Copyright © 2002 IFAC

15th Triennial World Congress, Barcelona, Spain

CONSTANT OUTPUT TRACKING AND DISTURBANCE
REJECTION FOR SYSTEMS WITH LIPSCHITZ
NONLINEARITIES

A. Behget Acikmege, Martin Corless*

*School of Aeronautics and Astronautics, Purdue University,
West Lafayette, Indiana 47907, USA,
{acikmese, corle§@ecn.purdue.edu

Abstract: In this paper, we consider nonlinear systems subject to unknown constant dis-
turbance inputs. We wish to design state feedback and observer-based output feedback
controllers which ensure that the system output asymptotically tracks a specified constant
reference signal and all states are bounded. Our results establish design procedures of state
feedback and observer-based PI controllers for a class of nonlinear systems with globally
Lipschitz nonlinearities.

1. INTRODUCTION the system satisfies “matching conditions” and the

uncertain parameters were in known compact sets.

Synthesizing feedback controllers to achieve asymp-Their controller involves linear state feedback and the
totic tracking of prescribed reference outputs while integral of the tracking error. This controller achieves
rejecting disturbances is a fundamental problem in asymptotic stability of the closed loop system and
control. The theory of output regulation for multivari- asymptotic tracking of any desired constant output.
able, linear, time-invariant (LTI) systems was studied Their technique can be viewed as a quadratic stabi-
extensively by Davison (Davison 1976). lization approach for uncertain LTI systems satisfying

Desoer and Lin (Desoer and Lin 1985) showed that, matching conditions”.

if a nonlinear plant is exponentially stable about a Benson and Schmitendorf (Benson and Schmitendorf
unique equilibrium point for each constant control 1997) considered a robust tracking problem for a more
input and has a strictly increasing steady state input-general class of uncertain LTI systems. They designed
output map, then a PI controller with sufficiently small state feedback controllers with an augmented state
gain matrices achieves asymptotic tracking of refer- approach, as in (Schmitendorf and Barmish 1986), by
ence signals tending to constant vectors while reject-solving a robust stabilization problem and achieved
ing disturbances tending to constant vectors. asymptotic tracking with zero steady state error. Then
they also designed observer based output feedback
controllers by solving a robudtl., problem. In this
case the steady state tracking error is shown to be
bounded by a prescribed value for step reference in-
puts.

The review article written by Byrnes and Isidori
(Byrnes and Isidori 1998) outlines some relevant re-
sults obtained in output tracking. They considered
the problem setup where the disturbance inputs and
desired outputs to be tracked range over all possible
trajectories of a given LTI system. Necessary and suf- In this paper, a constant output tracking problem is
ficient conditions were given for LTI systems and an considered in the presence of unknown constant dis-
extension of the result to nonlinear systems was alsoturbances for nonlinear systems with globally Lips-
described. chitz nonlinearities. We first consider state feedback
Schmitendorf and Barmish (Schmitendorfand BarmishpI controllers which has a piece depen_dlng Imearl_y
on the state and another piece depending on the in-

1986) designed controllers for uncertain LTI systems tegral of the tracking error. Then we consider observer
with constant disturbance inputs. They assumed that 9 9 '



based PI controllers where the estimate of state and 3. STATE FEEDBACK PI CONTROLLERS
the integral of the estimate of the tracking error is
used. Therefore a nonlinear observer with a model of In this section we will consider the case in which the
the nonlinearity in the system is used to estimate the Statex and the performance outpatan be measured,
states of the system and the exogenous input, whichthat is, y = (x,2). The analysis and design carried
consists of the disturbance and reference signals. Ar-out for this case will be a step to the more general
cak and Kokotovic (Arcak and Kokotovic 2001) de- case where the measured output does not contain this
signed nonlinear observers to stabilize systems withinformation.
slope-restricted nonllnearltleg. Their design achieved\yj introduce first the following additional dynamics
a controller—obs_erver s_eparatlon, where each compo+ ihe system dynamics (1)
nent can be designed independently.

