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Abstract: This paper presents a linearized approach for the controller design of the
shape of the output probability density functions for general stochastic systems. A
square root approximation to the output probability density function is realized by a
set of B-spline functions. This generally produces a nonlinear state space model for
the weights of the B-spline approximation. A linearized model is therefore obtained
and embedded into a performance function that measures the tracking error of the
output probability density function with respect to a given distribution. By using this
performance function as a Lyapunov function for the closed loop system, a feedback
control input has been obtained which guarantees the closed loop stability and realizes
the perfect tracking. The algorithm described in this paper has been tested on a
simulated example and desired results have been achieved. Copyright IFAC2002
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1. INTRODUCTION

Apart from the well developed minimum variance
control, LQG and mean value control (Astrom,
1970), recently two new methods are developed:
i) closed loop probability density function control;
and ii)output probability density function control.
The first approach was developed by Karny in
1996. In this approach, the closed loop probability
density function is formed as a joint probabil-
ity density function between the system and a
randomized controller, which is characterized by
a probability density function. A recursive algo-
rithm has been established for the generation of
the probability density function of the controller.
However, this randomized controller is difficult to
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realize as an ’optimal’ crisp control input cannot
be generally produced from non-symmetric proba-
bility density functions of the controllers obtained
from this algorithm.

In the second groups of approaches (Wang,1999;
2000), only the shape control of the output proba-
bility density function (not the closed loop proba-
bility density function) is addressed. The purpose
of control design is to select a crisp control in-
put so that the shape of the output probability
density function of the stochastic system is made
as close as possible to a given distribution func-
tion. Different from the work of Karny (1996), in
these approaches (Wang,1999; 2000), the inputs
of stochastic systems are taken as deterministic
variables, and the outputs are taken as the mea-
sured probability density functions of the system
output.
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The linear B-spline approximations have been
used to approximate the probability density func-
tion of the system output directly. If the basis
functions are fixed, then the weight of the ap-
proximation can be regarded as only being related
to the control input. However, the main problem
of linear B-spline approximation of probability
density function is that the weight training tra-
jectories can sometimes be partly negative. To
overcome this difficulty, instead of approximating
the probability density function directly, in Wang
(2000) it has been proposed that the square root
of the output probability density function should
be approximated by the B-spline functions. How-
ever, to guarantee the stability of the closed loop
system, a strict constraint has to be included for
the dynamic part of the system. To improve this,
a global Lyapunov based design has been made
(Wang, 2001), where a nonlinear controller is for-
mulated. However, the obtained control algorithm
is very complicated and can cause non-smooth
responses for the closed loop system. Improvement
is therefore necessary by developing alternative
design methods.

In this paper, we consider the use of a linearized
model, where Lyapunov based design is still used.
In fact, the Lyapunov function selected in this
paper is the performance function which measures
the difference between the output probability den-
sity function and the given distribution.

2. PRELIMINARIES ON SQUARE ROOT
PDF MODEL

In this section, the formulation of the square
root model by Wang et, al (1999, 2001) will
be described for the completeness of this paper.
For this purpose, let us denote v(t) ∈ [a, b] as
a uniformly bounded random process variable
representing the output of a dynamic stochastic
system, and u(t) ∈ R1 as the control input vector
which controls the distribution of v(t), then v(t)
can be characterised by its probability density
function γ(y, u(t)) which is defined by

P (a ≤ v(t) < ξ, u(t)) =
∫ ξ

a

γ(y, u(t))dy (1)

where P (a ≤ v(t) < ξ, u(t)) represents the proba-
bility of output v(t) lying inside the interval [a, ξ)
when u(t) is applied to the system. This means
that the shape of probability density function
γ(y, u(t)) of v(t) is controlled by u(t).

