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Abstract: In this paper, we consider nonlinear systems subject to unknown constant dis-
turbance inputs. We wish to design state feedback and observer-based output feedback
controllers which ensure that the system output asymptotically tracks a specified constant
reference signal and all states are bounded. Our results establish design procedures of state
feedback and observer-based PI controllers for a class of nonlinear systems with globally
Lipschitz nonlinearities.

1. INTRODUCTION

Synthesizing feedback controllers to achieve asymp-
totic tracking of prescribed reference outputs while
rejecting disturbances is a fundamental problem in
control. The theory of output regulation for multivari-
able, linear, time-invariant (LTI) systems was studied
extensively by Davison (Davison 1976).

Desoer and Lin (Desoer and Lin 1985) showed that,
if a nonlinear plant is exponentially stable about a
unique equilibrium point for each constant control
input and has a strictly increasing steady state input-
output map, then a PI controller with sufficiently small
gain matrices achieves asymptotic tracking of refer-
ence signals tending to constant vectors while reject-
ing disturbances tending to constant vectors.

The review article written by Byrnes and Isidori
(Byrnes and Isidori 1998) outlines some relevant re-
sults obtained in output tracking. They considered
the problem setup where the disturbance inputs and
desired outputs to be tracked range over all possible
trajectories of a given LTI system. Necessary and suf-
ficient conditions were given for LTI systems and an
extension of the result to nonlinear systems was also
described.

Schmitendorf and Barmish (Schmitendorf and Barmish
1986) designed controllers for uncertain LTI systems
with constant disturbance inputs. They assumed that

the system satisfies “matching conditions” and the
uncertain parameters were in known compact sets.
Their controller involves linear state feedback and the
integral of the tracking error. This controller achieves
asymptotic stability of the closed loop system and
asymptotic tracking of any desired constant output.
Their technique can be viewed as a quadratic stabi-
lization approach for uncertain LTI systems satisfying
“matching conditions”.

Benson and Schmitendorf (Benson and Schmitendorf
1997) considered a robust tracking problem for a more
general class of uncertain LTI systems. They designed
state feedback controllers with an augmented state
approach, as in (Schmitendorf and Barmish 1986), by
solving a robust stabilization problem and achieved
asymptotic tracking with zero steady state error. Then
they also designed observer based output feedback
controllers by solving a robustH∞ problem. In this
case the steady state tracking error is shown to be
bounded by a prescribed value for step reference in-
puts.

In this paper, a constant output tracking problem is
considered in the presence of unknown constant dis-
turbances for nonlinear systems with globally Lips-
chitz nonlinearities. We first consider state feedback
PI controllers which has a piece depending linearly
on the state and another piece depending on the in-
tegral of the tracking error. Then we consider observer
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based PI controllers where the estimate of state and
the integral of the estimate of the tracking error is
used. Therefore a nonlinear observer with a model of
the nonlinearity in the system is used to estimate the
states of the system and the exogenous input, which
consists of the disturbance and reference signals. Ar-
cak and Kokotovic (Arcak and Kokotovic 2001) de-
signed nonlinear observers to stabilize systems with
slope-restricted nonlinearities. Their design achieved
a controller-observer separation, where each compo-
nent can be designed independently.

Our design procedures achieve that the tracking error
exponentially decays to zero and the states of the
system and the observer remain bounded for the class
of systems considered. In the case of observer based
design, a controller-observer separation is achieved
and each part of the design involves solution of an
LMI (linear matrix inequality) (Boydet al. 1994),
(Balakrishnan and Kashyap 1999).

2. A CLASS OF NONLINEAR SYSTEMS

In this paper, we consider nonlinear systems of the
following form:

ẋ= Ax+Bp∆(q)+Buu+Bww

q=Cqx+Dquu+Dqww

y=Cyx+Dyuu+Dyww

z=Czx+Dzuu+Dzww (1)

where ∆ is a known globally Lipschitz function (a
slope-restricted nonlinearity in the scalar case) satis-
fying

k∆(q1)�∆(q2)k � σkq1�q2k for all q1; q2(2)

and for some scalarσ > 0. The vectorx(t) 2 IRn

is the state vector,u(t) 2 IRmu is the control input,
y(t) 2 IRky is the measured output,z(t) 2 IRkz is
the performance output,w 2 IRmw is the exogenous
input containing constant disturbance and reference
signals andq(t) 2 IRkq . Note that the condition (2)
is automatically satisfied when∆ is a differentiable
function with a bound on the norm of the derivative.

