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Abstract: This paper considers the use of constrained minimum crest factor multisine

signals as inputs for plant-friendly identification testing of chemical process systems.

The approach developed in this paper greatly increases their effectiveness in a process

control setting by enabling the user to simultaneously specify important frequency and

time-domain characteristics of these signals. Two problem formulations meaningful

to both linear and nonlinear identification problems are presented. State-of-the-art

computational methods are needed to solve the challenging optimization problems

associated with crest factor minimization.
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1. INTRODUCTION

The concept of “plant-friendliness” in system
identification stems from the fundamental need
for informative experiments despite practical re-
quirements to the contrary. A plant-friendly iden-
tification test will produce data leading to a suit-
able model within an acceptable time period,
while keeping the variation in both input and
output signals within user-defined constraints.

These practical considerations are often in conflict
with theoretical requirements (e.g., identifiability,
persistence of excitation, etc.) which demand long
identification tests under high signal-to-noise ra-
tios. As a result, plant-friendliness often involves
a compromise between the demands of theory
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(which are in large part “plant-hostile”) and the
plant engineer’s desire for no changes in the pro-
cess stemming from identification testing.

The main objective of this paper is to present
a novel, systematic framework for plant-friendly
identification centered on the use of constrained
multisine inputs. Multisine signals are determin-
istic, periodic signals, represented in the single
input case by the equation

u(k) = λ

ns∑

i=1

√
2αi cos(ωikT + φi), (1)

ωi = 2πi/NsT, ns ≤ Ns/2

The power spectrum in a multisine input can be
directly specified by the user through the selection
of the scaling factor λ, the Fourier coefficients αi,
the number of harmonics ns, and the signal length
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Ns. T is the sampling time. Multisine inputs are
easy to implement in a real-time setting; as de-
terministic signals, one cycle can be designed to
include all the frequency content needed for con-
sistent estimation of the plant dynamics. Under
noisy testing conditions, multiple cycles can be
implemented until the variance in the model esti-
mate is reduced to acceptable levels (Ljung, 1999).

The Crest Factor (CF ) of a signal u is the ratio
of the �∞ (or Chebyshev) norm and the �2-norm

CF (u) =
�∞(u)
�2(u)

(2)

It provides a measure of how well distributed the
signal values are over the input span. A low crest
factor indicates that most of the elements in the
input sequence are distributed near the minimum
and maximum values of the sequence. Reducing
the crest factor of an input signal can significantly
improve the signal to noise ratio of the resulting
plant output, contributing to plant-friendliness
during experimental testing.

In this paper, we present a novel design proce-
dure for multisine input signals which addresses
the requirements of process control practice and
can thus enable informative, plant-friendly identi-
fication in the process industries. The methodol-
ogy presented here effectively integrates operating
restrictions, identification-theoretic requirements,
and sophisticated optimization techniques to de-
sign minimum crest factor multisine signals satis-
fying important user-specified time and frequency
domain properties.

The optimization problem of minimizing the crest
factor of a signal under time domain constraints
represents a challenging computational task, but
is critical to the success of the proposed technique.
For one, it is always nonlinear, either in the ob-
jective function, the constraints or in both. It is
nonconvex in general from the statement of the
objective function. In addition it is nonsmooth
as a consequence of the �∞ norm in the objec-
tive function. Combined with its size in terms
of both variables and constraints, this problem
requires the use of state-of-the art optimization
techniques. Ultimately, our goal is to develop a
solution technique that is amenable to real-time
computation and is thus consistent with the needs
of the practicing engineer.

2. BACKGROUND AND PROPOSED
FRAMEWORK

Early work in the design of low crest factor mul-
tisines for system identification comes from the
work of Schroeder (1970), who derives a closed-
form formula to select the phases in (1)

φi = 2π

i∑

j=1

jαj (3)

The formula gives a reasonable result when the
user-defined spectrum is flat and wideband, but
under other conditions (bandlimited, in the pres-
ence of harmonic suppression, etc.) the results can
be very undesirable.

The deficiencies of Schroeder-phasing justify the
need for more rigorous approaches, such as those
involving optimization. A significant contribution
in this regard is the work by Guillaume et al.
(1991). This method seeks to approximate the
minimization of the Chebyshev norm by sequen-
tially minimizing the �p norm for p = 4, 8, 16, . . ..
It is based on Pólya’s algorithm which states that

lim
p→∞

pp = p∞ (4)

where p = [φ2 φ3 . . . φns ] is the real-valued phase
vector for (1) and p∞ is the minimax solution.
Note that the �2-norm remains invariant with
respect to the phases φi. A discrete-time represen-
tation of the �p norm is incorporated into a Gauss-
Newton optimization algorithm with Levenberg-
Marquardt Hessian approximation. This is accom-
plished by defining a cost function

min
p

1
Ns

eT e, (5)

where (6)

e = [us(1)p/2 us(2)p/2 . . . us(Ns)p/2]T

p = [φ2 φ3 . . . φns ]
T

and p is an even number. The elements of the
Jacobian J can be represented by

Jki = −(p/2)us(k)(p/2−1)
√

(2αi) sin(ωikT + φi),

which form part of the iterative phase update
equation

p(i) = p(i−1) − [J(i−1)T (7)

