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Abstract. We present a class of efficient direct methods for solving nonsmooth dy-
namic optimization problems where the dynamics are governed by controlled differ-
ential inclusions. Our methods are based on pseudospectral approximations of the
differential constraints that are assumed to be given in the form of controlled dif-
ferential inclusions including the usual vector field and differential-algebraic forms.
Discontinuities in states, controls, cost functional, dynamic constraints and various
other mappings associated with the generalized Bolza problem are allowed by the
concept of pseudospectral knots which we introduce in this paper. The computational
optimal control problem is reduced to a structured sparse nonlinear programming
problem. A simple but illustrative moon-landing problem demonstrates our method.
Copyright c© 2002 IFAC
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1. INTRODUCTION

In this paper we introduce new methods for solving a
broad class of nonsmooth optimal control problems de-
fined over a finite time interval that may be fixed or
free. We use the term nonsmooth in the sense of Clarke
(Clarke, 1990) “... to refer to certain situations in which
the smoothness (differentiability) of the data is not nec-
essarily postulated.” Although nonsmooth analysis ap-
plies to “severely” pathological problems, in the design
of numerical methods there are some fundamental limi-
tations. For example, Clarke’s nonsmooth constructs al-
low functions to be extended-valued including functions
defined over the extended real line, R ∪ {∞}. However,
numerical methods are fundamentally limited to finite
variables. Hence our methods (as any and all numeri-
cal methods) apply to the subset of problems that are
numerically realizable. In these problems all functions
are piecewise smooth with locally nonsmooth behavior.
Further, the number of locations of the nonsmoothness
(e.g the number of discontinuities) are assumed to be
finite. In addition to these nonsmooth characteristics,
we pose a problem formulation that allows for implicit
constraints given in the form of “pre-defined” segments.
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Such problem formulations frequently arise in the mis-
sion design of interplanetary spacecraft trajectories.

The basic idea behind the solution method is to ap-
proximate this problem by pseudospectral techniques to
a mathematical programming problem and then solve it
numerically. Pseudospectral methods have been used ex-
tensively in solving problems in fluid dynamics (Canuto
et al., 1988; Gottlieb et al., 1984). Their applications to
solving smooth optimal control problems is quite new
(Elnagar et al., 1995; Fahroo and Ross, 2001b). Pseu-
dospectral approximations are based on expanding the
underlying functions in terms of interpolating polynomi-
als which interpolate these functions at some specially
chosen nodes. These nodes are zeros of orthogonal poly-
nomials (or their derivatives) such as Legendre polyno-
mials (Legendre-Gauss points) or Chebyshev polynomi-
als (Chebyshev points). What distinguishes these meth-
ods are the choice of these nodes, subsequently the defi-
nition of the Lagrange interpolating polynomials. These
methods are quite efficient and more accurate than the
traditional collocation methods (Betts, 1998) in solving
smooth optimal control problems, but their use in solv-
ing nonsmooth problems can cause major difficulties.
For example, even point constraints in smooth problem
formulations cannot be handled by the “smooth” pseu-
dospectral method because the location of the point may
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not be at the pre-allocated Gauss node. Adding more
nodes for mesh refinements could lead to inefficiencies
and ill-conditioning of the discretized problem. Further,
some practical problems contain empirical models based
on table-lookups which are often nonsmooth data. Also,
jump discontinuities in states (such as those encountered
in the trajectory optimization of multi-stage launch ve-
hicles) cannot be handled by these methods. Even for
problems with smooth data, the solution may be nons-
mooth (Clarke, 1990). In this case, pseudospectral meth-
ods exhibit the well-known Gibbs phenomenon (Forn-
berg, 1998) resulting from the approximation of a nons-
mooth function by a finite number of smooth functions.
These difficulties are fundamentally due to the use of
global orthogonal polynomials and nodal points which
have a predetermined distribution. This distribution of
nodal points yields optimal interpolation, but offers no
choice in the selection of the points.

In this paper, we overcome all of the numerical diffi-
culties mentioned above by introducing Pseudospectral
Knotting Methods. We introduce the concepts of hard
and soft knots for a method based on the Legendre
pseudospectral method, but it is readily applicable for
other pseudospectral methods as well. In between these
knots, the problem is discretized at the Legendre-Gauss-
Lobatto (LGL) nodes. The discretization of the dynamic
constraints is achieved by a differentiation operator that
naturally allows for one-sided stencils at the knots while
the integral associated with the cost function is approx-
imated by a Gauss quadrature. Information across the
knots are passed in the form of event conditions.

