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Abstract: The prescription of sets of trajectories for controlled finite deterministic automa-
ton G is formulated via the notion of the class of specifications denoted, both individu-
ally and collectively, by SPEC. Next, the formulation and (language) specification of
structures for interacting automata are developed within the Multi-Agent (MA) product
framework (Hubbard and Caines, 1999), and specifications are defined in terms of SPECs.
Necessary and sufficient conditions for the synthesis of MA supervisors are given and an
associated MA product of specificationsis introduced; finally, illustrative examples for the
results in the paper are provided.
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1. INTRODUCTION

Systems in the areas of manufacturing, telecommuni-
cations, and transportations are often represented by
networks of interacting objects, and in many cases
specifications for such systems are naturally formu-
lated in terms of transitions between system states.
More specifically, such tasks may include visiting an
ordered sequence of states (with possible constraints
on visiting other system states) regardless of the event
sequence by which this is achieved. For example, con-
sider the operation of paying for merchandise in a
shop. Regardless of the type of payment (credit card,
debit card, check, etc.) it must be completed success-
fully by an authorization. Such design and control
problems arise for the scalar systems represented by
finite deterministic automata, as well as for vector
(multi-agent) systems. For the latter, we use a formal
theoretic framework of Multi-Agent (MA) productsys-
tems introduced in Hubbard and Caines (1999). Fur-
ther development of the ideas for the analysis, con-
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trol, and optimization of such systems is to be found in
Romanovski and Caines (2001a,b). The results of this
paper constitute a natural extension of the classical su-
pervisory control results (see Kumar and Garg,(1995),
among others) for scalar systems to the more general
MA product system case. Illustrative examples for the
results in the paper are provided in Sections 3 and 4.

2. SCALAR SPECIFICATIONS FOR FINITE
AUTOMATA

Definition 1. A specification�SPEC� for a given au-
tomaton G is a 4-tuple of subsets of X , namely,
SPEC � fXI � XT � Xpc� Xbadg, where
Xpc �Xbad � �. XI is termed the set of initial states
(of the SPEC), XT � Xm is termed the set of termi-
nal states,Xpc is an orderedsubset ofX (possibly with
repetitions) termed the set of ports of call and Xbad is
termed the set of bad states.
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Xpc is the set of states which should be visited in order
while Xbad is the set of states which must be avoided.
Further, unless otherwise stated, XI and XT are sin-
gletons (fxIg and fxT g respectively).

The term to drive a statex (of an automaton) to state
y means that there exists an input word of controllable
and uncontrollable events a such that when the au-
tomaton is in the state x and accepts the word a the au-
tomaton terminates in state y, equivalently, y is reach-
able from x via an input sequence a � ��.

Definition 2. We say that an automaton
G � �X��� �� xo� Xm� satisfies the SPEC �
fxI � xT � Xpc� Xbadg if there exists a system trajectory
t which satisfies:

(1) The initial automaton state xo is driven along t to
the state xI without entering the set Xpc.

(2) t contains all the elements of Xpc in the given
order.

(3) The trajectory t from xo to the xT does not meet
the set of potentially bad states,

where a potentially bad state is a state in Xbad, or a
state from which a bad state is reachable by a sequence
of uncontrollable events.

The solution to the problem of satisfying a specifi-
cation SPEC for a given automaton can be divided
into two steps: �a� eliminate all potentially bad states
Xpbad �b� within the resulting set,X�Xpbad, establish
the existence of a trajectory that visits all elements in
Xpc in the order given by SPEC. Both steps were dis-
cussed and solutions were developed in Romanovski
and Caines (2001a,b).