Our objective is to design a controller which achieves
asymptotic tracking of constant reference signals by a
performance output, in the presence of constant dis-
turbances while keeping the state and control input
bounded. By definingw as a vector composed of
disturbance and reference signals and by appropriate
definition of the performance outputz, the design ob-
jective of asymptotic tracking can always be expressed
as

lim
t!∞

z(t) = 0: (3)

3. STATE FEEDBACK PI CONTROLLERS

In this section we will consider the case in which the
statex and the performance outputz can be measured,
that is, y = (x; z) . The analysis and design carried
out for this case will be a step to the more general
case where the measured output does not contain this
information.

We introduce first the following additional dynamics
to the system dynamics (1)

ẋI = z; (4)

where xI is called the integrator state. Then a pro-
posed controller is a PI (proportional integral) con-
troller given by

u= KPx+KIxI : (5)

where the gain matricesKP and KI are to be deter-
mined. The following observation will be used as a
basis for further analysis and design.

Lemma 1.Suppose that for each constant exogenous
input w, the closed loop system described by (1), (4)
and (5) has a GAS (globally asymptotically stable)
equilibrium state. Then for each constant exogenous
input w, the closed loop system has the following
properties: The statex(�) and control inputu(�) are
bounded and limt!∞ z(t) = 0.

Proof Let ξ = (x;xI ) be the state for the closed loop
system andξ� = (x�;x�I ) be the equilibrium point
corresponding tow. Then the closed loop dynamics
can be described bẏξ =G(ξ;w) , for some continuous
function G, andG(ξ�;w) = 0. Since the equilibrium
point is GAS, it follows thatξ(�), and hence,x(�) and
u(�) are bounded.

Since limt!∞ ξ(t) = ξ� , it follows that

lim
t!∞

ξ̇(t) = lim
t!∞

G(ξ(t);w) = G(ξ�;w) = 0:

SinceẋI = z, it now follows that limt!∞ z(t) = 0. 2

At this point, we can give the first main result of
this paper which establishes a procedure to design
controller gain matricesKP and KI . This procedure
involves solution of a LMI.

Theorem 2.Consider the dynamical system described
by (1). Suppose there exist matricesQ= QT > 0 and
S such that the following LMI is satisfied2

4 ÂQ+QÂT + B̂S+STB̂T + B̂pB̂
T
p QĈT

q +STDT
qu

ĈqQ+DquS �
1

σ2 I

3
5< 0(6)

where

Â=

�
A 0
Cz 0

�
; B̂=

�
Bu

Dzu

�
; B̂p =

�
Bp

0

�



andĈq = [Cq 0] . Letting�
KP KI

�
= SQ�1 ; (7)

the closed loop system (1), (4), (5), (7) has the fol-
lowing properties for each constant exogenous input
(disturbance and reference signals)w:

(a) There exists a GES (globally exponentially sta-
ble) equilibrium state

(b) Consequentlyx(�) andu(�) are bounded and

lim
t!∞

z(t) = 0:

4. OBSERVER BASED PI CONTROLLERS

In this section we consider the case where the only
available piece of information for feedback is the mea-
sured outputy. The measured output does not nec-
essarily contain the full state information or the per-
formance output as required by the PI controller (5).
Therefore, an observer is augmented to the system in
order to to estimate the state and the exogenous input
which are used in obtaining the control input. The
integrator and observer dynamics can be described by

ẋI =Czx̂+Dzuu+Dzwŵ (8)

˙̂x= Ax̂+Bp∆(q̂)+Buu+Bwŵ+L1(ŷ�y)

˙̂w= L2(ŷ�y)

(9)

where

q̂=Cqx̂+Dquu+Dqwŵ

ŷ=Cyx̂+Dyuu+Dywŵ

The matricesL1 andL2 are called the observer gain
matrices. Then the control input is

u= KPx̂+KIxI (10)

where KP and KI are controller gain matrices. The
following observation is a straight forward extension
of Lemma 1.

