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Abstract: Direct model reference adaptive control (DMRAC) is an attractive algo-
rithm that uses a linear combination of feedforward model states and command
inputs, as well as the error between plant and model outputs; it does not require
full state access nor observers. Real world applications are usually subject to limits
on the controlled variables for either safety or practical reasons. Because of the unique
structure of the controller, many of the methods developed to deal with saturation
constraints can not be applied directly to DMRAC. This papers presents extensions
to the algorithm to allow for the explicit handling of such constraints.
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1. INTRODUCTION

The controller is based on a simple adaptive con-
trol approach of MIMO plants first proposed by
Sobel, Kaufman, and Mabius (Sobel et al., 1979).
This control structure uses a linear combination
of feedforward model states and command inputs
and feedback of the error between plant and model
outputs. This class of algorithms requires neither
full state access nor adaptive observers. Other
important properties of this class of algorithms
include (1) their applicability to non-minimum
phase systems and (2) the fact that the plant
(physical system) order may be much higher than
the order of the reference model. Its ease of im-
plementation and inherent robustness properties
make this simple adaptive control approach at-
tractive.

One of the main drawbacks of the standard DM-
RAC algorithm is its inability to handle input con-
straints. A related problem is tackled by (Bodson
and Pohlchuck, 1998) for indirect model reference
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adaptive control. They propose four methods to
deal with rate and saturation limits of aircraft
actuators. The first one is simply to scale the
control inputs while preserving the directionality
of the commands. This is not a new idea — see,
for example, (Åström and Rundqwist, 1989) —
and it specially makes sense for systems with
tight coupling. The second method is to relax the
control requirements when the constraints are vio-
lated. Their control structure embeds the control
requirements into a single constant k in a way
that the larger its value the closed–loop poles
are placed farther into the left–half plane. The
third approach they use is to scale the reference
inputs, once more maintaining the directionality
of the control signal. The fourth method consists
in approximating the accelerations that would be
produced by the desired control inputs.

Of these, only the first approach can be applied
to DMRAC, and even then it does not solve
the windup problem. The other methods require
an on–line estimate of the plant, which is not
available in the DMRAC structure. In any case,
all their methods highlight the sources of windup
due to command limiting for all controllers. If
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the controller is too aggressive chances are that
the control signal will saturate at some point;
particularly if rate constraints are also imposed.

Based on the above ideas, the following are some
specific ways in which command limiting can be
dealt with in the DMRAC structure. Scaling back
the control signal while keeping the directionality
is a good start, but windup of the adaptive gains
has to be handled. If the signal is just clipped,
this will mean that the system outputs will not
change as fast as the controller is expecting them
to do, and the adaptation mechanism will keep
increasing the gains.

This papers presents two specific methods to deal
with saturation constraints. Formulation of the
DMRAC algorithm is discussed in section 2, the
extensions are presented in section 3, simulation
results for some standard case problems are pre-
sented in section 4. Finally, results are discussed,
and conclusions are drawn in section 5.

2. FORMULATION OF THE DMRAC
ALGORITHM

The linear time invariant model reference adap-
tive control problem is considered for the plant

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) (1)

where x(t) is the (n × 1) state vector, u(t) is
the (m × 1) control vector, y(t) is the (q × 1)
plant output vector, and A, B are matrices with
appropriate dimensions. The range of the plant
parameters is assumed to be known and bounded
by

aij ≤ a(i, j)≤ aij i, j = 1, . . . , n (2)

bij ≤ b(i, j)≤ bij i = 1, . . . , n; j = 1, . . . , m

The objective is to find, without explicit knowl-
edge of A and B, the control u(t) such that
the plant output vector y(t) follows the reference
model

ẋm(t) = Amxm(t) + Bmr(t)
ym(t) = Cmxm(t) (3)

The model incorporates the desired behavior of
the plant, but its choice is not restricted. In
particular, the order of the plant may be much
larger than the order of the reference model.