To simplify the notation, we include the initial and ter-
minal state intoXpc as the first and last element respec-
tively and represent aSPEC as a pair� Xpc� Xbad �.
Denote by Lm�SPEC�G the set of all trajectories
that satisfy the above definition (a formal definition
for Lm�SPEC�G can be found in Romanovski and
Caines,
(2001b)). Evidently, Lm�SPEC�G is often not prefix
closed. In fact, we have the following

Proposition 3.Let G be finite automaton for which
Xm � X , and let � Xpc� Xbad � be a SPEC for G,
Lm�SPEC�G �� �. If jXpcj � � then Lm�SPEC�G
is not prefix closed. If Xpc � � (i.e. the specifica-
tion has only bad states), then Lm�SPEC�G is prefix
closed.

Definition 4. An automaton G �SPEC =
�Y��� ��� Yo� Ym� is called a restriction ofG accord-
ing to SPECif (i) Y � X � Xpbad, (ii) �� � � �Y ,
where � denotes the restriction operation of the domain
of a partial function to the indicated set, and (iii) Yo �
Xo �Xpbad, Ym � Xm �Xpbad.

Proposition 5.Let G be finite automaton, Xm � X ,
and let � �� Xbad � be a SPEC for G. Lm�SPEC�G
is controllable w.r.t. G if and only if Xbad � Xpbad.

Proof. Let Lm�SPEC�G be controllable, and let
���xo� a� � x �� Xbad. Then for a � Lm�SPEC�G
and for any uncontrollable event u defined at state x
we have that au � Lm�SPEC�G and hence ��x� u� ��
Xbad. Thus, there is no uncontrollable event that leads
from x �� Xbad to a state from Xbad. By definition
Xbad � Xpbad.

Let Xbad � Xpbad. Then whenever x �� Xbad and
an uncontrollable u is defined at x, ��x� u� �� Xbad,
or, in other words, for any a � Lm�SPEC�G and
au � L�G� we have that au � Lm�SPEC�G.

Corollary 6. Let G be finite automaton, for whichXm �
X . Let � �� Xbad � be a SPEC for G, and assume
Lm�SPEC�G �� �. There is �U -enabling supervisor
for Lm�SPEC�G if and only if Xbad � Xpbad.

Corollary 7. In the setup of the previous proposition,
L�G� �SPEC is the maximal controllable sublanguage
w.r.t. G.

3. SUPERVISION OF MA SYSTEMS

The standard interaction for the supervisor-system pair
is that of the synchronous product (see Kumar and
Garg, (1995), for example). An automaton
S � �Y��� �S � y�� Ym� representing the supervi-
sor operates with the plant G � �X�� � �c �
�u� �� x�� Xm�, and the resulting language is the scalar
synchronous product L�S�jjsL�G� (see Kumar and
Garg, 1995).

An alternative is to consider control of a systemGwith
a supervisorS acting in unison, as an individual agent,
leading to the combined evolution L�S�jjMAL�G�.
In what follows it is assumed that all languages are
prefix-closed, hence both the terms L�SjjMAG� and
L�S�jjMAL�G� can be used equivalently (note the lat-
ter is only defined for prefix closed languages). This
assumption extends to specification languages (e.g.K
below). It is also assumed that the goal states Xm and
Ym are the entire statesX and Y . This has the effect of
simplifying the algebraic derivations by alleviating the
need for a non-markingcondition for the supervisor (as
in Kumar and Garg, 1995) and isolating the controlla-
bility criteria.

The results regarding controllability of a language and
the synthesis of synchronous product based supervi-
sors apply almost directly for scalar specifications K
when the MA product is used in lieu of the scalar syn-
chronous product. For vector specifications, however,
controllability is not enough for the synthesis of MA-
supervisors. This is due to the fact that in MA-product



we often cannot disable an isolated (disablable) event,
but only the controllable components of a given event.

Let the plant model consists of the MA product of au-
tomata and let the components be

Gi � �Xi��ic

�
�iu � �i� x�i � Xmi

�� i � �� ����� N

where �ic are the disable events and �iu are the undis-
ablable events. It is assumed that (for the caseN � �),

�ic

�
�ju � �� �iu

�
�jc � ��

which forces the events of the form �a � � � a�T to be un-
controllable or controllable in both components. The
Definitions 8 and 9 below are written for N � �, but
easily generalised for an arbitrary N .