2. A PROTOTYPE NONSMOOTH PROBLEM

We define a discrete event or simply an event, in terms
of multifunctions defined over discrete points in phase
space. In a numerical setting, these multifunctions are
given in terms of inequalities and equalities at discrete
points. Thus, in this context, the definition of events
subsumes the notion of boundary conditions. For sim-
plicity in presentation, a prototype problem is defined
in terms of one interior event (i.e. one non-boundary
point). It will be apparent later that our method easily
extends to more than one interior event. The single in-
terior point in our presentation defines two segments or
subarcs: the first one stretching from τ0 to τe and the
second from τe to τf , where τe is the event point. The
three events (one interior and two boundary points) can
be defined succinctly in terms of event conditions

el ≤ e
(
x0,x−

e ,x+
e ,xf ; τ0, τe, τf

) ≤ eu (2.1)

where we use the notation x0 = x(τ0),xf = x(τf ), and

x−
e = lim

ε↑0
x(τe + ε), x+

e = lim
ε↓0

x(τe + ε)

and e : R
Nx × R

Nx × R
Nx × R

Nx × R × R × R → R
Ne

where Nx is the dimension of the state vector, and Ne is
the dimension of the event vector which is continuously
differentiable with respect to its variables. Note that this
last condition on e does not imply continuous state his-
tories. Thus, the problem is defined as follows: Deter-
mine the trajectory-control pair, [τ0, τf ] 	 τ 
→ {x(·) ∈
R

Nx ,u(·) ∈ R
Nu}, (where Nu is the dimension of the

control vector) and the optimal event time τe ∈ (τ0, τf )
that minimize the generalized Bolza cost functional,

J [x(·),u(·), τ0, τe, τf ] = E(x0,x−
e ,x+

e ,xf ; τ0, τe, τf )

+
∫ τf

τ0

F (x(τ),u(τ), τ)dτ

(2.2)

subject to differential constraints given in terms of con-
trolled differential inclusions

fl ≤ f(ẋ(τ),x(τ),u(τ), τ) ≤ fu (2.3)

event conditions,

el ≤ e
(
x0,x−

e ,x+
e ,xf ; τ0, τe, τf

) ≤ eu (2.4)

and mixed state-control path constraints,

gl ≤ g(x(τ),u(τ), τ) ≤ gu (2.5)

Note that even if g(·) is smooth it automatically forces
nonsmooth trajectories (Vinter, 2000). It is apparent
from our formulation that we have replaced the no-
tion of multifunctions used in nonsmooth analysis by
relations: a fundamental necessity for any numerical ap-
proach based on using real numbers. In any case, in all
the relations above, an equality constraint may be ob-
tained by simply setting the lower bound equal to the
upper bound. The event time τe may be fixed or free
and is used to demarcate various types of possible non-
smoothness in the trajectory τ 
→ x(τ) and the maps
F (·), f(·), and g(·) which are defined as E : R

Nx ×R
Nx ×

R
Nx×R

Nx×R×R×R → R, F : R
Nx×R

Nu×R → R, f :
R

Nx×R
Nx×R

Nu×R → R
Nx , g : R

Nx×R
Nu×R → R

Ng

where Ng is the dimension of the path constraint vector.
These functions may be nonsmooth at the event time τe

but are continuously differentiable in the open intervals
(τ0, τe), (τe, τf ). The controls are allowed to be piece-
wise continuous with discontinuities of the first kind at
points other than τe. At τe, one or more controls maybe
a Dirac delta function that causes a jump in the state
variables. We use superscript 1 to denote the functions
in the first interval, and superscript 2 for functions on
the second interval. Thus, we have

F (·) =
{

F 1(x(τ),u(τ), τ) τ ∈ [τ0, τe]
F 2(x(τ),u(τ), τ) τ ∈ [τe, τf ]

(2.6)



f(·) =
{

f1(ẋ(τ),x(τ),u(τ), τ) τ ∈ [τ0, τe]
f2(ẋ(τ),x(τ),u(τ), τ) τ ∈ [τe, τf ]

(2.7)

g(·) =
{

g1(x(τ),u(τ), τ) τ ∈ [τ0, τe]
g2(x(τ),u(τ), τ) τ ∈ [τe, τf ]

(2.8)

From these discussions, it is apparent that the proto-
type problem easily extends to more than one interior
event. It is worth noting that various scenarios can hap-
pen both physically and in terms of modeling across an
event. For example, over segment 1, the dynamics of the
problem may be given in terms of a differential inclusion,

f1
l ≤ f1(ẋ(τ),x(τ), τ) ≤ f1

u (2.9)

while in segment 2, it may be defined in terms of a dif-
ferential algebraic equation,

f2(ẋ(τ),x(τ),u(τ), τ) = 0 (2.10)

(i.e. f2
l = f2

u = 0.)