The adaptive control algorithm presented is based
on the command generator tracker (CGT) concept
developed by (Broussard and O’Brien, 1979). In
the CGT method, it is assumed that there ex-
ists an ideal plant with ideal state and control
trajectories, x∗(t) and u∗(t), respectively, which
corresponds to perfect output tracking (i.e. when
y(t) = ym(t) ∀ t ≥ 0). By definition, this ideal

plant satisfies the same dynamics as the real plant,
and the ideal plant output is identically equal to
the model output. Thus,

ẋ∗(t) = Ax∗(t) + Bu∗(t) ∀ t ≥ 0 (4)

and

y∗(t) = ym(t) = Cx∗(t) = Cmxm(t) (5)

Hence, when perfect tracking occurs, the real
plant trajectories become the ideal plant trajecto-
ries, and the real plant output becomes the ideal
plant output, which is defined to be the model
output.

The ideal control law u∗(t), generating perfect
output tracking and the ideal state trajectories
x∗(t) is assumed to be a linear combination of the
model states and model input:[

x∗(t)
u∗(t)

]
=

[
S11 S12

S21 S22

] [
xm(t)
r(t)

]
(6)

where the Sij submatrices satisfy the following
conditions

S11Am = AS11 + BS21

S11Bm = AS12 + BS22 (7)
Cm = CS11

0 = CS12

In summary, when perfect output tracking occurs,
x(t) = x∗(t), and the ideal control is given by

u∗(t) = S21xm(t) + S22r(t) (8)

If when perfect output tracking does not occur,
y(t) �= ym(t), asymptotic tracking is achievable
provided stabilizing output feedback is included
in the control law

u(t) = S21xm(t)+S22r(t)+Ke(ym(t)−y(t)) (9)

Then the adaptive control law based on this
command generator tracker (CGT) approach is
given as (Kaufman et al., 1998)

u(t) = Ke(t)[ym(t)−y(t)]+Kx(t)xm(t)+Kr(t)r(t)
(10)

where Ke(t), Kx(t), and Kr(t) are adaptive gains
and concatenated into the matrix K(t) as follows

K(t) = [Ke(t) Kx(t) Kr(t)] (11)

Defining the vector v(t) as

v(t) =


 ym(t) − y(t)

xm(t)
r(t)


 (12)

the control u(t) is written in a compact form as
follows

u(t) = K(t)v(t) (13)
The adaptive gains are obtained as a combination
of an integral gain and a proportional gain as
shown below (Kaufman et al., 1998)

K(t) = KP (t) + KI(t) (14a)

KP (t) = [ym(t) − y(t)]vT (t)T , T ≥ 0 (14b)

K̇I(t) = [ym(t) − y(t)]vT (t)T, T > 0 (14c)



Where T and T are time invariant weighting
matrices.

The sufficiency conditions for asymptotic tracking
are

(1) There exists a solution to the CGT problem
(eq. 7)

(2) The plant is ASPR; this is, there exists a
positive definite constant gain matrix KE ,
not needed for implementation, such that the
closed loop transfer function

G(s) = [I + Gp(s)KE ]−1
Gp(s) (15)

is strictly positive real (SPR).

In general, the ASPR condition is not satisfied
by most real systems. (Bar-Kana and Kaufman,
1985) have shown that a non–ASPR plant of the
form Gp(s) = C(sI − A)−1

B can be augmented
with a feedforward compensator H(s) such that
the augmented plant transfer function

Ga(s) = Gp(s) + H(s) (16)

is ASPR. However the resulting adaptive con-
troller will in general result in a model following
error that is bounded but not zero in steady
state. To eliminate this problem, a modification
that incorporates the supplementary feedforward
into the reference model output as well as the
plant output has been developed by (Kaufman
and Neat, 1993).

