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Abstract: We consider a hierarchical network game with multiple links, a single service
provider, and a large number of users with multiple classes, where different classes of users
enter the network and exit it at different nodes. Each user is charged by the service provider
a fixed price per unit of bandwidth used on each link in its route, and chooses the level of its
flow by maximizing an objective function that shows a trade-off between the disutility of the
payment to the service provider and congestion cost on the link the user uses, and the utility
of its flow. The service provider, on the other hand, wishes to maximize the total revenue it
collects. We formulate this problem as a leader-follower (Stackelberg) game, with a single
leader (the service provider, who sets the price) and a large number of Nash followers (the
users, who decide on their flow rates). We show that the game admits a unique equilibrium,
and obtain the solution in analytic form. A detailed study of the limiting case where the
number of followers is large reveals a number of interesting and intuitive properties of the
equilibrium, and answers the question of whether and when the service provider has the
incentive to add additional capacity to the network in response to an increase in the number
of users on a particular link.
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1. INTRODUCTION large and the capacity of the network is large, then

the probability that the arrival rate will exceed the

We consider a network where users are subject o available capacity is small. Thus, the probability of
flow control through the use of congestion indication queue build-up is small (Botvich and Duffield, 1995).

signals and bandwidth-usage pricing. Recently, there In a recent paper, we examined the economics of
has been much interest in the design of mechanisms providing large capacity from a service provider’s
to ensure that small queue sizes are maintained at the p()in'[ of view by Considering a Sing|e link accessed by

routers of such networks (for example, see (Kelly & many users (Basar and Srikant, 2002). In this paper,
al., 1998; Gibbens and Kelly, 1999; Low and Lapsley, e show that the single-link results extend in a natural
1999; Kelly, 2000; Kunniyur and Srikant, 2000; Kelly, manner to a multiple link setting.

2001; Kunniyur and Srikant, 2001b; Kunniyur and . o

Srikant, 2001a)). A key assumption driving such a We not_e that there is an gxtenswe literature on game-
design is the following well-known large deviations theoretic models of routing and flow control in com-

result: when the number of users in the network is munication networks (for example, see (Orda et al.,
1993; Korilis et al., 1995; La and Anantharam, 1997,

Altman et al., 2001a; Altman et al., 2001b)). These
papers have presented conditions for the existence and
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uniqueness of an equilibrium. This has allowed, in
particular, the design of network management policies
that induce efficient equilibria (Korilis et al., 1995).
This framework has also been extended to the context
of repeated games in which cooperation can be en-
forced by using policies that penalize users who devi-
ate from the equilibrium (La and Anantharam, 1997).
Our paper differs from the above papers due to the
fact that our goal is to devise a revenue-maximizing
pricing scheme for the service provider. Thus, a flow
control game is played by the users (followers) in the
Stackelberg game, while the goal of the leader is to set
a price to maximize revenue. Specifically, we consider
a network consisting of N links with (IV 4 1) classes
of users. One class of users traverses all V links and
the other NV classes of users traverse only one link,
with each class distinguished by the link that it tra-
verses (see Figure 1). Our main results in this paper

‘ Class 0 User ‘
Class1 Class 2 ClassN

Fig. 1. An N-link network with (N + 1) classes of
users. Class 0 users use all the links, users in
other classes use only one link

can be extended to very general network topologies.
However, due to page limitations, we present here only
the simple N-link, (IV +1)-class case which, however,
illustrates the main ideas without complicated compu-
tations.

The rest of the paper is organized as follows. In Sec-
tion 2, we formulate the service provider’s pricing and
users’ flow control problems as a Stackelberg game,
with the service provider as the leader and the users
as followers playing a noncooperative game among
themselves. In Section 3, we assume a fixed price and
show the existence and uniqueness of a Nash equi-
librium for the users’ game and also derive the Nash
equilibrium solution. In Section 4, we outline the steps
in deriving the optimal price for the service provider
and provide explicit expressions for the optimal price
for certain choices of the problem parameters. In Sec-
tion 5, we study the asymptotics of the solution to the
Stackelberg game when the number of users is large.
Concluding remarks are presented in Section 6.