J(i−1) + Λ(i−1)]−1J(i−1)T e(i−1)

An FFT-based algorithm is used to compute
J(i−1)T J(i−1) and J(i−1)T ei−1. The sequential op-
timization process in Guillaume et al. is initialized
with the phases produced by the Schroeder-phase
algorithm. Although a global solution cannot be
guaranteed with this approach, most local minima
are avoided and Guillaume et al. report that it
performs better than other crest factor minimiza-
tion techniques.

While the Guillaume et al. algorithm is useful,
its applicability to process control problems has
some important limitations. The user must accept
whatever time-domain realization is produced by



the algorithm, and is not able to specify time-
domain constraints which may be demanded by
plant-friendliness considerations. Hererin lies the
main motivation for the constrained problem for-
mulations developed in this paper.

A solution approach to the constrained minimum
crest factor multisine problem can take a variety
of forms. An initial approach that we propose is
similar to the one used by Guillaume and co-
workers and is based on Pólya’s algorithm. First,
the problem is formulated in the modeling lan-
guage AMPL. This has obvious advantages over
a formulation in any high-level programming lan-
guage including the possibility to utilize for its
solution a number of available solvers which them-
selves are written in various languages. However,
a more important benefit results from the fact
that AMPL has built-in automatic derivatives and
that means exact and efficient differentiation up
to second derivatives.

Next, we minimize a properly scaled (to avoid un-
derflow or overflow) p-norm instead of the Cheby-
shev norm. Different from Guillaume et al. (1991),
we use an elaborate technique to increase p. Es-
sentially, through a more gradual increase of p,
a long sequence of optimization problems is gen-
erated. While in principle an active-set method
of sequential quadratic programming type (gen-
erally still considered state-of-the art for general
nonlinear programming) could be used, we have
turned to interior point methods. The reason is
that these methods are more effective for large
problem sizes, particularly those that would arise
in multivariable cases.

A series of novel interior point approaches have
been recently proposed and partly been made
available by their authors. A very successful class
of methods is that of primal-dual methods. This
is certainly true for linear and quadratic program-
ming. For general nonlinear programming it has
been shown in (Waechter and L.T. Biegler, 2000)
that typical, line search based interior point meth-
ods may fail to converge to feasible points even for
well-posed problems. One of the few methods that
does not suffer from this is the trust region based
method developed by Nocedal and co-workers
which very recently was made available for re-
search purposes (Byrd et al., 1999). This method
possesses the robustness and stability needed for
our purposes and at the same time is very efficient
for smaller and larger problems. It has been used
to generate all the results presented in this paper.

In the ensuing subsections, we present two prac-
tical problem formulations that can be meaning-
fully addressed via a constrained optimization so-
lution. Numerical examples are presented to jus-
tify the usefulness of such an approach.

2.1 Problem 1: Minimizing crest factor with respect

to multisine phases only, subject to move size and

output variability constraints

Given a multisine signal of the form in Equa-
tion (1) and a power spectrum (defined by the
Fourier coefficients λ

√
2αi for ns spectral lines),

this problem calls for searching for the phases that
minimize the crest factor

min
[φ2 φ3 ... φns ]

CF(u) (8)

subject to maximum move size constraints on the
input,

|∆u(k)| ≤ ∆umax ∀ k (9)

and possibly high/low limits on u(k),

umin ≤ u(k) ≤ umax ∀ k (10)

As an example we consider a first-order with
deadtime plant model (with input u and output
y) with parameters

y(s)
u(s)

= p(s) =
Ke−θs

τs + 1
=

e−3s

3s + 1
(11)

The system is sampled at the rate of T = 1
minute. Figure 1 shows a control-relevant power
spectrum obtained from the work of Rivera et
al. (1992) for the plant described by (11) using
a dominant time constant estimate τdom = 4.5
min and a desired closed-loop speed of response
τcl = 2.25 min. Figure 2 and Tables 1 and 2
summarize the results of the Schroeder-phased de-
sign. The multisine signal with phases chosen per
Equation (3) produces a time-domain realization
with rather high crest factor (2.7966) and a large
maximum move size (1.6214). Examining Figure 2
one notes that the signal is unevenly distributed
and exhibits rather wide overall input and output
spans.