3. EXTENSIONS TO HANDLE SATURATION
CONSTRAINTS

3.1 Saturation Limiting Method 1

The first proposed method for dealing with satu-
ration limits is the easiest to implement. When-
ever the command saturates, the gains keep
changing according to the dynamics of (14). If
ym(t) − y(t) �= 0, then the gains will keep in-
creasing or decreasing, even though these changes
are not having any effect on the system’s output.
Thus, the most straightforward way of dealing
with this is to stop the adaptation process when-
ever the control signal saturates. Modifying the
adaptation law as follows

K(t) = KP (t) + KI(t) (17a)

KP (t) = [ym(t) − y(t)]vT (t)Tκ, T ≥ 0 (17b)

K̇I(t) = [ym(t) − y(t)]vT (t)Tκ, T > 0 (17c)

where κ is defined as

κ =

{
1 if u(t) does not saturate,
0 if u(t) saturates

(18)

In the case of MIMO systems the control signal
u(t) should be considered to saturate if any of
its elements saturates. In this case all of the

inputs should be scaled back to maintain the
directionality of the the command.

3.2 Saturation Limiting Method 2

The second method maintains the adaptation
mechanism alive, but bleeds the integral part
(14c) to minimize (or eliminate) the windup. In
this case the adaptation law is changed to

K(t) = KP (t) + KI(t) (19a)

KP (t) = [ym(t) − y(t)]vT (t)T , T ≥ 0
(19b)

K̇I(t) = [ym(t) − y(t)]vT (t)T − σ(t)KI(t), T > 0
(19c)

The σ(t) term is added to bleed the gains when
the saturation constraints are hit. A basic form
for this function is

σ̇(t) = Kσ1 |u(t) − usat (u(t))| − Kσ2σ(t) (20)

with

usat(u(t)) =




ulb for u(t) < ulb

u(t) for ulb ≤ u(t) ≤ uub

uub for u(t) > uub

(21)

where Kσ1 > 0 and Kσ2 > 0 are tuning pa-
rameters, and ulb and uub are the lower and up-
per saturation limits respectively. Thus, when the
command is within the saturation limits σ(t) → 0
and increases when the they are violated.

For the MIMO case σ(t) can be defined as a
diagonal matrix with elements

σ̇ii(t) = Kσ1 |ui(t) − uisat
(ui(t))| − Kσ2σii(t)

(22)
An obvious limitation to this approach is the ad-
dition of two additional tuning parameters (which
are matrices in the MIMO case).

3.3 Preserving Directionality

As noted before, preserving the directionality of
the control signal in MIMO systems is important,
particularly when the system is tightly coupled.
This is quite simple to accomplish, and just con-
sists of scaling all control inputs proportionally,
using the most severely saturated signal as the
base.

For each control signal we can find a constant
ρ, 0 ≤ ρ ≤ 1 such that

uisat
= ρiui (23)

then scale the control input vector using

usat = min (ρi) u (24)
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Fig. 1. SISO Case: solid is unconstrained, dashed
uses method 1 and dotted uses method 2

4. SIMULATION RESULTS

For the simulations simple systems are used for il-
lustrative purpose, avoiding the need for the feed-
forward compensators. These examples are taken
from the literature of anti–windup compensation,
namely from (Zheng et al., 1994).

4.1 Example 1 - SISO Case

Consider the plant given by

ẋ(t) = −0.01x(t) + 0.125u(t)
y(t) = 0.16x(t) (25)

and the plant is to follow the output of the
reference model

ẋm(t) = −0.05xm(t) + 0.25r(t)
ym(t) = 0.2xm(t) (26)

Using the solution to the CGT problem (eq. 7),
the initial condition for the gain is

K(0) = [5 − 0.4 2.5]

and the adaptation gains are set to

T = [0.5 0.5 0.5]
T = [50 5 50]

For method 2 the additional parameters are se-
lected as

Kσ1 = 0.01 Kσ2 = 0.1

The input is constrained to be u ∈ [−1, 1]. The
setpoint is 1 at t = 0 sec and is then set to 0 at
t = 150 sec. Figure 1 shows the simulation results
for the cases when the system is unconstrained
(solid), constrained using method 1 (dashed) and
constrained using method 2 (dotted). Both meth-
ods give comparable results; if anything method
2 does a slightly better job, but at the expense of
two additional tuning parameters.