2. PROBLEM FORMULATION

Consider a network of N tandem links accessed by
a total of M users of N + 1 different classes. There
are ny, users of class k,k = 0,..., N, with the user
of class 0 using all N links, while a user of class ¢
usingonly link £,/ =1,..., N. Let ¢, be the capacity
(bandwidth) of link ¢,¢ = 1,...,N; p be the price
per unit bandwidth charged by the network; and xy;
denote the transmission rate of the j’th user of class k.
We will henceforth use the terminology “User kj” to

refer to the j’th user of class k. Finally, let z; denote
the total flow of users of class £, that is

N
i’kZ:E Tkj, k=0,...,N;
Jj=1

x_y, denote the collection of flow rates of all users
except those of class k, and = _ ;;, denote the collection
of flow rates of all users of class k, except that of
User kj.

The objective of User 0: is to maximize the following
function with respect to x(; over
[0, ming{cy — To + o; — Te}):

Foi(2o0i, ©—0s, 203 p) = wo log(1 + zo;) — Npxo;
ol 1
> O
= —To— Ty

where wq log(1 + xo;) is the utility of the flow xq;
to User 07, with wy > 0 a preference parameter, and
1/(ce — To — Z¢) represents the congestion cost on
link ¢. Likewise, User kj’s objective, &k > 1, is to
maximize, with respect to zy; € [0,¢c, — Zo — T, +
xy;), the function

Frj(xgj, x—kj, x—p;p) = wi 1og(1 + x;) — pay;
L
Cr, — 2o — Tk
Note that if we assume that the queueing process at
the k’th link is M /M /1, then the congestion cost
above is simply the delay on the link. For a given p,
the objective functions above define a noncooperative
game between the users of the network, where an
appropriate solution concept is the Nash equilibrium
(Bagar and Olsder, 1999). For each fixed p > 0, a
Nash equilibrium for this M -player game is an n-tuple
{{z};(p) > 0}7%, }i, satisfying, forall j,1 < j <
ngand k,0 < k <N,
IES;_Xij(xkﬁmtkﬁxtk?p) = ij(@”/t:ja xikjv x5 p)
@)
where the constraint interval is [0, min,{c,—Z§+x§, —
zy}) fork = 0,and [0, ¢, — 25 — 2}, + ;) for k > 1.
Assuming that this M-player game admits a unique
Nash equilibrium (which we will prove to be the
case), we associate with the service provider a revenue
maximization problem to determine the optimum price
to charge, namely

max L(p; 73, (p),0 < k < N),

where

N
L(p;Zk(p),0 <k < N) = NpZo+p > _ Ty
k=1
What we have here is therefore a Stackelberg game
(Basar and Olsder, 1999), with one leader (having
objective function L) and M := ZkN:O nj NONCOOper-
ative Nash followers (with objective functions F},;’s).



Remark 2.1. In our earlier recent work on pricing in
a single link (Basar and Srikant, 2002), we assumed
that the network charges a price proportional to the
bandwidth consumed by a user. In the case of a single
link, the bandwidth consumed by a user is also the
same as the network resources consumed by the user.
However, in a multiple link network where a user’s
route could consist of many links, the bandwidth con-
sumed by the user is not necessarily the same as the
amount of resources in the network that are allocated
to that user. In fact, if a user traverses r links on its
route and transmits data at rate x, then it consumes
a total of rx units of network resources. Thus, it is
logical to charge a user in proportion to the product
of its bandwidth usage and the number of hops on its
route. This is precisely the pricing scheme chosen in
this paper.

From a practical point of view, it is intuitive that the
service charge is proportional to bandwidth usage. The
fact that it is also proportional to the number of hops,
is similar to traditional long-distance telephone pric-
ing schemes which charge more for calls over longer
distances. |

3. THE NASH EQUILIBRIUM

We first address the issue of existence and uniqueness
of Nash equilibrium for each fixed p > 0. The follow-
ing lemma settles this in the affirmative.