Assume interval [a, b] is known and the prob-
ability density function γ(y, u(t)) is continuous
and bounded, then using the well known B-spline

neural network, the following square root approx-
imation is obtained√

γ(y, u(t)) =
n∑

i=1

wi(u(t))Bi(y) + e0 (2)

where wi(u(t)) are the weights which depends
on u(t), Bi(y) are the pre-specified basis func-
tions and e0 represents the approximation error.
Indeed, the above approximation is realisable in
practice. This is largely due to the development
of sensor techniques, where in papermaking prob-
ability density functions can now be easily mea-
sured (Wang, 2000).

To simplify the formulation, it is assumed that
e0 = 0. This means that only the following
equality √

γ(y, u(t)) =
n∑

i=1

wi(u(t))Bi(y) (3)

will be considered. Since equation (3) means that

γ(y, u(t)) = (
n∑

i=1

wi(u(t))Bi(y))2 ≥ 0 ∀y ∈ [a, b]

(4)
it can be seen that the positiveness of γ(y, u(t))
can be automatically guaranteed. Denote:

C0(y) = (B1(y), B2(y), ..., Bn−1(y)) ∈ Rn−1

V (t) = (w1, w2, ..., wn−1)T ∈ R1×(n−1) (5)

then it can be shown that at time t, the square
root of the output probability density function
becomes√

γ(y, u(t)) =
[
C0(y) Bn(y)

] [
V (t)
wn(t)

]
(6)

However, since γ(y, u(t)) is a probability density
function, the following equality∫ b

a

γ(y, u(t))dy =
∫ b

a

√
γ(y, u(t))

2
dy = 1 (7)

should always be satisfied. Using equation (7), it
can be seen that the following equality∫ b

a

(C0(y)V (t) + wnBn(y))2dy = 1 (8)

should hold for any set of weights and basis
functions. This leads to

V T (t)Σ0V (t)+2Σ1V (t)wn(t)+Σ2w
2
n(t) = 1 (9)

where

Σ0 =
∫ b

a

CT
0 (y)C0(y)dy (10)

Σ1 =
∫ b

a

C0(y)Bn(y)dy (11)

Σ2 =
∫ b

a

B2
n(y)dy (12)



Equation (6) gives an instantaneous expression
of the considered probability density function at
time t. However, in many systems, the actual
probability density function of the system output
is dynamically related to the control input u(t).
As such, the following dynamical relationship is
considered:

V̇ (t) = AV (t) + Bu(t) (13)

where A and B are known matrices of appropri-
ate dimensions. It can be seen that only n − 1
weights are independent and wn is nonlinearly
related to V (t) to satisfy the main constraint in
equation (7). Instead of treating this constraint
independently, wn(t) can be arranged such that it
changes dynamically to satisfy this constraint. For
this purpose, it is necessary to calculate the first
order derivative for both sides of equation (9), this
leads to a dynamics of wn(t) as follows

V̇ T (t)Σ0V (t) + V T (t)Σ0V̇ (t) + 2Σ1V̇ (t)wn(t)

+2Σ1V ẇn(t) + 2Σ2wn(t)ẇn(t) = 0 (14)

By re-arranging (14), it can be further obtained
that

ẇn(t) =
f1(wn(t), V (t), u(t))
2Σ1V (t) + 2Σ2wn(t)

f1 =−V T (t)(AT Σ0 + Σ0A)V (t) +

2Σ1AV (t)wn(t) +

2(Σ1Bwn(t) + BT Σ0V )u(t)

= f(wn(t), V (t), u(t)) (15)

Σ1V (t) + Σ2wn(t) =
∫ b

a

Bn(y)
√

γ(y, u(t))dy 6= 0

(16)

Therefore, the relationship between all the weights
and the input can be given in a compact form as
follows: [

V̇ (t)
ẇn(t)

]
=

[
AV (t) + Bu(t)

f(wn(t), V (t), u(t))

]
(17)

It can be seen that equation (17) is a nonlinear
state space equation which, together with√

γ(y, u(t)) =
[
C0(y) Bn(y)

] [
V (t)
wn(t)

]
(18)

forms the mathematical expression of the stochas-
tic system to be considered in this paper. Of
course, to satisfy (9), the initial values of V (t)
and wn(t) must satisfy the nonlinear algebraic
constraint in (9). It is also important to notice
that the algebraic constraint (9) is equivalent to
(15) only if A is a stable matrix.

