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Abstract: In this paper an algorithm is presented for deriving the explicit robust model 
based optimal control law. The system is represented by linear, discrete-time, time-
invariant model with constraints on control and state variables and a quadratic objective 
function. Using the fundamentals of flexibility analysis the algorithm proposed in this 
paper derives the robust optimal control law off-line as a function of the state of the 
process, thus eliminating the repetitive solution of on-line optimisation problems. Hence, 
the on-line implementation is reduced to a sequence of simple function evaluations. The 
key advantageous features of the algorithm are demonstrated via an illustrative example. 
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1. INTRODUCTION 

 
Model Predictive Control (MPC) refers to a class of 
computer control algorithms that compute a sequence 
of control variable adjustments to optimise the future 
behaviour of the plant over a specified time horizon. 
MPC has been gaining a lot of support in industrial 
applications, primarily due to its ability to explicitly 
incorporate operational restrictions, the so-called 
constraints, on state and control variables into the 
controller calculation. This makes it particularly 
attractive in the process industries, where the 
economical operating point typically lies at the 
intersection of constraints and the processes are 
sufficiently slow to allow its implementation (for 
reviews see Biegler and Rawlings, 1991; Mayne, et 
al., 2000). Classical MPC schemes determine the 
appropriate control law via on-line optimal control    
calculations based   on  measurements  that  represent     
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the current process state. An approach for moving 
off-line the rigorous calculations, delimiting thus the 
applicability of MPC, has recently been reported 
(Pistikopoulos, et al., 2000). It is based on recently 
proposed parametric optimisation algorithms, 
developed in our research group at Imperial College, 
with which the explicit mapping of the optimal 
control actions in the space of the state measurements 
can be achieved.  
 
The performance characteristics of MPC algorithms 
depend on their feasibility, stability and robustness 
properties. When a control system is said to be 
robust, it is meant that stability and feasibility are 
maintained for a specific uncertainty range over the 
considered time horizon. Inevitably, operation of 
manufacturing processes is subject to variations and 
uncertainties. These varying conditions demand 
development of robust MPC algorithms to ensure 
economical and safe operation. Min-max robust 
MPC was first introduced by Campo and Morari 
(1987) and further developed by Allwright and 
Papavasiliou (1992) and Zheng and Morari (1993). 
Kothare, et al. (1996) optimize robust performance 
for polytopic/multi-model and structured feedback 
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uncertainty whereas Scokaert and Mayne (1998) for 
input disturbances. Bemporad and Garulli (1997) 
consider the worst input disturbance over the 
prediction horizon and enforce constraint fulfillment 
for all possible disturbance realizations. Badgwell 
(1997) proposed a robust MPC algorithm for stable, 
constrained, linear plants with multi-plant 
description. Using Lyapunov arguments, robust 
stability can be proved when a cost valued function 
based on stability constraint is imposed. Moreover, 
invariant ellipsoidal terminal sets can be extended to 
robust MPC. Invariant terminal ellipsoid sets lead to 
quadratically constrained quadratic programs, which 
can be solved through interior-point methods (Lobo, 
et al., 1997). Alternatively, polyhedral robustly 
terminal invariant sets can be determined (Blanchini, 
1999), that lead to linear constraints. However, all 
the above methodologies are generally based on 
optimization problems that have to be solved on-line. 
 
In this paper, the implementation and development of 
a new generic robustness synthesis framework for 
MPC controllers based on the concepts of flexibility 
analysis (Pistikopoulos and Grossmann, 1988) and 
critical disturbance values for linear, time-invariant, 
discrete-time process models is presented. Using 
parametric optimization, the robust control law is 
derived as a function of the process states, thereby 
reducing the repetitive on-line optimizations to 
simple function evaluations. The rest of the paper is 
organized as follows. In the next section the 
mathematical description of the above problem is 
presented. In the following section the theoretical 
framework of this approach is presented and the 
description of the solution technique to obtain the 
robust control law as a function of the state variables. 
In section 4, an example is presented to illustrate the 
basic idea of this work and in section 5 the derived 
conclusions are discussed. 
 
 

2. PROBLEM FORMULATION 
 

The mathematical representation of a process system 
described by linear, time-invariant, discrete-time 
process model and subject to constraints as well as 
logical rules is considered:                  
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where t  refers to time and  to the time instants 
ahead, X is the vector of process states, 

 the vector of measurable outputs, 
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 the vector of control inputs, W  a 
vector to describe persistent, time varying 
disturbance inputs and the matrices 

sℜ⊂ ∈tw ⊂

CBA ,,  and H  
are of dimensions n , n× sn × , nr ×  and qn ×  

respectively. The sets X, U and W are defined by 
constraints of the following form:  
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which are included in h  along with other 
performance specification constraints;  is the  
control horizon and superscripts  and U  refer to 
lower and upper bounds respectively. 

cN
L

 
From now on, a disturbance sequence satisfying 

∈tw W⊂  will be called admissible. Throughout 
this paper, the following assumptions hold: 

qℜ

 
• The pair  is stabilizable. ),( BA
• The sets X, U and W contain the origin as an 

interior point. 
• U and W are compact sets. 
 