Lemma 3.1. For each fixed p > 0, the M-person
noncooperative game, where the players’ objective
functions (to be maximized) are given by (1) and (2),
admits a unique Nash equilibrium
{xzj(p) >0; 1 <j<mng 0<k< N}, with
z§(p) +z;(p) < ce, 1 <L < N.

Proof: Let us first note that adding the quantity

N ng
wo Z log(1 + x0;) + Zwk Z log(1 + ;)
k=1 j=1

J#i

ng N

—Np > wo;—pY Tk
j=1,#i k=1

to Fp;, and treating the resulting function as the new

objective function of User 0i will not affect the Nash

equilibrium. Likewise, adding the quantity

N ng
wm21og(1+xmj)+ Z wkZlog(1+xkj)
j#i k=0,km  j=1
N 1 N
Ce — To — Ty
=1,#m =1

to F,,;, foreachi,m, 1 <i<n,,, 1 <m <N,
will not change the Nash equilibrium, as the quantity

added to F,,; does not depend on the decision variable
of User mi. Now note that all these new (modified)
objective functions are identical, and given by

N Nk
F(zo,...,xN;p) = Zwk Zlog(l + xp;)
k=0  j=1

N 1 N
-y ———— NPz -p) &

= ¢ o T e =1
Hence, every Nash equilibrium solution of the original
game is also a Nash equilibrium solution of a game
with the common objective function F for all players.
F is strictly concave in the M-tuple (zo1, ..., TNny)
which is restricted to the nonnegative orthant bounded
by the hyperplanes zo + T, = ¢, on which F' is
unbounded from below. Then, from standard results in
finite-dimensional optimization (Bertsekas, 1995), it
follows that F' has a unique maximum in this bounded
region (where it is finite, except on the given hyper-
plane), and every person-by-person optimal solution
is also globally optimal. Hence, the Nash equilibrium
exists and is unique. Clearly, the maximizing solution
cannot lie on the hyperplane, thus leading to the strict
inequality on z§(p) + Z; (p), forall £,0 </ < N. R

Depending on the value of p and values of other pa-
rameters, the unique solution alluded to in the lemma
above could lie on the lower boundary of the con-
straint region (that is some of the ;s could be zero).
If this does not happen, we say that the Nash equilib-
rium is inner or positive. We now obtain necessary and
sufficient conditions for the equilibrium to be positive,
and obtain a characterization for it. Clearly, from first-
order conditions (which are also sufficient), the Nash
equilibrium will be positive if, and only if, the fol-
lowing set of equations (obtained by setting the partial
derivative of F* with respect to x1; equal to zero, for
all admissible j and k) admits a positive solution (for
Z;’S):

w N 1
0
- — _ _szoa
].+"E0i Zz:; (C[—l'o—l’g)2
Wi 1
- ~Np=0,k>1
1+ (cp —To — T)? P -

Note that the solution to the set of equations above
depends only on the class of each user, and not on
the individual user within each class. Hence, x; =
ZTx/nk, k > 0, in view of which, we have the
following necessary and sufficient conditions for the
positive Nash equilibrium to satisfy:

N
NoWo N Wi
= 4
ng + To Z::l ng + Ty )
and
N Wi 1
=p+ — 5
mit @ T (en— @0 — Tn)? ©)



Considerable simplification is possible here if we as-
sume that the users that use single links all have the
same preference parameter in their utility functions,
that is wy is independent of £ for & > 1, and also
that ny, is independent of & for £ > 1. Let us further
assume that the capacity of each link is proportional
to the total number of users using that link, with the
proportionality constant being c. Hence, ¢, = (ng +
ny)c =: ne,V L. Further let,

Yo:=No+To, Yr:=mM+T1, Y:=Yo+y1

W = Ngwg + N?’llU)l y Wapy = (’lI]/’I’L)

Then, we have a positive Nash equilibrium if, and only
if, there exists a g (p) solving
N

Noow o N N

and satisfying
y(p)

min (wO,Nwl) 5 > 1 @)

which is the positivity constraint. Hence, the Nash
equilibrium is positive for a given p if, and only if,
there exists a ¥ > n solving (6) and further satisfying
(7). Since g(g T n(c+ 1)) = —o0,and g(g = n) =
Way — N(nc)=2 — Np, and g is strictly decreasing
in [n, (¢ + 1)n), there will exist a unique solution to
(6) in the open interval (n, (c + 1)n) if, and only if,
g(n) > 0, that is
Waw 1

p< N —W:ﬁ- (8)

Hence, there exists a range of values of p for which
the unique Nash equilibrium is positive.

