.

G1 (customer)

Fig.3: Automata for the MA product “ Shop”

Now, the MA supervisor for the given specification
K exists by Theorem 3.1. and can be constructed by
disabling the the component stay at the state

[Get, Idle, 0]7. Naturally, we assumethat we remove
an item from the shelf if and only if the procedure
of payment is completed successfully, i.e. we enable
the component completey, k = 1,2,3, only at the
vector states [Pay, Act.;, J|T, wherei = 1,23,
J = 3,2,1and aso, we try to put an additional items
to the shelf only if there isa demand, so we enablethe
component full stocky, k = 1,2 only at the vector
states [Enter, Idle, J|*, J = 1,2,3. Note that the
enabling of the event full stock;, does not guarantee
thereturn to the state 3 of the automaton G3, sincethe
vector event (full stock, full stock, incomplete)”
is defined at the vector state [Enter, Idle, J|1, J =
2, 1, but this does not contradict our specification. O
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