Definition 8. Multi-Agent Product (Supervisory Case)

G�jjMAG� �

� �X�	X���C

�
�U � �MA� �x�� � x���� Xm�

	Xm�
�

where,

�U � f

�
a

b

�
j a � ��u and b � ��ug (1)

�C � f

�
a

b

�
j a � ��c or b � ��cg (2)

�MA�

�
x

y

�
�

�
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���x� a�
���y� b�

�
� if

���x� a�	 
 ���y� b�	 
 �a � b �
�����y� a�	 
 ����x� b�	� ��
and undefined otherwise. The notation ���x� a�	 means
that � is defined at �x� a�.
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Fig.1: Mechanical disabling

Other constructions of product systems can be found in
Kam at al., (1997), Hartmanis and Stearns, (1966) and
Li and Wonham, (1993). It is easy to see that it is pos-
sible that some uncontrollable events defined for the
automaton G� (or G�) can be prevented by synchro-
nization, as is shown on Fig.1. Moreover, even though
the specification K � fag 
 L�G�� � fa� bg is not
controllable (we assume that b is uncontrollable), we

have that L�GjjMAS� � f

�
a

a

�
g, since

�
b

a

�
cannot

occur by the construction of the MA product.

In order to eliminate the prevention of uncontrollable
event mechanically (i.e. by construction of the MA-
product), we need to introduce a �U -enablingMA-
product. For the construction of supervisor S, it can be

considered as an MA-analogy of scalar �U -enabling
(Kumar and Garg, 1995).

Assume that the MA-product of G� and G�, namely,
G�jjMAG� =
� �Z � Y 	 X� � � �C

S
�U � �MA� z� �

�y�� x��� Ym 	 Xm� is defined, and ��MA is a natural
extension of �MA on ��, which is defined as�
�G�

�G�

�
�

� f

�
v

w

�
j v � ��

G�
� w � ��

G�
� jvj � jwjg�

Definition 9. For any vector state z � Z,

P��

G��z
�a�

def
� f

�
a

b

�
� �j�MA�z�

�
a

b

�
�	g� a � ���

Similarly,

P��

G��z
�d�

def
� f

�
c

d

�
� �j�MA�z�

�
c

d

�
�	g� d � ���

where �i � �UGi
� �CGi

defined for automata Gi,
i � �� �

We generalise the notion of component-wise projec-
tion (see Hubbard and Caines, (1999), Romanovski
and Caines (2001a))
Pi 
 ��� 	 � � �	�N �� �� ��

i to PGi
as follows:

Definition 10. Let the MA product G�jjMAG� be de-
fined. For any vector word
s � �a�� � � � � aN � aN��� � � � � aM �T � L�G�jjMAG��,
�a�� � � � � aN �T � L�G��, �aN��� � � � � aM �T � L�G��,

PG�
�s�

def
� �a�� � � � � aN �T �

and PG�
is defined similarly.

Definition 11.�U -enabling MA-product.
G�jjMAG� is �U -enablingif the following condition
holds:
whenever

z � Z� s � ��� wi � �UGi
� i � �� �

are such that ��MA�z�� s� � z and PGi
�s�wi � L�Gi�,

then it is the case that

P��

Gi�z
�wi� �� ��

Note that the condition of the above definition implies
� �� sP��

G�z�wi� � L�G��jjMAL�G��. In other words,
if the vector state z is reachable from the initial state
z� of G�jjMAG� and some uncontrollable (vector or
scalar) event w� � �UG�

(or w� � �UG�
) is defined

for a component of z that belongs to G� (or, respec-
tively, toG�), then there must be some event v� � �G�

(respectively, v� � �G�
) such that �MA�z� �w�� v��

T �
is defined (respectively, �MA�z� �v�� w��

T � is defined).