).(| =2, (4)

Our design procedures achieve that the tracking error

exponentl?jllyh de(t:)ays to zero_ar;)d ths (sjt?teshof Ithewhere X is called the integrator state. Then a pro-
System and t € observer remain bounde or the class,seqd controller is a Pl (proportional integral) con-
of systems considered. In the case of observer base roller given by

design, a controller-observer separation is achieved

and each part of the design involves solution of an u=Kpx+Kx . (5)
LMI (linear matrix inequality) (Boydet al. 1994),
(Balakrishnan and Kashyap 1999). where the gain matricelp and K| are to be deter-

mined. The following observation will be used as a
basis for further analysis and design.

2 A CLASS OF NONLINEAR SYSTEMS Lemma 1.Suppose that for each constant exogenous
input w, the closed loop system described by (1), (4)

In this paper, we consider nonlinear systems of the @d (5) has a GAS (globally asymptotically stable)

following form: equilibrium state. Then for each constant exogenous
input w, the closed loop system has the following
properties: The statg(-) and control inputu(-) are

X = Ax+ BpA(q) + Buu + Buw bounded and lim,« z(t) = 0.

g = CgX+ Dquu + Dgnw

y = CyXx+ Dyyu+ DywW Proof Let § = (x,x) be the state for the closed loop
2= CX+ Dyl + Doyl ) system and&* = (x*,x) be the equilibrium point

corresponding tov. Then the closed loop dynamics
where A is a known globally Lipschitz function (a ¢an be described by=G(&,w), for some continuous

slope-restricted nonlinearity in the scalar case) satis-fUnction G, andG(¢*,w) = 0. Since the equilibrium
fying point is GAS, it follows thag(-), and hencex(-) and

u(-) are bounded.
18(c) —Al)ll < ollgy —call - forall 61, 62(2)  gjnce fim_,, £ (t) = £, it follows that

and for some scalao > 0. The vectorx(t) € IR" dim &(t) = Jim G(&(t),w) = G(&",w) =0.

is the state vectory(t) € IR™ is the control input,

y(t) € IRY is the measured outpug(t) € IR is  Sincex; =z, it now follows that lim_. z(t) =0. O

the performance outputy € IR™ is the exogenous

input containing constant disturbance and referenceat this point, we can give the first main result of
signals andq(t) € IR'. Note that the condition (2)  this paper which establishes a procedure to design

is automatically satisfied wheh is a differentiable . gntroller gain matrice&p and K, . This procedure
function with a bound on the norm of the derivative. i olves solution of a LMI.

Our objective is to design a controller which achieves ) ] )
asymptotic tracking of constant reference signals by a | "eorem 2.Consider the dynamical system described
performance output, in the presence of constant dis-PY (1)- Suppose there exist matrio@s= Q" >0 and
turbances while keeping the state and control input S Such that the following LMl is satisfied

bounded. By definingw as a vector composed of A AT . B TAT . 8 AT ART 4 QT
disturbance and reference signals and by appropriate {AQ+ QA A+ BSTSB 4By Qg +5 un-| <0(6)
definition of the performance outpatthe design ob- CyQ+DquS —?| J

jective of asymptotic tracking can always be expressed

as where

lim z(t) = 0. 3) AZ[ég}’ B:{Sﬂ’ gp:ﬁﬂ



andéq = [Cq O]. Letting result of this paper establishes a design procedure
achieving all our objectives for the class of nonlinear
[Kp Ki ] =sQt, (7 systems described in (1).

the closed loop system (1), (4), (5), (7) has the fol- Theorem 4.Consider the dynamical system described
lowing properties for each constant exogenous inputby (1). Suppose there exist matric@s= Q" > 0 and
(disturbance and reference signalg) S such that the LMI (6) is satisfied. Also suppose that