3. PSEUDOSPECTRAL KNOTTING METHODS

To directly solve the Bolza problem posed in the pre-
vious section, two basic discretizations are needed: one
for the integral associated with the cost function and
another for the dynamic constraints. In the traditional
collocation methods, the Bolza problem is typically con-
verted to a Mayer problem thus reducing the approxi-
mation issue to just the discretization of the dynamics.
In any case, in the spectral method, we approximate
the integral by a sum (using quadrature over the LGL
points) while the derivative is approximated by a dis-
crete differential operator.

In the pseudospectral approximation of the optimal con-
trol problem, the LGL node points lie in the computa-
tional interval [−1, 1]. The time coordinates τ1 ∈ I1 =
[τ0, τe] and τ2 ∈ I2 = [τe, τf ] are related to t ∈ [−1, 1]
by the following linear transformations:

τ1 =
(τe − τ0)t + (τe + τ0)

2

τ2 =
(τf − τe)t + (τf + τe)

2

This results in the following reformulation of Eqs. (2.2-
2.5)

J [x(·),u(·), τ0, τe, τf ] = E(x0,x−
e ,x+

e ,xf ; τ0, τe, τf )

+
τe − τ0

2

∫ 1

−1

F 1(x(t),u(t), τ(t))dt

+
τf − τe

2

∫ 1

−1

F 2(x(t),u(t), τ(t))dt

(3.1)

f1
l ≤ f1((

2
τe − τ0

)ẋ(t),x(t),u(t), τ(t)) ≤ f1
u

f2
l ≤ f2((

2
τf − τe

)ẋ(t),x(t),u(t), τ(t)) ≤ f2
u (3.2)

el ≤ e
(
x0,x(τ−

e ),x(τ+
e ),xf , τ0, τe, τf

) ≤ eu (3.3)

g1
l ≤ g1(u(t),x(t), τ(t)) ≤ g1

u

g2
l ≤ g2(u(t),x(t), τ(t)) ≤ g2

u (3.4)

Strictly speaking, we must use different symbols for all
the mappings due to the transformation of the domain.
However, we abuse notation here and retain these sym-
bols for the purpose of brevity. Thus, in this context,
one must view x(t) in the first segment, for example, as

x(τ(t)) = x
(

(τe − τ0)t + (τe + τ0)
2

)

for τ ∈ I1.

3.1 Problem Discretization

In the Legendre pseudospectral method, the LGL node
points are closely related to the Legendre polynomials
which are orthogonal over the interval [−1, 1] with re-
spect to a unit weight function. Let LN (t) be the Legen-
dre polynomial of degree N on the interval [−1, 1]. The
LGL points tl, l = 0, . . . , N are given by

t0 = −1, tN = 1

and for 1 ≤ l ≤ N −1, tl are the zeros of L̇N , the deriva-
tive of the Legendre polynomial, LN . The method may
now be elaborated as follows: Let the integers N1 + 1
and N2 + 1 denote the number of LGL points on these
subintervals. The approximate solutions on these inter-
vals I1 and I2 are denoted by xi

N for states and ui
N for

controls, i = 1, 2

x(τ) ≈ (x1
N (τ),x2

N (τ))

u(τ) ≈ (u1
N (τ),u2

N (τ))

where the subscript N is used instead of N i when it
is clear form the context whether it is N1 or N2. The



approximate states and controls are assumed to be a lin-
ear combination of Lagrange interpolating polynomials,
φl(t)

x1
N (τ1) =

N1∑
l=0

x1(τ1
l )φl(t), x2

N (τ2) =
N2∑
l=0

x2(τ2
l )φl(t)

u1
N (τ1) =

N1∑
l=0

u1(τ1
l )φl(t), u2

N (τ2) =
N2∑
l=0

u2(τ2
l )φl(t)

where t is in the computational domain [−1, 1] and tl
for l = 0, . . . , N i, i = 1, 2 are the LGL points. The node
points in I1 and I2 are denoted by τ1

l and τ2
l , respec-

tively. The Lagrange interpolating polynomials which
interpolate the functions at the LGL points are for l =
0, 1, ..., N i, i = 1, 2