Lemma 3.Suppose for each constant exogenous input
w, the closed loop system described by (1), (8), (9)
and (10) has a GAS equilibrium state. Then for each
constant exogenous inputw, the closed loop system
has the following properties: The statex(�) and control
inputu(�) are bounded and limt!∞ z(t) = 0.

Our other objective is to establish a procedure to de-
sign the controller gain matricesKP , KI indepen-
dently from the observer gain matricesL1 , L2 , thus
achieving “controller-observer separation” in design.
The following theorem which is the second main

result of this paper establishes a design procedure
achieving all our objectives for the class of nonlinear
systems described in (1).

Theorem 4.Consider the dynamical system described
by (1). Suppose there exist matricesQ= QT > 0 and
S such that the LMI (6) is satisfied. Also suppose that
there exist matricesP= PT > 0 andY such that the
following LMI is satisfied"

PÃ+ ÃTP+YC̃+C̃TYT +C̃eC̃
T
e PB̃p

B̃T
pP �

1
σ2 I

#
< 0(11)

where

Ã=

�
A Bw

0 0

�
; B̃p =

�
Bp

0

�
;

C̃e = [Cq Dqw] andC̃= [Cy Dyw] .

Letting

�
KP KI

�
= SQ�1�

L1

L2

�
= P�1Y ; (12)

the closed loop system (1), (8), (9), (10), (12) has
the following properties for each constant exogenous
inputw:

(a) There exists a GES equilibrium state
(b) Consequentlyx(�) andu(�) are bounded and

lim
t!∞

z(t) = 0:

It is clear to see that the LMI’s (6) and (11) can inde-
pendently be solved. Therefore the design forKP , KI

and L1 , L2 can be done independently, which estab-
lishes a “controller-observer separation” in synthesis.

5. PROOF OF THE MAIN RESULTS

Before giving the proofs of Theorems 2 and 4, we
establish a lemma which will be used in these proofs
(see (Açıkmeşe 2001) for a proof of this lemma).
For that reason we introduce the following nonlinear
autonomous system

ẋ= f (x) ; (13)

where f : IRn ! IRn is a continuous function.

Definition 5. The dynamical system (13) is GUAS
(globally uniformly asymptotically stable) about a so-
lution, x̄(�) if

� For eachε > 0 and r > 0 there exists some
T(ε; r) > 0 such that, ifkx(t0)� x̄(t0)k < r for
any solution of (13) then,kx(t)� x̄(t)k < ε for
all t � t0+T(ε; r)



� For eachε > 0, there exists someδ(ε) such that,
if kx(t0)� x̄(t0)k< δ(ε) for any solutionx(�) of
(13) then,kx(t)� x̄(t)k< ε for all t � t0.

Lemma 6.Suppose a dynamical system described by
(13) is GUAS about a bounded solution ¯x(�) . Then
there exists an equilibrium pointx� of (13) such that
every solutionx(�) of (13) satisfies

lim
t!∞

x(t) = x� :

Now we can present a proof of Theorem 2.

Proof(Theorem 2) Let ξ=(x;xI ) andK = [KP KI ] .
Then we can describe the closed loop system (1), (4),
(5) by

ξ̇ = Âclξ+ B̂p∆(q)+ B̂ww

q= Ĉqcl ξ+Dqww; (14)

where

Âcl = Â+ B̂K ; Ĉqcl = Ĉq+DquK ; B̂w =

�
Bw
Dzw

�
(15)

andÂ, B̂, B̂p, andĈq are as defined in the statement of
the theorem.

Using the candidate quadratic Lyapunov function
V(ξ) = ξTQ�1ξ , we first show that all trajectories of
the closed loop system (14) are bounded for every
constant exogenous input. To achieve this, consider
any constant exogenous inputw, let X � Q�1 and
post and pre-multiply inequality (6) by the matrix�

P 0
0 I

�
:

Then using a Schur complement result (Boydet al.
1994), the following matrix inequality is equivalent to
the inequality (6):�

XÂcl + ÂT
clX+σ2ĈT

qcl
Ĉqcl XB̂p

B̂T
pX �I

�
< 0: (16)

Let p = ∆(q) = ∆(Ĉqcl ξ+Dqww) and pre and post-
multiply inequality (16) by the vectors(ξ; p)T and
(ξ; p) to obtain

