
1 INTRODUCTION

For students to gain insight in a problem, the physical
manifestation in a real-life hands-on experiment is
generally invaluable. For designing new control algo-
rithms or new models of a system, at least a scaled
down real physical model is, if not neccesary, at least
highly desirable. For some simulations, the actual
hardware utilized is needed for the results to be of any
value. Unfortunately, resources to create experiments
for students, both in available man-hours and certain
expertise, are often lacking in universities today. For
the industry available time for development has also
decreased in the recent years. In other words: We
would like to develop experiments with less need for
expertise outside our own domain, and in shorter time.

Our department has close to 50 years of experience in
designing and implementing software and hardware
for advanced control system experiments. In the last
decade we have seen new opportunities for developing
systems faster, with greatly improved flexibility for
changing parameters, and for doing brand new exper-
iments on the same equipment with a simple exchange
of SW. This has mostly been fueled by the PC revolu-
tion. Now low-cost hardware has computational capa-

bilites only available in expensive special purpose
systems just a few years ago. Commercial Off-The-
Shelf (COTS) software packages give us graphical
tools for expressing both logic and continuous algo-
rithms without the need for expertise in either numer-
ical methods or software engineering. Today, many
systems can use automatic code generation to take care
of the tedious task of writing the code.

Early in this decade use of the PC in real-time control
was demonstrated by Schmid (1992). Baracos et.al.
(2001) describe the use of COTS systems and new
technologies in order to facilitate HIL simulations, as
well as presenting OPAL-RT’s RT-Lab system. Rab-
bath et.al (2000) demonstrated OPAL-RT’s use in
event-driven systems. Yao, Z. et.al. (2000) promotes
the use of RT-Linux (Yodaiken, 1997) together with
Matlab/Simulink and briefly compares Windows NT
and QNX for similar use. Grega et.al. (1999), on a sim-
ilar note present their solution for using Real-Time-
Workshop together with Windows.

In this paper we present new tools, runtime systems
and methods that have gained popularity, we give pros
and cons learned from numerous projects and experi-

A DECADE OF RAPID SOFTWARE DEVELOPMENT FOR CONTROL
SYSTEM EXPERIMENTS.. LESSONS LEARNED

Amund Skavhaug (amund@itk.ntnu.no), Trygve Lunheim (trygvelu@itk.ntnu.no),
Bjørnar Vik (bjoernar.vik@itk.ntnu.no) and Thor I. Fossen (tif@itk.ntnu.no)

Department of Engineering Cybernetics,
Norwegian University of Science and Technology

Abstract: In this paper we show how the development of software for control system
experiments has changed in our department the last 10 years. Different solutions for rapid
development and deployment are presented, with our evaluation of cost vs benefits of
using these when learning time, acquisition cost and required coding are considered.
Copyright © 2002 IFAC.

Keywords: Control systems, software tools, laboratory education, operating systems, sim-
ulation, computer aided control system design.

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain

ments done at our department, and present examples
of these.

We conclude in principle that, used correctly, some of
the newer systems and methods can be very useful, but
that one must know their limitations, and be prepared
to spend time to learn their intricacies.

1.1 Modern tools.

Below we give a brief description of some of the tools
we have been using, and that are in common use else-
where.

Matlab, Simulink, Stateflow and Real-Time Workshop

MathWorks Matlab seems to have become the de facto
standard for control system engineering and educa-
tion. Although expensive for the industry, the prices
are kept low for universities. MATrix LABoratory, in-
itially a tool for manipulating matrices without having
to be an expert in numerical methods, has gradually
gained more value with its various “toolboxes” with
special solvers and tools for different problem areas,
and add-ons that use the MATLAB engine in the back-
ground. The most well-known of these in the control
engineering community is Simulink, a graphical tool
where the user can create simulation models by pick-
ing function blocks and connecting defined inputs and
outputs on these. This is a data-flow oriented ap-
proach, where every block might be another diagram,
or just the interface to some code, written in e.g. C. To-
day one might compile Matlab/Simulink-code directly
to a native executable for higher speed processing, or
even use the functionallity of the Matlab/Simulink
system from other software through the use of either
DDE or COM on host OSes that supports this. A less
known tool is StateFlow, which complements
Simulink with its handling of event-based systems.
This is done graphically with the use of Harel State
Charts, quite similar to the UML State Charts. Togeth-
er Simulink and StateFlow can be used to simulate
systems with complex behaviour.