Th . GES (aloball il there exist matrice® = PT > 0 andY such that the
(a) There exists a (globally exponentially sta- following LMI is satisfied

ble) equilibrium state

(b) Consequently(-) andu(:) are bounded and PA+ATP+YC+CTYT +CLI PB,
. BTp 1 | <0(11)
tIl_)rrc]oz(t) =0. p T2
where
4. OBSERVER BASED Pl CONTROLLERS A
~ By ~ Bp
A=[6 5] &= {3

In this section we consider the case where the only
available piece of information for feedback is the mea- . ~
sured outputy. The measured output does not nec- Ce = [Ca Daw] andC = [Cy Dyw].
essarily contain the full state information or the per- | etting
formance output as required by the PI controller (5).
Therefore, an observer is augmented to the system in Ko K 1=S01
order to to estimate the state and the exogenous input [Ke Ki ]=5Q

which are used in obtaining the control input. The {Ll} _ply, (12)

integrator and observer dynamics can be described by L2
X = C,R+ Dyyu+ Dol (8) the closed loop system (1), (8), (9), (10), (12) has
the following properties for each constant exogenous
inputw:
=A%+ BpA(G) + Buu+ BuW+ La(J - V) (a) There exists a GES equilibrium state
W=La(y-Y) (b) Consequently(-) andu(-) are bounded and
9) lim z(t) = 0.
t—oo
where
It is clear to see that the LMI's (6) and (11) can inde-
G = CqX+ Dquu+ Dqui¥ pendently be solved. Therefore the designier, K|
9= CyR+ Dyyl+ Dy andL;, L, can be done independently, which estab-

lishes a “controller-observer separation” in synthesis.
The matriced; andL, are called the observer gain
matrices. Then the control input is

5. PROOF OF THE MAIN RESULTS
u=KpxX+Kx (20)

Before giving the proofs of Theorems 2 and 4, we
whereKp and K, are controller gain matrices. The establish a lemma which will be used in these proofs
following observation is a straight forward extension (see (Askmeg 2001) for a proof of this lemma).

of Lemma 1. For that reason we introduce the following nonlinear
autonomous system

Lemma 3.Suppose for each constant exogenous input _

w, the closed loop system described by (1), (8), (9) x=f(x), (13)

and (10) has a GAS equilibrium state. Then for each
constant exogenous inpwt, the closed loop system wheref : IR" — IR" is a continuous function.
has the following properties: The state) and control

inputu(-) are bounded and lim. z(t) =0. Definition 5. The dynamical system (13) is GUAS
(globally uniformly asymptotically stable) about a so-
S : lution, x(-) if
Our other objective is to establish a procedure to de-
sign the controller gain matriceKp, K, indepen- e For eache > 0 andr > 0 there exists some
dently from the observer gain matricés, Lo, thus T(g,r) > 0 such that, if||x(to) — X(to)|| < r for
achieving “controller-observer separation” in design. any solution of (13) then||x(t) —x(t)|| < € for

The following theorem which is the second main allt>t+T(g,r)



e Foreache > 0, there exists somé&e) such that,
if ||[X(to) —X(to)|| < 8(¢) for any solutionx(-) of
(13) then,||x(t) — x(t)|| < € forall t > to.

Lemma 6.Suppose a dynamical system described by

(13) is GUAS about a bounded solutiod-). Then
there exists an equilibrium poimt of (13) such that
every solutiorx(-) of (13) satisfies

tImrc]ox(t) =X".

Now we can present a proof of Theorem 2.

Proof(Theorem 2) Let § = (x,x ) andK =[Kp K| ].

where ¢, = ||Dgww|| + ||A(0)||. By squaring both
sides of the inequality above, we obtain the following,

0%(|Cqq & 117 = IIPII* > —2c10]|Coy IIIEN — .-

Consequently, for each constant exogenous input
we have

V < —|[&]|? +Kal €]l + K2
for some positive scalarg; andks. It is clear from

the right-hand side of the inequality above that there
is a large enough > 0 such that||| > r implies that

V < 0. Therefore, for each constant every solution

of the closed loop system (14) is bounded.