V̇�2ξTXB̂ww+
�
σ2kĈqcl ξk

2�kpk2���εkξk2

for some scalarε > 0. It now follows from the Lips-
chitz property of∆ that

k∆(q)k�k∆(0)k� k∆(q)�∆(0)k� σkqk :

Recalling the definition ofq we obtain that,

kpk= k∆(q)k � σkĈqcl ξk+c1

where c1 = σkDqwwk+ k∆(0)k . By squaring both
sides of the inequality above, we obtain the following,

σ2kĈqcl ξk
2�kpk2��2c1σkĈqclkkξk�c2

1:

Consequently, for each constant exogenous inputw
we have

V̇ ��εkξk2+κ1kξk+κ2

for some positive scalarsκ1 andκ2. It is clear from
the right-hand side of the inequality above that there
is a large enoughr > 0 such thatkξk> r implies that
V̇ < 0. Therefore, for each constantw, every solution
of the closed loop system (14) is bounded.

Consider now two trajectoriesξ1(�) and ξ2(�) of the
closed loop system (14) corresponding to a fixed con-
stant exogenous inputw. Then, lettingδξ � ξ1� ξ2

andδp= ∆(q1)�∆(q2) , whereq1 andq2 are values
of q on trajectoriesξ1(�) and ξ2(�) , respectively, the
dynamics ofδξ can be described by

δξ̇ = Âclδξ+ B̂pδp

δq= Ĉqcl δξ
kδpk� σkδqk : (17)

ChoosingV(δξ)= δξTQ�1δξ as a candidate quadratic
Lyapunov function for (17) and using the matrix in-
equality (6) it can be easily shown that the system (17)
is GES aboutδξ = 0 (Boydet al.1994).

Choose any trajectory,̂ξ(�) , of (14). Then from the
discussion above it is clear that every other solution
converges exponentially tôξ(�) . So the system (14)
is GUAS about the bounded trajectoryξ̂(�) . Conse-
quently, using Lemma 6, we can conclude that there
exists an equilibrium stateξ� for each constantw.
Indeed, since this equilibrium point also constitutes a
trajectory of the system, it is a GES equilibrium point.
Then using Lemma 1, we can conclude the proof of
Theorem 2. 2

We now present a proof of Theorem 4.

Proof (Theorem 4) Letting ξ = (x; xI ) , e= (e1; e2) ,
e1 = x� x̂, e2 = w� ŵ and recognizing that the ex-
ogenous input is constant, we can describe the closed
loop system as follows

ξ̇ = Âclξ+ B̂p∆(q)+ B̂ww+ B̂ee

q= Ĉqcl ξ+Dqww+ D̂qee; (18)

where Âcl ; Ĉqcl ; B̂w are given in (15) andD̂qe =
[�DquKP 0],

B̂e =

�
�BuKP 0
�Czcl �Dzw

�
; Czcl =Cz+DzuKP ;

and



ė= (Ã+LC̃)e+ B̃pp̃ where p̃= ∆(q)�∆(q̂)
q̃= C̃ee and kp̃k � σkq̃k ; (19)

where

L =

�
L1

L2

�
; q̂=Cqcl x̂+DquKI xI +Dqwŵ:

Therefore the closed loop system is a cascade system
where the dynamics fore (error dynamics) has sta-
bility properties independent of the dynamics ofξ .
Clearly e� 0 is always a solution to the error dynam-
ics. Actually, whenL is designed using the LMI (11)
then the error dynamics are GES about the origin for
all solutions.

Any trajectory of the closed loop system (18)-(19) cor-
responding to zero error dynamics,(ξ(�); 0) , satisfy
the following differential equations,

ξ̇ = Âclξ+ B̂p∆(q)+ B̂ww

q= Ĉqcl ξ+Dqww: (20)

Consequently, differential equations (20) describing
zero error dynamics is the same equations as in (14)
because the controller gain matrices are obtained by
solving the same LMI (6). As a consequence of The-
orem 2, (20) has an equilibrium stateξ�. Therefore
for the overall closed loop system (18)-(19),(ξ�; 0)
is an equilibrium state. Now definingδξ � ξ� ξ� ,
the dynamics of the closed loop system about this
equilibrium state can be described by

δξ̇ = Âclδξ+ B̂pδp+ B̂ee where

δp= ∆(Ĉqcl ξ+Dqww+ D̂qee)�∆(Ĉqcl ξ
�+Dqww)

δq= Ĉqcl δξ+ D̂qee

kδpk� σkδqk ; (21)

cascaded by the system of differential equations given
in (19) for the error,e, dynamics.