In order to be of use for more than the simulation and
design of a control system, which was the initial use,
MathWorks has created Real-Time Workshop (RTW).
This is an add-on product that can generate code to be
deployed on target systems directly from the
Simulink/StateFlow diagrams.

Because of the periodic nature of most discrete control
algorithms, implementing a standalone executive to
run these is not a very difficult task. Without any addi-
tional third-party tools, RTW supports WindRivers’
VxWorks and a “general RTOS1” target, as well as the
possibility to run the control SW directly on top of
MS-DOS. RTW uses a scripting/description language

to facilitate the users’ (or a third-party supplier’s) ad-
justments of how the code is generated through its Tar-
get Language Compiler. Basically one might have a
kind of cyclic executive, since due to the application
and how the code is made, the usual misgivings for a
“big while loop” are less valid. A very simple system
such as this can in fact have inherently less jitter than
the more advanced versions utilizing several tasks in a
RTOS to achieve the same. Of course, when code is
targeting a RTOS there are less restrictions on sample
rates, and in some cases the load can even be shared by
several CPUs. MathWorks has its own RTOS for PCs,
“xPC Target”, which can be bought as an additional
product to RTW. The efficiency and applicability of
RTW and “xPC Target” as well as some other ven-
dors’ solutions for simple target systems are discussed
in Teng, F.C. (2000).

LabView from National Instruments is another data-
flow oriented graphical tool where the user connects
function-blocks of different complexity to build the
application. These blocks are also hierarchical, and are
often in the form of a “virtual instrument”, e.g. a
scope, a frequency counter, a voltage meter etc. It runs
on Apple Macintosh, Sun Solaris and Windows NT
systems. Since LabView runs as a user mode program
on top of these non-real-time operating systems, it has
generally been viewed as an interface generator for
data-acquisition with relatively high-end equipment
that takes care of buffering in HW2. Since its earliest
incarnations, LabView has evolved from a system for
controlling GPIB-equipment and simple data-acquisi-
tion, to a system that can be used for complex factory
automation when used with add-ons to its full extent,
but we will not discuss this further here.

At our department we use LabView in order to show
students a tool commonly used in the industry. In ex-
periments we only use this SW for design of userinter-
faces. This is due to the high price of Real-time
LabView, but more importantly because of our heavy
use of MATLAB and its related products3.

DSPACE has been around since the mid-eighties.
Their main product line has been Texas Instruments
DSP based processor cards, and I/O cards to go with
these, and with SW for directly linking up with Mat-
lab/Simulink for automatic generation, compilation
and downloading of code that runs on this DSP-plat-
form. This execution is uninterrupted by the host PC,
where variables and measurment values can be shown

1. Using functionality that is commonly available in many
RTOS, it is at least easy to port to the actual system.
2. Oscilloscopes, frequency analyzers, as well as PC I/O
expansion cards with built in processing capabilites.
3. National Instruments has a product for mathematical
analysis, HiQ, that can be used in conjunction with
LabView.

in near real-time. Since the control SW basically runs
in a loop on dedicated CPUs there are no issues with
timeliness unless overload occurs.

2 EXPERIMENTS EVALUATED

Of the various experiments conducted over the last
decade we have chosen the following experiments to
demonstrate the different solutions:

• Mega-torque
• ABB-robot
• Cybership I (Model ship)
• Passivity based control of asynchronous AC-

motor
• Cybership II (Model ship)
• GPS/INS laboratory
• 3DF Helicopter lab and Magnetic levitation lab
• CyberEagle

2.1 Mega-torque and ABB-robot

First we present two laboratories that were implement-
ed using purely manual methods.