Then we can describe the closed loop system (1), (4),Consider now two trajectorie®; () and &2(-) of the

(5) by

& = Ay + BoA(Q) + Byw
q=Cay &+ DquW, (14)

where

Ag =A+BK, Gy, =Cq+DgK, By = {[E)’“ZNW](B)

closed loop system (14) corresponding to a fixed con-
stant exogenous inpwi. Then, lettingdg = &1 — &>
andop =A(q1) —A(gz), whereq; andg are values

of q on trajectoriests1(-) and &,(-), respectively, the
dynamics ofé¢ can be described by

58 = AqBE +Bpdp
8q = C, 88

15pl| < ol|5q]| - 17

andA, B, By, andC, are as defined in the statement of ChoosingV (8¢) = 8T Q~18¢ as a candidate quadratic

the theorem.

Using the candidate quadratic Lyapunov function

V(§) = &£TQ1E, we first show that all trajectories of

Lyapunov function for (17) and using the matrix in-
equality (6) it can be easily shown that the system (17)
is GES about¢ =0 (Boydet al. 1994).

the closed loop system (14) are bounded for every Choose any trajector;i(-), of (14). Then from the
constant exogenous input. To achieve this, considerdiscussion above it is clear that every other solution

any constant exogenous input, let X = Q! and
post and pre-multiply inequality (6) by the matrix

PO
01

Then using a Schur complement result (Bastdal.
1994), the following matrix inequality is equivalent to
the inequality (6):

XAg +AGX +0?Cy Cqy XBp
[ 81X SPl<o. e

Let p = A(q) = A(Cq, & + Dgquw) and pre and post-
multiply inequality (16) by the vector¢&,p)” and
(€, p) to obtain

V — 28" XBuw+ [07)|Co |17~ [IpII7] < —ellE]?

for some scalae > 0. It now follows from the Lips-
chitz property ofA that

IA@I = A0)]| < 1a(a) = A0)[| < ollall -
Recalling the definition ofj we obtain that,

Ipll = (@) < ollCqyEll +c1

converges exponentially t§(-). So the system (14)

is GUAS about the bounded trajecto&y:). Conse-
guently, using Lemma 6, we can conclude that there
exists an equilibrium staté* for each constanw.
Indeed, since this equilibrium point also constitutes a
trajectory of the system, it is a GES equilibrium point.
Then using Lemma 1, we can conclude the proof of
Theorem 2. O

We now present a proof of Theorem 4.

Proof (Theorem 4) Letting = (x, x), e= (e1, &),

e = X—X, & = w—W and recognizing that the ex-
ogenous input is constant, we can describe the closed
loop system as follows

0= Cgy& + Dau+ Dqee,

where Ay, Gy, By are given in (15) andge =
[—DquKp 0],

2 _ _BuKP O _
Be— |: _CZC| _DZW:| 9 c:ZC| _CZ+ DZUKF’)

(18)

and



é=(A+LC)e+Byp wherep=A(q) —A(G) which implies that

G=Cee and ||fll < oalldl, (19) V < Bal|SE|lllell + Bllell” — ex]|SE 1>
where Also, (11) implies that there is a scalas > 0 such

L1 . . A that for W(e) = e' Pe we have
= y 4= quX-l- DquKiXi 4+ Dgu\W. . ,
W < —gof|€f|”

Therefore the closed loop system is a cascade systenrherefore, for any scalay > 0, W, = ye' Pe satisfies
vv_here the dynamics foe (error dynamics) has sta- W, < —ye||el|2. Now consider a combined Lyapunov
bility properties independent of the dynamics &  fynction for the overall closed loop systeld,= V +
Clearly e= 0 is always a solution to the error dynam- W, wherey > 0 is chosen such tha, > B, and

then the error dynamics are GES about the origin for ¢, - o such that

all solutions.