Let V(δξ) = δξTXδξ whereX = Q�1 > 0 with Q is
the solution of LMI (6). Since the inequalities (6) and
(16) are equivalent, there exists some positive scalar
ε1 such that

V̇�2δξTXB̂ee+

+
�
σ2kĈqcl δξk2�kδpk2���ε1kδξk2

where

kĈqcl δξk2 =
�
kĈqcl δξk+kD̂qeek

	2
�

�2kĈqcl δξkkD̂qeek�kD̂qeek
2 :

Therefore there exist positive scalarsβ1 , β2 such that

V̇�β1kδξkkek�β2kek
2+

+
�
σ2kδqk2�kδpk2���ε1kδξk2 ;

which implies that

V̇ � β1kδξkkek+β2kek
2� ε1kδξk2 :

Also, (11) implies that there is a scalarε2 > 0 such
that forW(e) = eTPe we have

Ẇ ��ε2kek
2 :

Therefore, for any scalarγ > 0, Wγ = γeTPe satisfies
Ẇγ ��γε2kek2 . Now consider a combined Lyapunov
function for the overall closed loop system,U = V +
Wγ where γ > 0 is chosen such thatγε2 > β2 and
ε1(γε2 � β2)� β2

1=4 > 0. Then there exists a scalar
ε3 > 0 such that

U̇ ��(ε1kδξk2�β1kδξkkek+(γε2�β2)kek
2)

��ε3(kδξk2+kek2) :

Consequently the closed loop system is GES about the
equilibrium point(ξ�;0) . Therefore, simply by using
Lemma 3, we can conclude the proof of Theorem
4. 2

6. AN ILLUSTRATIVE EXAMPLE

The results presented earlier will be applied to a single
link manipulator with a flexible shaft. As shown in
Figure 1, the single link manipulator consists of the
manipulator arm which is connected to a motor via
a flexible joint. The motor supplies a control torque
to the arm via the flexible shaft. The flexible shaft
is modeled with an inertia element connected to the
manipulator arm via a torsional spring.

The equations of motion for single link manipulator
with a flexible joint are given by

I θ̈�mglsinθ+k(θ�φ) = w1

Jφ̈�k(θ�φ) = u

y =
h

θ
w2

i
andz = θ�w2 ; (22)

whereg is the gravitational acceleration constant,θ
is the angle of the arm,φ is the angle of the motor,l
is the distance from the shaft center to the center of
mass of the arm,I is the moment of inertia of the arm,
J is the moment of inertia of the motor plus shaft,k
is the rotational spring constant of the shaft,w1 is a
disturbance torque,w2 is a reference signal andu is the
control input. A state-space description of this system
can be written as

ẋ1 = x3
ẋ2 = x4
ẋ3 = (mgl=I)∆(q)+(k=I)(x2�x1)+(w1=I)
ẋ4 = (k=J)(x1�x2)+(u=J)
q = x1

y =

�
x1
w2

�
andz = x1�w2 ;

where∆(q) = sinq.



Fig. 1. Single link manipulator

The matrices describing this system can be given as,

A=

2
66664

0 0 1 0
0 0 0 1

�

k
I

k
I

0 0
k
J

k
J

0 0

3
77775 ; Bp=

2
6664

0
0
1
I
0

3
7775 ; Bu=

2
6664

0
0
0
1
J

3
7775 ;

Bw =

2
6664

0 0
0 0
1
I

0

0 0

3
7775 ; Cq =Cz=

�
1 0 0 0

�
;

Cy =

�
1 0 0 0
0 0 0 0

�
; Dyu=

�
0
0

�
; Dyw=

�
0 0
0 1

�
;

Dqw=
�

0 0
�

; Dzw=
�

0 �1
�

; Dqu=Dzu= 0:

The only nonlinearity is sinx1 term which is clearly
a globally Lipschitz nonlinearity withσ = 1.

A simulation is presented for this system wherew1 =
2 and w2 = π

6 . The results show that asymptotic
tracking is achieved, the states of the closed loop
system are bounded and the control input is also
bounded, see Figure 2.
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Fig. 2. Simulation Results
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