Mega-torque: In the early nineties we connected 2
large DC motors with a rubber-band loop made more
flexible with a spring as part of it. Here one motor gave
variable load, while the other should keep constant po-
sition/speed, depending on the experiment. This was
designed as an educational lab for graduate students in
control theory. Unfortunately the runtime system cho-
sen was MS-DOS, where the control-system was sup-
posed to be implemented as interrupt routines attached
to the timer interrupt. The time used by the students
was nearly exclusively spent on the intricacy of creat-
ing interrupt routines, how to use floating point opera-
tions inside these routines in a safe way, and with
details of reprogramming the 8253 timer in a PC. In
other words, the learning goals were not reached, and
the teaching assistants spent far too much time on de-
veloping source-code stubs needed. We had already
used VxWorks in several larger projects, but at the
time, this was deemed too expensive, too difficult to
use with the requirement of using UNIX workstations,
and overkill for this project. This lab is no longer in
use, and is mentioned here as a prime example of how
not to do it.

ABB-robot: This robot had a control system running
VxWorks and was used for several experiments relat-
ed to graduate/Ph.D studies in the late eighties/early
nineties. This was a cross-development system where
a Solaris workstation was used for development, and a
Motorola 68030-based controller mounted in a VME-
rack was used as target. Development tools were, com-

pared to todays standards, very crude; mainly Emacs
for editing, GCC for compiling and GDB for debug-
ging. Although we don’t use this robot now, there is no
obstacle keeping us from using Matlab and Simulink/
RTW together with a new VxWorks version and up-
dated BSPs, for a more modern approach.

2.2 Cybership I / Passivity based control of AC motor

Both of these projects used DSPACE as a main part of
the solution.

Cybership I: This project was started around 1995,
and was completed in its final form in 1998. The ex-
perimental setup consists of a basin 6x10m2 with wind
and wave generators, a model-ship with 4 thrusters lo-
cally controlled by a Motorola 68HC11, an infrared
camera system consisting of 3 cameras connected to a
black-box computer which computes the position of
the ship, a PC running Windows NT and Matlab/
Simulink, and finally the DSPACE system which runs
the control algorithms, resulting in set-points trans-
ferred by radio-link to the ship.

The use of Simulink has been a great success for stu-
dent education in non-linear ship control systems, al-
ready when the model was run by cable-control.
Everything was built from scratch, and the effort to
create both the HW and the SW used in the ship was in
the area of 500 hours. Late in the project, it was dis-
covered that the intended mechanism for handling the
radio-transmission and control based on this was fatal-
ly flawed.

The DSPACE system did what was expected, but of-
fered some problems regarding information on how to
handle the position-information from the camera sys-
tem delivered on a RS232 serial line.

ABB-robot running VxWorks

Passivity based control of asynchronous AC-motor

Around 1993-1995 common PCs were not yet power-
ful enough to run the control algorithms for this kind
of experiment. Here we used Matlab/Simulink/RTW
with the DSPACE system. In-house our challenge was
to make the electronics interfacing the DSPACE I/O
cards with low noise levels in presence of a difficult
RFI/EMC environment, as well as taking care of user
safety in presence of high voltages. Although the
DSPACE system was costly in acquisition, no time
was spent in traditional hand-coding for this system,
and the DSPs were fully capable of coping with the
short periods required, even when running computa-
tionally intensive algorithms. For this experiment the
choice of SW solutions was the right at the time,
whereas for the HW we were left with little choice.
This shows that for some advanced experiments off-
the-shelf equipment may not be available, so one must
either have the required expertise in-house, or be pre-
pared to pay for external development.

2.3 Cybership II

Equipped with the knowledge of what went wrong,
and what was most time-consuming, the next version
of our ship was built in the period 1999 to 2001 with
as much COTS equipment as possible, both for HW
and SW. A Pentium class PC/104 embedded computer
with commercial electrical driver cards for both pro-
peller speed and the step motors for rudders. The radio
communication is now based on commercial1 2.4GHz
tranceivers interfaced directly to ordinary Ethernet
cards. We chose QNX ver 4.25 as RTOS with OPAL-
RT together with Matlab/Simulink.

Our use of ordinary Ethernet with TCP/IP for commu-
nication between the computer equipment made it pos-

sible to easily integrate a new position system based
on hardware with drivers and run-time system only
available for Windows 98, something that obviously
required its own dedicated PC. The drivers for the I/O
cards used vere not available, nor supported in any
way by OPAL-RT. Therefore a consulting company
was hired to write these.

An interesting observation in this project, is that after
some time of running different experiments, the main
body of code has been hand-coded in C, and refer-
enced in the Simulink system as external code. This is
also the case for the main body of purely mathematical
functionality.