4. LEADER’S PROBLEM AND ITS SOLUTION

We now proceed on to the maximization problem
faced by the service provider (leader), and restrict the
discussion to the case of two classes of users as in-
troduced above. Because of the one-to-one correspon-
dence between ¢ (or equivalently ) and p through the
constraint (6), an equivalent problem for the leader
is the maximization of the following function with
respect to y > n (obtained by substitution of p from
(6) in terms of g):
S N(g—n)
Lo =00 =9 - Gern—p2
We seek a solution to this maximization problem in
the open interval (n, (¢ + 1)n). L is analytic over this
interval, and
~ nw Nnlc—1)+3y -
b T ey g P
Hence, L is strictly concave, and further since it be-
comes unbounded negative at the upper end of the
interval, it follows that it has a unique maximum in
the half-open interval [n, (c + 1)n). Moreover, the

situation § = n can be avoided by requiring that
Ly(n) > 0, which translates into the simple condition

n?c*wq, > N . 9)

Under this condition, there exists a unique solution,
y* € (n,(c+ 1)n), to Ly(y) = 0 which we rewrite
here for future reference:
;N CD4q
mo Nnle DAoL o)
y  (n(c+1)—7)

The corresponding value of p, which in fact maxi-
mizes L(p; Z*(p)), is then obtained directly from (6):
w 1

= - 11
P ONg T etn-g)? )
which, by construction, satisfies (8) and the positivity
constraint. To complete the solution to the problem,
however, we still have to require that (7) holds with p
replaced by p*, or equivalently

min (wo, Nwy) §* > w (12)

with g* solving the third-order polynomial equation
(10).

The solution to (10) cannot be obtained in closed form
except for some special cases. One such case isc = 1,
for which the unique solution is:

Y 2n(nw)®

=71 (13)
N3 + (nw)3
provided that
nw > N

which ensures that g* > n, that is the total throughput
is positive. Now, for the individual throughput levels
to be positive, we need also the condition (12), which
can be rewritten as

<2 min(wg, Nw)

wa'u

— 1> (n2wm))% >1. (14

This condition is of course more restrictive than the
earlier one, n?w,, > N, which can therefore be
dropped.

The revenue-maximizing price (for the service provider)
can now be obtained for this special case by setting
¢ =1in(11), and using (13):

_ wav
- 2N
1 1 1
—m<1 =+ NS(’IZQU)M)S)
which can easily be checked to be positive provided
that n2w,, > N, a condition already assumed to hold.
It is also easy to check that p* < p.

*

p

(1+ N3 (anav)_%)

> (@15)

5. ASYMPTOTIC BEHAVIOR

We now study the behavior of the solution obtained in
the previous section for large n. Studying this many-
followers game will allow us to obtain an explicit



expression for ¢* (or z*), which was not possible for
finite n, unless ¢ = 1. The study will also enable
us to ask (and answer) questions like whether it is
possible for the service provider to admit new users to
the network by increasing the capacity, and whether
the existing users would benefit (measured in terms of
their utilities) from a “crowding” of the network.

An underlying assumption (or rather convention)
throughout this section is that as n — oo, the sequence
{wqay(n)} has a well-defined limit, w,, > 0. This
would be the case, for example, when there exists an
a € (0,1), such that nyg = an, which means that
there will be infinitely many users of both classes as
n — oo. In this case, of course, wq, = apwy + (1 —
ap)Nwi. An immediate implication of this assump-
tion is that now the condition (9) is readily satisfied.