φl(t) =
1

N i(N i + 1)LNi(tl)
(t2 − 1)L̇Ni(t)

t − tl
(3.5)

To carryout the discretization of the problem, we impose
the condition that the approximations above satisfy the
differential inclusions at the LGL node points. To ex-
press the derivative ẋi

N (t) in terms of xi
N (t) at the node

points tk, we differentiate the approximate solutions and
evaluate the result at tk to obtain a matrix multiplica-
tion of the following form for i = 1, 2:

ẋi
N (tk) =

Ni∑
l=0

xi(tl)φ̇l(tk) =
Ni∑
l=0

Dklxi(tl) (3.6)

where Dkl = φ̇l(tk) are entries of the (N i +1)× (N i +1)
differentiation matrix D

D := [Dkl] :=




LNi(tk)
LNi(tl)

.
1

tk − tl
k �= l

−N i(N i + 1)
4

k = l = 0

N i(N i + 1)
4

k = l = N i

0 otherwise

(3.7)

In terms of the following coefficients

X ≡ (X1,X2) = (x1(τ1
0 ),x1(τ1

1 ), . . . ,x1(τ1
N1),

x2(τ2
0 ),x2(τ2

1 ), . . . ,x2(τ2
N2))

U ≡ (U1,U2) = (u1(τ0),u1(τ1
1 ), . . . ,u1(τ1

N1),

u2(τ2
0 ),u2(τ2

1 ), . . . ,u2(τ2
N2))

the discretization of the dynamic constraints can be car-
ried out in the following way:

f1
l ≤ f1((

2
τe − τ0

)ẋ1,k,x1,k,u1,k, τ1
k ) ≤ f1

u

for k = 0, . . . , N1

f2
l ≤ f2((

2
τf − τe

)ẋ2,k,x2,k,u2,k, τ2
k ) ≤ f2

u

for k = 0, . . . , N2 (3.8)

where the simplified notation xi,k = xi(τ i
k),ui,k = ui(τ i

k)
is used.

Next, using the Gauss-Lobatto integration rule (quadra-
ture) the Bolza cost function in (3.1) is discretized and
the integrals are approximated by a finite sum.

JN (X,U, τ0, τf ) = E(x1,0,x1,N1 ,x2,0,x2,N2 ; τ0, τe, τf )

+
τe − τ0

2

N1∑
k=0

F 1(x1,k,u1,k, tk)w1
k

+
τf − τe

2

N2∑
k=0

F 2(x2,k,u2,k, tk)w2
k

(3.9)

In the above wi
k are the weights given by

wi
k :=

2
N i(N i + 1)

1
[LNi(tk)]2

i = 1, 2, k = 0, 1, . . . , N

(3.10)
and x1,N1 = x−

e ,x2,0 = x+
e . The event and the path

constraints are also discretized as follows:

el ≤ e
(
x1,0,x1,N1 ,x2,0,x2,N2 ; τ0, τe, τf

) ≤ eu (3.11)

g1
l ≤ g1(x1,k,u1,k, τ1

k ) ≤ g1
u, k = 0, . . . , N1 (3.12)

g2
l ≤ g2(x2,k,u2,k, τ2

k ) ≤ g2
u, k = 0, . . . , N2 (3.13)

The optimal control problem is thus approximated to
the NLP of finding coefficients X = (X1,X2),U =
(U1,U2) and possibly the event times τ0, τe, τf that
minimize the cost function (3.9) subject to the con-
straints Eq. (3.8) and Eqs. (3.11)-(3.13).

3.2 Knots and Nodes

At this point, it is necessary to clarify the terminology
of hard and soft knots which are integral to the above
formulation and also delineate the idea of the event con-
straints more clearly. First note that τ1

N1 = τ2
0 = τe. We

use the word knots to denote such points. The “knotting
condition” given by Eq. (3.11) transfers information at
the knots across the two segments 1 and 2. We call such
nodes hard knots and they are intrinsic to the problem
formulation. For example, the dropping of a stage (i.e.



mass discontinuity) in a two-stage launch problem de-
fines a hard knot. Suppose now that the problem did
not have the interior event. We can hence define a “false
event” of state continuity at an arbitrary point τe,

x−
e ≡ x+

e

leading to a linear knotting condition

x1,N1 − x2,0 = 0 (3.14)

We call such nodes, soft knots. These knots can be used
to enhance pseudospectral methods in various ways. In
the present context, they are used to capture nonsmooth
behavior like switches in the control. We use the terms
fixed (hard/soft) knot if τe is fixed and free (hard/soft)
knot if τe is free. Clearly, fixed/free hard knots are based
on problem formulation and fixed/free soft knots are
“designer knots”.