Definition 12. An MA supervisor S for G is called
MA �U -enabling if and only if SjjMAG is a �U -
enabling MA product.



Lemma 13.Let K and L be prefix-closed languages.
Then,

K � L ��

�� KjjMAL � KjjMAK � f

�
a

a

�
ja � Kg�

For an MA supervisor we assume �S � �G.

Definition 14. An MA supervisorS forG is called MA
�U -enablingif and only if SjjMAG is a �U -enabling
MA product.

Definition 15. LetG be an MA-product system andK
be a prefix-closed vector specification.K is called MA
controllable(w.r.t. G) if and only if the the following
conditions are true:

(1) K is controllable (i.e. K�U � L�G� � K);
(2) �a � �G� s � K�x � Xf��G�x�� s� � x 
 sa �

L�G� 
 sa �� Kg �� �ai � �ic � i � �� � � � � N
such that ��sP��

Gi�x
�ai�� �K � ��

We paraphrase the Condition 2 of the above definition
as follows: if a controllable vector event a defined at
a given vector state x, takes us out of the specification
K, there must be some controllable component of a,
say ai, such that any vector event that is defined at x
and has ai as a component, takes us out ofK. Note that
ifK is a scalar specification, the Condition 2 is trivially
true.

Theorem 1.Let K � L�G� be a regular (i.e. finitely
generated) vector specification for an MA product sys-
tem G.

(1) K admits a �U -enabling MA supervisor S such
that PG�L�S�jjMAL�G�� � K if and only if K is
MA controllable.

(2) If K is not MA controllable, then there exists a
maximal (w.r.t. the inclusion partial order) speci-
fication K� 
 K which is MA controllable w.r.t.
G.

Proof.
Part 1. We construct an S � �XS �� � �C �
�U � �

S � x�� by the following rules:

(1) XS � f�s��RK�js � Kg, where RK is an
equivalence relation induced by K according to
the Myhill-Nerode construction (see Kumar and
Garg (1995)). Since K is regular, RK is of finite
index.

(2) For any state x � XS any vector event a � �,

�S�x� a� � �sa��RK�

if and only if sa � K. For each vector event a
such that sa �� K we disable (i.e. do not define)
any controllable ai at each component xi of x �
XS for which

sP��

Gi�x
�ai� �K � �

Other words, we make L�S� � K. Since K is
controllable, SjjMAG is �U -enabling MA product,
so S is �U -enabling . By Lemma 12 we have that
PG�L�S�jjMAL�G�� � K.

Assume that such S exists. Then K is controllable
since SjjMAG is �U -enabling MA product. Assume
there exist a vector state x � X , vector word s � K,
and an event a � �G for which the Condition 2 of
the theorem is not true. We cannot leave this event in
S since then L�S� �� K. On the other hand, by the
disabling of any component of vector event a we dis-
able some event that belongs to K since for any i �
�� ���� N

sP��

Gi�x
�ai� �K �� �

But, again, L�S� �� K and so PG�L�S�jjMAL�G�� �
L�S� �� K. Contradiction.

Part 2. Consider two cases:
Case 1. K is controllable but not MA controllable. In
this case the algorithm for finding a K� is the follow-
ing: we start with the initial statexo. If all vector events
defined at this state satisfy the Condition 2 of the defi-
nition of MA controllability, we move to all states that
are directly accessible (i.e. by one transition) from xo.
Suppose at state x condition 2 is violated. We remove
events fromK as follows: For each s � K, a � � such
that ���x�� s� � x, and sa �� K, we find a component
ai such that the cardinality of the set sP��

Gi�x
�ai��K is

minimal and remove from K all elements of the type
sP��

Gi�x
�ai�; then move to the states which are still ac-

cessible by the elements in the reduced language K �.
Continue the procedure until all states accessible from
xo satisfy Condition 2. Note that since K is control-
lable, the resulting set K� will also be controllable and
satisfy the condition 2 by construction, so K� will be
MA controllable.