Now, to study the asymptotic behavior, it is convenient
to work with the arithmetic mean of the x;’s (or y;’s),
rather than their sum, denoted for the former as

1
xav(n) = E(i‘o + jl) .
Then, we can rewrite (10) as
Weaw (M) et g(n)
N(zap(n) + 12 n2(c—24p(n))3 "
Under our assumption that wg, (n) — we, 8Sn — 00,

a positive solution to z,,(n) exists for large n if, and
only if,

lim n?(c — 240(n))* =
n—oo
for some o > 0. Substituting this in (6), we obtain
Waw 2c—1
N(c+1) «a?/3p2/3°
where we have again used the notational convention

that f(n) ~ h(n) if lim,_.o (f(n)/h(n)) = 1.
Using (16) in (10), and letting n — oo, yields

2c(c+1)°N
a="—"—.

P~ (16)

(17
Way
Then,
ZTap(n) ~c— n=2/3a1/3 (18)
and the positivity condition is
Way Way
Tap(n) > max (wo -1, Ny 1)

Letting, as before, ag := np/n, and assuming that
oo < 1 forall n and as n — oo, the condition above
can be shown to be equivalent to, as n — oo,

N
AU et L | (19)
c+ o W

1-— (67
which is a necessary and sufficient condition for an

inner solution to exist. Note that this places an upper
bound on the number of links, namely,

N<“’°< < +1>
w1 1—0[0

assuming that wq is not a function of V. If, however,
we pick wg = @y NV, for some constant w, > 0, then
there is no upper bound on the number of links.

It is worth noting that the optimal price charged by the
network is positive for sufficiently large n, but whether
it is an increasing or decreasing function of n depends
on the specific value of ¢. For ¢ > 1/2, it decreases
with n, whereas for ¢ < 1/2, it increases with n.
In spite of this c-dependent behavior of the optimum
price, the revenue per unit bandwidth per link exhibits
a c-independent trend—increasing with n in the many-
users regime:

DPZay ~ Way 067%717
c (c+1)

Suppose that wq,/(c + 1) is larger than the cost of
adding one unit of bandwidth. Then, as the number of
users increases, the service provider’s profit increases.
Thus, the service has an incentive to increase the link
capacity which drives the congestion cost to zero as
shown next.

Wi

Revenue/bw/link =

The congestion cost decreases with n in the many-
users regime:

. 1 11
Congestioncost = ——— ~a ™ 3n" 3,
n(c — xap(n))
and so does the net utility of each user. For users of
class 0,

N 1 av —_= —_=
ng:wologm_szﬁ Wav _ No~3n~3 .
Wav c+1
and for users of class &,k > 1
N 1 av -+ 1
ng:wllog%—wl—l-%—a 5pTF

6. CONCLUSIONS

In this paper, we have considered the important,
emerging problem of choosing a pricing scheme for
the Internet based on bandwidth usage for user. As-
suming a pricing scheme whereby a user is charged
in proportion to its total resource consumption (mea-
sured as the product of the bandwidth consumed by
the user and the number of links on the user’s route),
we have presented a Stackelberg formulation of the
pricing problem. The network (leader) sets the price
and the users (followers) react to the price as well
as the congestion caused by the overall traffic in the
network, using a flow control algorithm. In this set-
ting, we have derived expressions for the optimal
price to maximize network revenue under a many-
users regime. A significant observation is the fact that
there is revenue-incentive for the network to increase
the available capacity in the network in proportion to
the number of users in the network. From a purely
Quality-of-Service (QoS) point of view, increasing the
capacity in the network decreases the delay seen by
the users of the network. Thus, our Stackelberg game
formulation and the solution show that it is profitable
for the network to provide better QoS for the users of
the network.



The results in the paper can be generalized to arbitrary
network topologies with different call classes. For
an arbitrary network topology, the Nash equilibrium
solution of the followers’ non-cooperative game acts
as a constraint to the revenue maximization problem
faced by the network. Under simple network topolo-
gies, this constrained network optimization problem
can be explicitly solved. The case of arbitrary network
topologies requires the use of Lagrange multiplier
techniques and the computation of asymptotic expan-
sions of the Lagrange multipliers. Due to space lim-
itations, these results are not presented here. Instead,
we remark that the fundamental observation regarding
pricing continues to hold: it is profitable for the net-
work to provide better QoS to the users by increasing
the available bandwidth in proportion to the number
of users at congested links.
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