2.4 GPS/INS laboratory

In order to study algorithms for integrating GPS infor-
mation with INS measurements we have built a labo-
ratory consisting of a Chrysler Voyager with several
programmable GPS receivers connected to industrial-
ly hardened PCs with RS232 serial communication,
and an advanced Litton IMU fiber-optic gyro with ad-
ditional accelerometers connected to one of the PCs by
RS485 serial-line SDLC communication.

Apart from the user interface, which is built with Lab-
View, we used a software solution almost identical to
the one used in the Cybership II. Here the very time-
critical handling of the SDLC protocol required exten-
sive knowledge of both the inner workings of QNX
regarding memory, DMA and interrupt handling, and
the ability to extract enough information from several
sources about the actual circuits used in the SDLC PC-
I/O card in order to write working code. In this case
there was a QNX driver already written, and not just a
simple in/out interface code for Simulink, which was
the case for the Cybership II. Although the SW should
have been the same, a strange error in serial communi-
cation with the GPS receivers happened. Seemingly
random bytes disappeared from the information pack-
ages received. This was later shown to be caused by
the third-party tool OPAL-RT having switched com-
munication mode from raw to “terminal editing”,

1. Not the 802.11b standard though, we chose equipment
from Breeze.com, due to their longer range, which might be
useful for experiments done outdoors.

Cybership II, PC based control system inside The GPS/INS laboratory

without any of us ever knowing when that happened.
The same phenomenon happened for this lab as for the
Cybership II. After some time, most of the code has
been written manually. Still, the functionality of easily
replacable parts of the system through the Simulink in-
terface, makes us believe that this was still the right
choice of software system.

2.5 3DF helicopter lab and Magnetic levitation lab

Both of these laboratories are purely for educational
purposes, and had to be duplicated to make them avail-
able for several students at the same time,

3DF Helicopter: This is an experimental setup bought
from Quanser consulting. The code is generated from
Matlab/Simulink/RTW/WinCon-RTW addition, and
runs on Windows NT with the RTX extension from
VenturCom, which is used in our real-time program-
ming class for graduate students. This combination
was also supported by Quanser consulting. Apart from
some problems in some of the special power supplies
delivered, something which required our inhouse ex-
pertise in electronics to find and correct, these experi-
ments have been used heavily over 2 years now, with
the students focusing on linear control theory without
having to worry about implementation questions. Al-
though the price for each experimental setup might
seem steep, approx. 10.000 $US plus a powerful PC,
we have 5 identical versions of this lab.We believe this
costed far less, and took less time to complete, than
what would have been the case if we instead had our
own electrical and mechanical workshop to implement
something similar.

Magnetic levitation: Based on our experiences with
the 3DF helicopter lab, we decided to use this solution
for teaching non-linear control theory. We bought 3
kits to do magnetic levitation experiments, and used
the exact same SW configuration. This has nearly been
as un-eventful as expected. What we did learn, howev-
er, is the necessity of version control, especially when

dealing with third-party vendors. A different Windows
NT Service Pack resulted in the need of a different ver-
sion of RTX. The timing requirements for such an ex-
periment is presented in (Verde C. and Fragaso, J.L.
1997).

2.6 CyberEagle

In this project being done now in 2001-2002, a heli-
copter with a gasoline fueled engine with the ability to
lift a payload of approx. 2 kg has been equipped with
low-cost accelerometers and some Atmel AVR micro-
controllers that collect measurements from these, and
a PC/104 card connected to a IEEE 802.11b wireless
LAN that runs VxWorks1 as well as the necessary
equipment to control the hobby-type of servos found
on model aircrafts such as this. The control system is
developed on a portable computer running Windows
NT and Simulink. RTW downloads the algorithms
over the wireless LAN to the helicopter, and receives
and displays monitored variables in the Simulink user
interface.

Obviously a lot of traditional development both in HW
and SW has been required for the microcontrollers and
the instrumentation on the model. In addition such a
system really requires that one learns quite a lot about
the target OS used (VxWorks), even if this in principle
is supported directly by RTW.