3. THE CONTROL ALGORITHM

As discussed in Section 2, the purpose of the
control algorithm design is to choose control input
{u(t)} such that the actual probability density
function of the system output is made as close as
possible to a pre-specified continuous probability
density function g(y), which is defined on [a, b]
and is independent of {u(t)}. This is equivalent
to choosing {u(t)} such that

√
γ(y, u(t)) is made

as close as possible to
√

g(y). To formulate the
required performance function, a linearised model
needs to be used. For this purpose, the following
new state vector and a new matrix C(y) are
defined:

X(t) =
[

V (t)
wn(t)

]
, C(y) =

[
C0(y) Bn(y)

]
(19)

As a result, the square root of the output prob-
ability density function and the pre-specified dis-
tribution function g(y) can be expressed in terms
of B-spline basis functions to give

√
γ(y, u(t)) = C(y)X(t)√

g(y) = C(y)Xref (20)

where Xref is a constant vector deduced from the
pre-specified

√
g(y). Using the two new vectors in

(20) and denoting u0 is the input which maintains
X(t) at Xref , then the error vectors X̃ and ũ can
be defined as

X̃(t) = X(t)−Xref and ũ(t) = u(t)− u0 (21)

By taking Xref and u0 as the equilibrium point,
then from (17) it can be seen that the following
equations must be satisfied.

ĀXref + Bu0 = 0 and f(Xref , u0) = 0 (22)

where Ā = [A, 0]. This is simply because the
dynamic relationship between state vector X and
u can be given as

Ẋ(t) =
[
ĀX(t) + Bu(t)
f(X(t), u(t))

]
(23)

Since Xref is a constant vector once g(y) is
selected, in terms of X̃, the state space equation
(17) of the system becomes

˙̃X = Ẋ =
[
ĀX + Bu
f(X, u)

]
(24)

which can be further simplified to give

˙̃X =
[
Ā(X −Xref + Xref ) + B(ũ + u0)

f(X −Xref + Xref , ũ + u0)

]
=

[
ĀX̃ + Bũ + ĀXref + Bu0

f(X̃ + Xref , ũ + u0)

]
(25)



where ĀXref +Bu0 = 0. Since f(X̃+Xref , ũ+u0)
is differentiable (see (15)), it can be further ex-
pressed using the multivariable Cauchy’s formula
to give

f(X̃ + Xref , ũ + u0) =
∂f

∂X
|(Xref +η1X̃,ũ+u0) X̃

+
∂f

∂u
|(Xref ,u0+η2ũ) ũ (26)

where 0 < η1 < 1 and 0 < η2 < 1 are the
two numbers indicating that the first order partial
derivatives in (26) are taken at (Xref + η1X̃, ũ +
u0) and (Xref , u0 + η2ũ), respectively.

Using (23)-(26), the dynamics of X̃ can be finally
expressed as

˙̃X = ÃX̃ + B̃ũ (27)

where the linearized parameter matrices are given
by

Ã =
[
Ā,

∂f

∂X
|(Xref +η1X̃,ũ+u0)

]
B̃ =

[
B

∂f

∂u
|(Xref ,u0+η2ũ)

]
(28)

Since the purpose of the controller design is to
realise a good tracking performance of the output
probability density function with respect to the
given distribution g(y), the following performance
function can be defined:

J =
∫ b

a

(
√

γ(y, u(t))−
√

g(y))2dy +R(u(t)−u0)2

(29)
where the first term characterises the difference
between γ(y, u(t)) and g(y), and the second term
represents a constraint on the control input. R is
a pre-specified weighting scaler. By substituting
(27) - (28) into (29), it can be further formulated
that