Any trajectory of the closed loop system (18)-(19)cor- U
responding to zero error dynamic&(+), 0), satisfy
the following differential equations,

(ea/1%? — Ba|BEl €]l + (ve2 — B) lell?)
e (/1881 + [lel[?)-

Consequently the closed loop system is GES about the
LA A A equilibrium point(&*,0). Therefore, simply by using
E_éc|E+BpA(q) +BaW Lemma 3, we can conclude the proof of Theorem
Q= Coq & + Daww. (20) 4. O

S_
S_

Consequently, differential equations (20) describing

zero error dynamics is the same equations as in (14) 6. AN ILLUSTRATIVE EXAMPLE

because the controller gain matrices are obtained by

solving the same LMI (6). As a consequence of The- The results presented earlier will be applied to a single
orem 2, (20) has an equilibrium sta&. Therefore  link manipulator with a flexible shaft. As shown in

for the overall closed loop system (18)-(19%",0) Figure 1, the single link manipulator consists of the
is an equilibrium state. Now defining¢ =& — &*, manipulator arm which is connected to a motor via
the dynamics of the closed loop system about this a flexible joint. The motor supplies a control torque
equilibrium state can be described by to the arm via the flexible shaft. The flexible shaft

is modeled with an inertia element connected to the

58 = Ayt +B 5p+Bee where manipulator arm via a torsional spring.
= p o

5p:A((§qu+ Dawi+ Dgee) _A(éqclz* + DgquW) The equa’Fionsf c_)f motiop for single link manipulator
. - with a flexible joint are given by
0q = Cq, O€ + Dgee

l|15p|| < of|&q], (21) 18— mglsinf+k(6—@) = wy
cascaded by the system of differential equations given Jo—k(6-—9) = u
in (19) for the errorge, dynamics. y = [\32] andz = 0—w,, (22)

Let V(38) = 38 X3E whereX =Q* >0 with QIS \yhereq is the gravitational acceleration constat,
the solution c_)f LMI (6). Slnce_the mequalltle_s. (6)and s the angle of the arny is the angle of the moto,
(16) are equivalent, there exists some positive scalaris the distance from the shaft center to the center of

€1 such that mass of the armi, is the moment of inertia of the arm,
J is the moment of inertia of the motor plus shaft,
V — 258 TXBee + is the rotational spring constant of the shaft, is a
211 A 2 2 2 disturbance torquey, is a reference signal ands the
o og||c—||o < —¢g1]|d i = :
+ (0711 1"~ [13pII] < —ealISE| control input. A state-space description of this system
where can be written as

X3

)((?ngl/ DA(Q) + (k/1) (%2 —x1) 4+ (wa /1)
(k/J) (X1 —x2) + (u/J)

X1

A A S 2
1Caq 8|7 = {[1Caq | + |1 Daesl| }* — u
— 2/|Cq, 38 || Dgeel] — [|Dqeel|?- Xa
Xa
q

Therefore there exist positive scaldds, B2 such that

= | X
V — Ba|8||lel| — B2lel|* + {WZ
+ [07]18q]% — [|8pl|7] < —ea|BE]1%, whereA(q) = sing.



Fig. 1. Single link manipulator

The matrices describing this system can be given as,

010 0 0
OkE()l 0 0
A=1_2200/|:Bp= } sBu=1{o0 |,
Kok b 1

00
00
By = }0 , Cq=C,=[1000],
|
00
1000 0 00
Cy_[0ooo]’Dy”_{o]’DVW_{o1]’
Dgw=[0 0], Daw=[0 —-1], Dg=Dzu=0.

The only nonlinearity is siry term which is clearly
a globally Lipschitz nonlinearity witlo = 1.

A simulation is presented for this system wherg=

2 and w2 = §. The results show that asymptotic
tracking is achieved, the states of the closed loop
system are bounded and the control input is also
bounded, see Figure 2.
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Fig. 2. Simulation Results