Figure 2 and Tables 1 and 2 show the result
of the Guillaume et al. algorithm for the de-
sign of a multisine input with control-relevant
power spectrum according to Figure 1. This
“Guillaume-phased” input has significantly lower
input crest factor (CF(u) = 1.2173) and max-
imum move size (max(∆u)=1.1013) than its
Schroeder-phased counterpart. This signal has
“plant-friendly” properties in that the peaks of
the signal are significantly compressed, resulting
in a signal which is evenly distributed over the
input range. The benefits are observed in reduced
spans for both the input and output signals.

We apply the proposed approach for the case
in which the maximum input move size is con-
strained to ∆umax = 0.52. This constraint rep-
resents a significant reduction (less than half)



the maximum move size experienced from the
Guillame-phased signal. The approach is applied
and the signals are compared in Figure 2 and Ta-
bles 1 and 2. While the constrained signal experi-
ences an unavoidable increase in crest factor (from
1.2173 to 1.5388), the overall input span does not
change dramatically and the net increase on the
output span is relatively small. Even under con-
strained conditions, the signal displays substan-
tially better characteristics than the Schroeder-
phased input.

It is also possible to consider a scenario in which
the crest factor for the output signal is minimized.

min
[φ2 φ3 ... φns ]

CF(y) (12)

This scenario assumes that some a priori knowl-
edge of the model (in either parametric or non-
parametric form) is available to the optimizer to
generate predicted outputs. One possible source
for such a model is the result of parameter es-
timation applied to data collected from previous
cycles of the multisine input. In addition to the
constraints listed in Equations (9) and (10), the
problem is also subject to output variability con-
straints

|∆y(k)| ≤ ∆ymax ∀ k (13)

and high/low limits on y(k)

ymin ≤ y(k) ≤ ymax ∀ k (14)

The results for the first-order with deadtime
model parameters are shown in Tables 1 and 2
and Figure 3. First, we consider the results of
minimizing the output crest factor in the absence
of constraints. By minimizing the output crest
factor, the overall span in the output is kept lower
than that of any of the other input signal designs
considered (Table 2). While this is highly desirable
from the standpoint of reducing variation in the
output signal, this is accomplished at the expense
of large move sizes (and crest factor) in the input
signal u. The constrained formulation, however,
offers the user the opportunity to enforce limits
on both input and output signals stemming from
plant-friendly considerations. Both input move
size and output variability constraints can be en-
forced; in our example, we set ∆umax = 0.6 and
∆ymax = 0.45. Results are shown in Figure 3 and
Tables 1 and 2. The constrained solution achieves
the desired tradeoffs: the maximum move size
in the input signal is lowered substantially as a
result of constraints, while the output variability
and span are kept within acceptable levels. This
flexibility is of significant benefit to the user.

2.2 Problem 2: Minimizing crest factor with respect

to phases and Fourier coefficients subject to move

size and output variability constraints

A more general multisine input structure that
benefits from a constrained problem formulation
is the signal according to the equation:

u(k) = λ

ns∑

i=1

√
2αi cos(ωikT + φi) (15)

+
na+ns∑

i=ns+1

âi cos(ωikT + φa
i )

where na + ns ≤ Ns/2 and âi and φa
i represent

the Fourier coefficients and phases, respectively,
for na spectral lines beyond those defined in the
user-specified spectrum. As noted in Guillaume
et al. (1991), the presence of these additional
sinusoids creates a “snow effect” that will increase
the energy content of the signal and contribute to
a decrease in the crest factor. For the structure
per (15), the constrained optimization problem
consists of searching for φi, âi, and φa

i to minimize
the crest factor (of either u or y) subject to
constraints as noted in Equations (9), (10), (13),
and (14).

Figure 4 presents a general diagram for an input
signal design relevant to the structure represented
in Equation (15). In Figure 4 a “flat” low-pass
frequency spectrum is defined over the control-
relevant frequency range, which can be defined
by guidelines relying on a priori information, as
presented in (Braun et al., 2000). In this guideline,
the control-relevant frequency range is defined by

ω∗ =
1

βsτH
dom

≤ ω ≤ αs

τL
dom

= ω∗. (16)

τH
dom and τL

dom correspond to the high and low
estimates of the dominant time constant of the
system. αs and βs correspond to user-decisions
on the high and low frequency content of the
signal, respectively. Per Figure 4, the user can
choose to suppress multiples of 2, 3, or 5 in the
Fourier coefficients of αi to minimize the effect
of nonlinear plant behavior in the identification
of linear dynamics (Godfrey, 1993). The ability
of the optimizer to adjust the phase and magni-
tude of the high frequency sinusoids while keeping
the input and output signals within time-domain
constraints is expected to significantly reduce the
crest factor while maintaining plant-friendly op-
eration.