J =
∫ b

a

X̃(t)T C(y)T C(y)X̃(t)dy + Rũ(t)2 (30)

In this paper a new approach will be used by
taking the performance function J in (29) as a
Lyapunov candidate function for the closed loop
system. As a result, the controller design can be
formulated to give a stable and good tracking
performance so long as it can guarantee that
J̇ ≤ 0. Since the integral part of the equation (30)
considers only CT (y)C(y), J can be re-written as

J = X̃(t)T QX̃(t) + Rũ(t)2

Q =
∫ b

a

C(y)T C(y)dy (31)

It is assumed that the basis functions are chosen
such that Q becomes positive definite. Indeed this
can be regarded as a condition for choosing C(y).

Under the assumption that the linearised system
(27) is stable, a controller should be designed
which guarantees that Lyapunov function J for
the closed loop system is always decreasing. For
this purpose, the first order derivative of J with
respect to time t is calculated to give:

dJ

dt
= ˙̃XT QX̃ + X̃T Q ˙̃X + 2Rũ ˙̃u (32)

Using (27), the first order derivative of Lyapunov
function J can be written in a new format as
follows:

dJ

dt
= (X̃T ÃT + B̃T ũ)QX̃ + X̃T Q(ÃX̃ + B̃ũ)

+ 2Rũ ˙̃u = X̃T (ÃT Q + QÃ)X̃

+ 2B̃T QX̃ũ + 2Rũ ˙̃u (33)

Assuming that Ã is stable, then it can be shown
that ÃT Q+QÃ < 0. As such, by defining another
positive definite matrix P = PT > 0 such that

ÃT Q + QÃ = −P (34)

it can be further obtained that

dJ

dt
= −X̃T PX̃ + 2B̃T QX̃ũ + 2Rũ ˙̃u (35)

To select u(t) such that J̇ ≤ 0, it is sufficient to
make

2B̃T QX̃ũ + 2Rũ ˙̃u = 0 (36)

This leads to the required control input as

u̇ = ˙̃u = − 1
R

(B̃T QX̃) (37)

From equation (37), it can be seen that the ob-
tained control input is a linear feedback one di-
rectly related to X̃. To retrieve X from

√
γ(y, u(t)),

we need to re-consider :√
γ(y, u(t)) = C(y)X (38)

By multiplying this equation with CT (y) from left
and integrating both sides from a to b, it can be
obtained that∫ b

a

CT (y)
√

γ(y, u(t))dy = QX (39)

Since Q is assumed non-singular, X can be solved
from equation (39) to give

X = Q−1

∫ b

a

CT (y)
√

γ(y, u(t))dy (40)



Using definition X̃ = X − Xref , it can be seen
that X̃ can be written as

X̃ = Q−1

∫ b

a

CT (y)[
√

γ(y, u(t))−
√

g(y)]dy

(41)
As a result, the final form of the control input,
which stablises the closed loop system, can be
expressed as:

ξ̇ =
−1
2R

(B̃T

∫ b

a

CT [
√

γ(y, u)−
√

g(y)]dy (42)

u = ξ (43)

This is a feedback control which receives the feed-
back signal directly from the measured output
probability density function, where u is indepen-
dent of u0. To summarise, the following theorem
can be obtained:

Theorem. (Main Result) Suppose that Ã in
(27) is a stable matrix and Q in (31) is non-
singular, then the control input given by (42)-(43)
stablises the closed loop system and guarantees
that

lim
t→+∞

γ(y, u(t)) = g(y),∀y ∈ [a, b] (44)

Proof: Using the first order Lyapunov function
given by (35), it can be seen that if

γ(y, u(t)) 6= g(y) (45)

then the following inequality strictly holds

dJ

dt
< 0 (46)

This means that J will continue to decrease. Since
J is always positive and has a lower bound (i.e.,
0), there is a J0 =constant such that

lim
t→+∞

J = J0 (47)

This means that in the end

lim
t→+∞

X̃ = 0 (48)

As a result, limt→+∞ γ(y, u(t)) = g(y).