4.2 Example 2 - MIMO Case

Consider the MIMO plant given by

ẋ(t) =
[−0.01 0

0 −0.01

]
x(t) +

[
0.5 0
0 1

]
u(t)

y(t) =
[

0.8 −0.5
−0.6 0.4

]
x(t) (27)

and the plant is to follow the output of the
reference model

ẋm(t) =
[−0.05 0

0 −0.05

]
xm(t) +

[
0.25 0
0 0.25

]
r(t)

ym(t) =
[

0.2 0
0 0.2

]
xm(t) (28)

Using the solution to the CGT problem (eq. 7),
the initial condition for the gain is

K(0) =
[

0.2 0.1 2 2.5 −0.32 −0.4
0.2 0.2 1.5 2 −0.24 −0.32

]
and the adaptation gains are set to

T =
[

5E-4 0 2.5E-2 0 5E-4 0
0 5E-4 0 2.5E-2 0 5E-4

]

T =
[

5E-3 0 5E-4 0 5E-3 0
0 5E-3 0 5E-4 0 5E-3

]
For method 2 the additional parameters are se-
lected as

Kσ1 =
[

9E-5 0
0 9E-5

]

Kσ2 =
[

0.01 0
0 0.01

]
The input is constrained to be ui ∈ [−1, 1].

For method 1 the simulation results are shown
in figure 2; it shows the response of the uncos-
ntrained system (solid), the response when direc-
tionality is preserved (dashed) and when it is not
(dotted). The setpoint is set to [0.63 0.79]T at
t = 0 sec and is then set back to [0 0]T at
t = 200 sec. The large overshoot for both outputs
when the directionality is not preserved highlights
the need to preserve it.

For method 2 the simulation results are shown
in figure 3; it shows the response of the uncos-
ntrained system (solid), the response when direc-
tionality is preserved (dashed) and when it is not
(dotted). The setpoint is set to [0.63 0.79]T at
t = 0 sec and is then set back to [0 0]T at
t = 300 sec. Once more, preserving the direction-
ality of the control signal has a big impact on the
system’s response.

Focusing on the cases when directionality is
preserved, the overshoots of the outputs using
method 2 are significantly smaller than using
method 1. At the same time, it takes method 2
a longer time to come to steady state; this is due
to the integral factor in the compensation for the
saturation of the signal. This could be adjusted by



0 100 200 300 400
−4

−3

−2

−1

0

1

2

3

time(secs)

O
ut

pu
t 1

0 100 200 300 400
−1

0

1

2

3

4

time(secs)

O
ut

pu
t 2

0 100 200 300 400
−3

−2

−1

0

1

2

3

4

time(secs)

In
pu

t 1

0 100 200 300 400
−3

−2

−1

0

1

2

3

time(secs)

In
pu

t 2

Fig. 2. MIMO Case using method 1: solid is unconstrained, dashed is constrained while preserving
directionality, dotted is unconstrained without directionality

tuning Kσ2 , but at the expense of the performance
when the constraints are hit.

5. CONCLUSIONS

This paper presents two specific methods that
extend the algorithm for Direct Model Reference
Adaptive Control to systems that present satu-
ration constraints on the command signal. Both
methods give good results, with their own unique
strengths and weaknesses. Method 1 is the sim-
plest to implement, as adaptation is halted as
long as the saturation constraint is hit and the
command signals are clipped while preserving di-
rectionality. Method 2 tends to give better results,
but at the expense of added parameters that need
to be tuned. For systems with many inputs and
outputs this can quickly become a nuisance to deal
with.

There are still other avenues to be explored. Mod-
ifying the reference model to relax the require-
ments is one possibility. Work in progress looks at
parameterizing the reference model in a way that
the performance requirements can be relaxed; this
has to be accomplished without access to on–line

plant identification and preserving the stability of
the closed–loop system.

The two methods presented above can also be
applied when limits on the rate of change of the
control signal are imposed. In this case method 2
is more effective, as it only modulates how fast the
adaptation mechanism is going to adjust the con-
troller gains. Simply halting the adaptation as in
method 1 means that the controller is not adjust-
ing according to the plant’s exhibited dynamics.
It could be that the actual operating condition
of the plant is such that significant changes have
to be made on the controller gains; halting the
adaptation will certainly not accomplish this.
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