The problem formulation is exemplified using the
multisine input design developed for the CSTR
case study presented in (Braun et al., 2000). The
power spectrum considered in (Braun et al., 2000)



for the case of even harmonic suppression (with
high frequency harmonics preset to a fraction of
the lower frequency values) corresponds to Case
1 in Figure 5. As noted in Table 3 and Figure 6,
the input resulting from an unconstrained opti-
mization per Equation (8) experiences a rather
large maximum move size of 2.2618. Enforcing a
constraint of ∆umax = 0.8 while using the same
power spectrum (i.e., without optimizing on the
high frequency Fourier coefficients) unavoidably
increases both the crest factor and the overall
span; these are the Case 2 results in Figure 5
and 6 and Table 3. However, given the ability to
optimize on both the phases and high frequency
Fourier coefficients (Case 3), the crest factor and
overall span are lowered dramatically; the result-
ing signal is superior to the two inputs presented
in Cases 1 and 2.

3. SUMMARY

The paper describes an enhanced formulation of
the minimum crest factor multisine problem that
allows users to simultaneously specify important
frequency and time domain properties of multisine
signals. As a result, the input signals arising from
this technique are meaningful for accomplishing
plant-friendly identification in the process indus-
tries. Two problem formulations are shown and
demonstrated via numerical examples.
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Signal CF(u) max(∆u) min(u) max(u)

Schroeder-

phased 2.7966 1.6214 -1.6384 1.75

Guillaume-

phased 1.2173 1.1013 -0.7618 0.7612

min CF(u)

Constrained 1.5388 0.5189 -0.9606 0.9628

(∆umax = 0.52)

min CF(y)

Unconstrained 2.8144 1.5726 -1.5191 1.7611

min CF(y)

(∆umax = 0.6; 2.1826 0.5156 -1.3571 1.3656

∆ymax = 0.45)

Table 1. Problem 1 example results

summary for the input signal u.

Signal CF(y) max(∆y) min(y) max(y)

Schroeder-

phased 2.5892 0.4846 -1.0524 0.9984

Guillaume-

phased 1.7020 0.3506 -0.6918 0.6835

min CF(u)

Constrained 1.7635 0.3348 -0.6693 0.7168

(∆umax = 0.52)

min CF(y)

Unconstrained 1.2068 0.5745 -0.4851 0.4905

min CF(y)

(∆umax = 0.6; 1.9633 0.3371 -0.7730 0.7980

∆ymax = 0.45)

Table 2. Problem 1 example results

summary for the output signal y.

Signal CF(u) max(∆u) min(u) max(u)

Case 1 1.2274 2.2618 -1.8164 1.8164

Case 2 1.6854 0.8 -2.4942 2.4942

Case 3 1.0947 0.8 -1.6532 1.6532

Table 3. Problem 2 example results;

Case 1 (unconstr.), Case 2 (∆umax =

0.8), Case 3 (∆umax = 0.8; Fourier

coeff. optimized)
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0 10 20 30 40 50 60 70 80 90 100
-1

-0.5

0

0.5

1

O
ut

pu
t S

ig
na

l

min output CF multisines; constrained versus unconstrained

Time (Minutes)

0 10 20 30 40 50 60 70 80 90 100
-2

-1

0

1

2

In
pu

t S
ig

na
l

Time (Minutes)

Unconstrained
Constrained

Fig. 3. Minimum output crest factor multisine in-

puts (constrained and unconstrained), Prob-

lem 1 example.

TNs

π2

λ α2 i

TN
n

s

sπ2

T
π

*
ω *ω

coefficients fixed by user
via guidelines

coefficients selected by optimizer

Fo
ur

ie
r 

C
oe

ff
ic

ie
nt

s

Frequency

harmonic suppression 
(to address nonlinearity)

Fig. 4. Flat spectrum displaying harmonic sup-

pression with optimized Fourier coefficients

10
-1

10
0

10
-3

10
-2

10
-1

10
0

10
1

Radians/Min

A
R

Power Spectral Density

Case 1 and 2
Case 3

Fig. 5. Problem 2 example spectra; Case 1 (un-

constr.), Case 2 (∆umax = 0.8) , Case 3

(∆umax = 0.8; Fourier coeff. optimized)

0 20 40 60 80 100 120 140 160 180
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
Unconstrained versus constrained multisines, with and without Fourier coefficient optimization

In
pu

t S
ig

na
l

Time (Minutes)

Case 1
Case 2
Case 3

Fig. 6. Problem 2 example signals; Case 1 (un-

constr.), Case 2 (∆umax = 0.8) , Case 3

(∆umax = 0.8; Fourier coeff. optimized)