3 DISCUSSION

For some of our experiments we see that even if we
use Simulink as the main tool, most of the code is writ-
ten in a traditional way, and called as S-functions in
the Simulink models. This is not true just for interface
code, but also for mathematically oriented functional-
lity where complexity is high. In a way this seems to
contradict the assumed benefits of using Simulink and
RTW. Still we realize that most of the professors and

Helicopter laboratory

1. Where the VxWorks kernel is in fact downloaded with
the radiolink.

CyberEagle, a computer controlled free flight
helicopter.

Ph.D-students in control theory, at least at our depart-
ment, do not have the necessary computer engineering
and programming skills to implement their systems
without the guidance of the codification framework
given, and the system configuration help achieved by
using RTW. A lot of work is done in simple diagrams
created only in Simulink, and for changing parameters
and interconnections, Simulink gives us a much faster
turn-around time, as well as the obvious advantage of
being less prone to errors.

In general, we have made the observation that systems
and tools for rapid development of control systems
SW accelerates development compared to traditional
translation of models by hand-coding, but only if noth-
ing goes wrong. When the unexpected occurs, we have
in several occations found documentation lacking,
both in detail and accuracy, and that the required
knowledge of both the inner workings of all products
as well as their interaction can become a major road-
block.

Also, many of the tools needed are from third-party
vendors. In some systems we have ended up with as
much as 5 different vendors of software products. This
provides some interesting problems regarding both lo-
calization of errors and problems caused by the prod-
ucts requiring an exact version of each of the other
products after an upgrade.

4 CONCLUSIONS

Our experiences show us that modern tools for rapid
development of SW running on COTS PC-compatible
hardware is a definite must-have for doing experimen-
tal work on the actual physical setup. However, for a
one-off project the effort is probably no less than with
traditional coding. And one must be aware of the need
for writing low-level drivers and interface code in ei-
ther case. Learning the idiosyncrasies of all the in-
volved products takes both time and dedication.
Flexibility of the former solution means that this is still
what we advise, and use ourselves for new projects. If
the same technological choices are made for several
experiments large savings in development time is
shown in the following experiments. For student text-
book experiments our advice is to buy as complete
systems as possible, e.g. both HW and SW setup in-
cluded, and only expose the Simulink interface to the
students, as this gives excellent opportunities to focus
on the theoretical aspects.

Further work: Although we will continue to use our
“buy” solution for student labs where possible, and our
Simulink/OPAL-RT/QNX choice for advanced exper-
iments, we are now also starting to use the Simulink/
VxWorks combination in projects where industry is
involved. This is essentially because of the demand

caused by the large market share VxWorks holds for
control system applications in Norwegian industry.

5 REFERENCES

Baracos, P., G. Murere, C.A. Rabbath and W. Jin
(2001). Enabling PC-Based HIL Simulation for
Automotive Applications. IEEE IEMDC2000, pp.
721 - 729.

Grega, W., K. Kolek and A. Turnau (1999). Rapid
Prototyping Environment for Real-Time Control
Education. Real-Time Systems Education III,
1998. Proc., pp. 85-92

Quanser Consulting, 102 George Street, Hamilton,
Ontario CANADA L8P 1E2, Tel: (905)570-1906,
http://www.quanser.com

Rabbath, C.A., M. Abdoune and J. Belanger (2000).
Effective Real-time simulations of event-based
systems, Proc. of the 2000 Winter Simulation
conference. pp. 232-238.

Schmid, Chr. (1992) Real-Time Control with
CADACS-PC, in: M. Janshidi (ed.), Recent
Advances in Computer-Aided Control Systems
Engineering, Elsevier, pp. 337-355.

Teng, F.C. (2000) Real-time control using Matlab
Simulink, 2000 IEEE Int. Conf. on Systems, Man,
and Cybernetics, Vol. 4 , 2000 pp. 2697-2702.

Verde C. and J.L. Fragaso (1997). Implementation of
controllers for a magnetic systems of laboratory,
Proc. of the 4th IFAC Symposium on Advances in
control Education, 1997, pp. 375-378.

Yao, Z., N.P. Costescu, S.P. Nagarkatti and D.M.
Dawson (2000). Real-Time Linux Target: A
MATLAB-Based Graphical Control Environment.
Proc. of the 2000 IEEE Int. Symp. on Computer-
Aided Control System Design, pp. 173-178.

Yodaiken, V. and M. Barabanov (1997). Real-time
Linux, Linux Journal, Feb. 1997.