The control algorithm in (42) and (43) directly
relates to the weighted integration of the square
root of the measured probability density function.
It is realisable in real-time so long as Q is a non-
singular matrix.

4. DISCUSSIONS

The system considered here is a known dynamical
system, where the parameter matrices A and B
in equation (28) are known and fixed. This limits

the application of the proposed methods to un-
known systems. Indeed, recently two new control
methods have been developed (Wang, 2001, 2002)
as

• adaptive control that combines the param-
eter estimation with the control schemes in
this paper;

• the control of random parameter systems
(Wang, 2002).

In the first case, since the weights of the B-spline
expansion can be directly calculated from equa-
tion (40), the linear part of the weight system (13)
can be regarded as an input-output model for an
MIMO ARMA system. This means that one can
directly use the well known recursive least squares
method to estimate (A,B) parameters. Using the
estimated parameters the nonlinear function in
equation (15) can still be defined. As such, the
parameters in the linearized equation (27) can also
be calculated at each time instant. This means
that the estimated parameters can be naturally
combined into the control equation (37), leading
to an adaptive control strategy.

Especially in the second approach (Wang, 2002),
a random ARMAX model has been considered as

yk =
n∑

i=1

ai(k)yk−i +
m∑

j=1

bj(k)uk−j + ωk (49)

where yk ∈ R1 and uk ∈ R1 are one dimen-
sional output and input of the system, respec-
tively, and ai(k), (i = 1, 2, · · · , n), bj(k), (j =
1, 2, · · · ,m), and ωk are all independent and uni-
formly bounded random parameters characterized
by their known probability density functions given
by

P{a ≤ yk < ξ}=
∫ ξ

a

γy(x, uk)dx (50)

P{a ≤ ai < ξ}=
∫ ξ

a

γai(x)dx (51)

P{a ≤ bj < ξ}=
∫ ξ

a

γbj(x)dx (52)

P{a ≤ ωk < ξ}=
∫ ξ

a

γω(x)dx (53)

Since at the current sample time k the system
inputs and outputs in the past are measured, yk+1

is in fact a linear combination of independent
random parameters ai(k) and bj(k), as such an
(n+m+1)-folder convolution has to be used to
calculate the probability density function of yk+1.
In Wang (2002), the well known Laplace trans-
formation has been applied to all the probability



density functions and thus transferred the (n+m)
convolution into a simple algebraic equation.

Of course, one can use the square root model in
this paper to express further the Laplace trans-
ferred probability density functions. This again
leads to the design of Lyapunov based control
algorithms that are similar to the one proposed in
this paper. This belongs the area of future studies.

5. CONCLUSIONS

In this paper, a control algorithm has been devel-
oped for the shape control of the output prob-
ability density function for dynamic stochastic
systems, where B-spline functions are used to ap-
proximate the square root of the measured output
probability density function. A performance func-
tion has been defined and also used as a Lyapunov
candidate function for the closed loop system.
Under the conditions that the linearised system
is stable and that the basis functions are se-
lected such that matrix Q in (31) is non-singular,
an output feedback control (42)-(43) is obtained
which stablises the closed loop system, and makes
the measured output probability density function
tends to its target distribution asymptotically.
Discussions are made on both adaptive control
extension for unknownm, but fixed, parameter
matrices A and B, and the random parameters
composed ARMA systems (Wang, 2002).

The output probability density function control is
a new research area that was originated through
the examples seen in paper making systems, chem-
ical process engineering (i.e., the particle size
distribution control and polymerization systems),
food processing (Campbell and Webb, 2001) and
combustion flames distribution control in power
generation. In the past, these systems are difficult
to control due to the lack of sensors that can
measure the output probability density functions.
However, due to the fast development of sensing
technology and image processing, these output
probability density functions are now measurable.
This provides a good opportunity to develop ef-
fective on-line control strategies that control the
shape of the output probability density functions.
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