Case 2. Let K be uncontrollable w.r.t. G. There is a
procedure (see Kumar and Garg (1995), among others)
for finding the maximal controllable sublanguage of
K, denoted by K �

�. As it is shown in Romanovski and
Caines (2001a), K �

�, in general, does not satisfy the
Condition 2. In order to obtainK�, we apply toK �

� the
algorithm described above.

Lemma 16.Let the specifications K� and K� be con-
trollable w.r.t. the automata G� and G� respectively.
Then K�jjMAK� is controllable w.r.t. G�jjMAG�.

Proof. Let s � �s�� s��
T � L�K�jjMAK�� �

L�G�jjMAG��, �u� v�T � �U , and �s�� s��
T �u� v�T �

L�G�jjMAG��. Then s�u � L�G�� and, since K� is
controllable w.r.t. G�, s�u � K�. Similarly, s�u �
K�. As a result, �s�� s��

T �u� v�T � �s�u� s�v�
T �

K�jjMAK�.

Proposition 17.Let the specifications K� and K� be
MA controllable w.r.t. the automataG� andG� respec-



tively. ThenK � K�jjMAK� is MA controllable w.r.t.
G � G�jjMAG�.

Proof. Due to the above lemma, it is enough to prove
that the Condition 2 of the definition of MA control-
lability is true. Assume that for some vector state x

of MA product G�jjMAG�, some vector word s such
that ��MA�x�� s� � x and s � K�jjMAK�, and some
controllable vector event a defined at x we have that
sa � L�G�jjMAG��, but sa �� K�jjMAK�. Denote
x � �x�� x��

T , where x� � X�� x� � X�, PG�
�sa� �

s�a�, PG�
�sa� � s�a�. Then either s�a� �� K� or

s�a� �� K�, or both. SinceK� is MA controllable w.r.t.
G�, we have that there exists a controllable component
a�i of a� such that s�P

��

G��x�
�a�i� � K� � �. But

that implies sP��

G�x�a�i� �K � �. In the second case
(as well as in the third) we get the same result by MA
controllability of K�. Thus, K � K�jjMAK� is MA
controllable w.r.t.G � G�jjMAG�.

Let K� be the specification for G�, K� be the spec-
ification for G�. Naturally, we assume that K� �
L�G��, K� � L�G��, and we consider the MA prod-
uct K�jjMAK� w.r.t. G�jjMAG�, which is formally
defined as follows:

Definition 18. The MA specification K�jjMAK� for
the MA product G�jjMAG� is given by
�K�jjMAK�� � L�G�jjMAG���

Proposition 19.Let the specifications K� and K� be
MA controllable w.r.t. the automataG� andG� respec-
tively by the MA supervisors S� and S� respectively.
If G�jjMAG� is a �U -enabling MA product, then the
MA specification K�jjMAK� has an MA supervisor
S�jjMAS� w.r.t. G�jjMAG�.

Proof. Denote G � G�jjMAG�, K � K�jjMAK�,
S � S�jjMAS�. We have thatL�S� � L�G� and since
G is �U -enabling, SjjMAG is �U -enabling. More-
over, we have that PG�

�SjjMAG� � K�,
PG�

�SjjMAG� � K�, that gives PG�SjjMAG� � K.

Example 1. Consider the vector specification K� �
f�a� c�T � �b� d�T g for G�jjMAG�, given on Fig.2. K�

fails to satisfy the condition 2 of the theorem, and it
is impossible to disable any component without losing
some element of K. Consider the additional specifi-
cation for G�, K� � fcg. Then vector specification
K�jjMAK� � f�a� c� c�Tg is MA controllable w.r.t.
G�jjMAG�jjMAG�.