The pseudospectral knotting method is implemented in
a reusable software package called DIDO (Ross and Fahroo,
2001). In the following section, we discuss the applica-
tion of soft knots for capturing nonsmoothness in an
example problem.

4. A NUMERICAL EXAMPLE

The Moon-Landing problem is a very simple, yet illus-
trative problem (Meditch, 1964). The problem is to min-
imize fuel during the vertical descent of a lander. It
can be formulated as “smooth” optimal control prob-
lem. However, a hodograph transformation allows the
elimination of the control variable while reposing the
dynamic constraints as a differential inclusion (Clarke,
1990). We use the differential inclusion formulation to
illustrate the ability of our method in solving such prob-
lems (Fahroo and Ross, 2001a).

The problem is a time-free problem of maximizing the
final mass or minimizing

J = −m(τf ) (4.1)

subject to the dynamic constraints

dh

dτ
− v = 0, (4.2)

0 ≤ m
dv

dτ
+ mg ≤ Tmax, (4.3)

−Tmax

Ispg
≤ dm

dτ
≤ 0 (4.4)

where the state variables h, v and m are altitude, speed
and mass, respectively. The constant parameters in the
problem are g, the gravity of moon (or any planet with-
out an atmosphere), Isp, the specific impulse of the pro-
pellent and Tmax > 0 the maximum value of the thrust,
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Figure 1: State and Control Histories With Smooth
Method

T . The hard knots for this problem are given by the
boundary conditions. The initial conditions were arbi-
trarily chosen to be

h(0) = 1.0, v(0) = −0.05, m(0) = 1.0. (4.5)

while the final conditions are given by the soft landing
requirement

h(τf ) = 0, v(τf ) = 0. (4.6)

and a physically realizable trajectory,

m(τf ) > 0 (4.7)

The last equation is numerically imposed as m(τf ) ≥ ε
where ε is the machine precision. Thus, Eqs.(4.5)-(4.7)
are the event constraints. The constant parameters for
this problem were arbitrarily chosen as

Tmax

m0g
= 0.5,

Ispg

v0
= 1

The graphs of state and control variables obtained by
implementing the smooth pseudospectral method for 32
LGL points is shown in Figure 1. The control, T =
−ṁIspg, rapidly changes around t = 0.5 suggesting the
possibility of a switch. When one free soft knot is intro-
duced, the nonsmooth characteristics are readily appar-
ent as seen in Figure 2. The number of nodes is still 32;
however, they are now split to 8 nodes on the first inter-
val while the second interval contains 24 points. It is ap-
parent that the smooth method smears the discontinu-
ity in the thrust – an artifact of the Gibbs phenomenon,
while the nonsmooth (knotting) method works well in
capturing the nondifferentiabilities in the state and con-
trol variables.
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Figure 2: State and Control Histories With Soft Knots

It is worth noting that m and v are nondifferentiable at
precisely the switch point which is the soft knot. Further,
since −ṁ = T/(Ispg), it is apparent that by regarding
0 ≤ T ≤ Tmax, we must interpret −ṁ at the switch
point as the generalized derivative, −∂tm (Vinter, 1990).

5. CONCLUSIONS

Knotting methods based on a Legendre pseudospectral
method for direct trajectory optimization is proposed.
Its extension to other spectral methods, such as those
based on Chebyshev polynomials, is quite straightfor-
ward although the Legendre method offers the most nat-
ural choice for the discretization of a generalized Bolza
optimal control problem. This method offers great flex-
ibility in solving nonsmooth optimal control problems.
In addition, our proposed method can efficiently han-
dle a vast number of complexities arising in real-world
optimal control problems such as rapid changes in dy-
namics, state-dependent control constraints and event
conditions. A nonlinear model-predictive controller ap-
pears to be within reach by way of real-time optimiza-
tion. However, further theoretical analysis and numeri-
cal experimentations are necessary to fully exploit this
approach.
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