(1,1,1)

G || G || G1 MA 2 MA 2

(2,2,2)

(2,3,3)

(3,2,2)

(3,3,3)

(1,1)

G || G1 MA 2

(2,2)

(2,3)

(3,2)

(3,3)

1

2

3

1

2
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b d
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b
d

a
d

b
c

a
c
c

b
d
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a
d
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b
c
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Fig.2: Examples of MA Products

4. VECTOR SPECS FOR MA PRODUCT
SYSTEMS

There are two ways to analyse the specifications for
MA product systems. Since the MA product is a finite
deterministic automaton, we can construct specifica-
tions directly for such automaton and directly apply
the results from Romanovski and Caines (2001b). The
other approach is to give a specification for an MA sys-
tem via specifications for its component systems.

Example 2. Consider the complex system of inter-
action of customer and sales department in the small
shop. It is clear that whenever the customer has suc-
cessfully paid for the item, we must remove it from
the shelf. The specification is to keep shelfs non-empty
when a customer is in the shop.

The behaviour of the Customer (G1) is represented in
Fig.3. Here, the events out, full stock (i.e. the demand
of a customer to show all items available), activate,
complete, incomplete are not controllable, and the
other events, stay, try again and refuse are control-
lable.

The scheme for a “shop” includes two automata:
“Counter” (G2) which represents a mechanism for
paying and “Shelf” (G3), which carries information
about items available. General automata for “Counter”
and “Shelf” are given in Fig.3 also. We denote by
WAITG� the set of events fstay� out� full stockg
defined at the state Idle of the automata G�. The
events completei, (i � � � � � �), full stockj , (j � �� �
and refill are controllable.

To be specific, we assume here that the capacity of
the shelf is 3 items, and allow 3 attempts to complete
the procedure of paying before the final refusal. It is
clear that a similar automaton can be constructed for
an arbitrary number of attempts and an arbitrary shelf
capacity.

We represent the behaviour of the whole system as the
MA product of G�, G�, and G�, denoted by G.



Evidently, our specification can be represented by the
following SPEC: � �� f�Enter� �� ��T g �, where
* is any state of the automaton G2. According to the
Proposition 3, Lm�SPEC�G is prefix closed. Denote
K � Lm�SPEC�G. Further, Xbad � Xpbad since
we can get to the state Enterof the automata G1 only
by controllable event stay, so K is controllable by the
Proposition 5. We also note that K is MA controllable
since the only vector event that takes us out of K is
�stay� stay� stay�T defined at the state
�Get� Idle� ��T .

Enter F.S.

Pay Get

Ref. Exit

Idle Act.1
Ref.1

Act.2

Ref.2Act.3
Ref.3

3 2 1 0

full stock2

full stock1

incompleteincomplete incomplete

stay

complete2complete1 complete3

refill

incomplete

incom
plete

incomplete

complete

complete

complete

try again

tray again

refuse
WAITG2

complete

incom
plete

refuse

activate

try
again

out

out

stay

stay

full stock

stay

activate

activate

G1 (customer)

G2 (counter)

G3 (shelf)

refuse

refuse

Fig.3: Automata for the MA product “Shop”

Now, the MA supervisor for the given specification
K exists by Theorem 3.1. and can be constructed by
disabling the the component stay at the state
�Get� Idle� ��T . Naturally, we assume that we remove
an item from the shelf if and only if the procedure
of payment is completed successfully, i.e. we enable
the component completek, k � �� �� �, only at the
vector states �Pay� Act�i� J �

T , where i � �� �� �,
J � �� �� � and also, we try to put an additional items
to the shelf only if there is a demand, so we enable the
component full stockk, k � �� � only at the vector
states �Enter� Idle� J �T , J � �� �� �. Note that the
enabling of the event full stockk does not guarantee
the return to the state 3 of the automatonG�, since the
vector event �full stock� full stock� incomplete�T

is defined at the vector state �Enter� Idle� J �T , J �
�� �, but this does not contradict our specification.
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