Based on this information the initial MPC 
formulation is set as follows: 
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where J ( ))(, txU , the objective function, is a valued 
cost function that depicts the process economics and 

 is the prediction output horizon. The control 
objective is to regulate the final state to the origin. 
However, the presence of persistent disturbance 
acting on the system has the direct meaning that it is 
not possible to guarantee asymptotic regulation, i.e. 

. Therefore, the control objective 

effectively becomes to steer the final state to a 
neighborhood as close as possible to the origin. In 
accordance, problem (3) has to be solved repetitively 
on-line for each time interval whenever a new state 
estimate becomes available. In the next section an 
approach is proposed, which avoids the on-line 
computational burden by obtaining the control 
variables being robust to uncertainty as an explicit 
function of the state variables. 
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3. DERIVATION OF ROBUST CONTROL LAW 
 
The inherent uncertainty embedded in mathematical 
models as well as the numerous uncertain conditions 
present in every plant, provide a challenge to look for 
robust algorithms within the framework of model 
predictive control. A robust solution is characterized 

     



by its ability to guarantee stable and feasible 
operation over a specific time horizon.  
 
 
3.1 Stability 
 
Although recently the concept of robust stability 
(e.g. Campo and Morari, 1987; Allwright and 
Papavasiliou, 1992; Scokaert and Mayne, 1998) is 
adopted for that kind of problems, in this paper, to 
guarantee asymptotic stability in the design of the 
robust MPC algorithm, Lyapunov theory arguments 
are used. Most approaches for proving stability 
follow the ideas of Keerthi and Gilbert (1988), who 
establish that under specific conditions, the valued 
cost function J *(U )),( tt  attained from the optimizer  
is a Lyapunov function for the system. Hence, the 
objective function of the MPC minimization 
algorithm is chosen to be the next, quadratic valued 
cost function as follows: 
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where xQxxQ T
q ⋅⋅=⋅  and it is assumed that 

0fT 0fTRR =QQ = ,  and  detectable. 
The matrix 

),( 5.0 AQ
P  is such that 0fP  and it is chosen to 

be the solution of the Lyapunov equation, 
.    QA+PAP T ⋅⋅=

 
 
3.2 Flexibility and Feasibility Analysis 
 
Previously proposed techniques for designing a 
robust model-based controller rely on either 
minimizing on-line the worst-case cost (e.g. Campo 
and Morari, 1987) or incorporating a set of 
robustness constraints (e.g. Badgwell, 1997). In this 
work however, the issue of robustness is tackled 
using elements of feasibility analysis theory. The 
requirement to ensure feasibility of the MPC solution 
over the whole horizon considered and for the whole 
set of uncertain parameters can be cast 
mathematically as: 
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where  is an index over the set  of the 
constraints. This mathematical statement would 
complicate the solution of an MPC algorithm due to 
its max-min-max form. In order to impose this 
feasibility constraint, a multiperiod-type (Grossmann 
and Sargent, 1978; Grossmann, et al., 1983) 
formulation is adopted in this paper.  

j J

 
Here, using the ideas of Grossmann, et al. (1983) we 
rigorously ensure feasible operation for the MPC 
controller over the specified set of bounded 
uncertainty values and the considered horizon. A 

finite number of critical points, , in -space are 
selected, so that by ensuring feasibility of the 
controller for those points, one can guarantee that the 
feasibility constraint (5) will be satisfied. In 
accordance with Halemane and Grossmann (1981), if 
the constraint functions are jointly convex in  
and , the global and local solutions to the 
subproblem (5) that lead to critical points w  must 
lie at the vertices of the polyhedron W that defines the 
parameter space. This then implies that if the MPC 
controller (4) subject to (1) can be guaranteed to be 
feasible at the vertices of W, it can also be guaranteed 
to be feasible for all  W.  This theoretical 
approach then, allows one to replace the max-min-
max constraint with the next set of constraints: 
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where  is the index over the set of the critical 
uncertainty values as well as the nominal ones, 

i
I .  

 
 
3.3 Robust MPC 
 
The analysis discussed above, results in the next 
formulation: 
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that guarantees robust operation for the considered 
MPC problem, (3), where  is the nominal value 
of the uncertainty considered. 

Nw

 
 
3.4 Multi-parametric quadratic optimisation 
 
Parametric programming is used in operations 
research for addressing parameter variations in 
mathematical programs. The key feature of 
parametric programming, which distinguishes it from 
the classical sensitivity analysis, is that the optimal 
solution is characterized with respect to the full range 
of parameter variations. Programs that depend on a 
vector of parameters are called multi-parametric 
programs. Thus, by treating  as parameters, 
problem (7) is a multi-parametric Quadratic Program 
(mp-QP).  

ox

 
Performing algebraic manipulations on process 
model (1), the following recursive equation is 
derived: 
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Introducing (8) into the objective and the constraints 
in problem (7) and carrying out the appropriate 
substitutions and manipulations the optimisation 
problem (7) is transformed to an equivalent finite 
dimensional problem of the following form: 
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where  are constant matrices 
of appropriate dimensions derived from (8) and (7). 
The solution of this quadratic program for all  
provides a complete map of the robust control 
actions as a function of the current state values at any 
given time instant. A way to perform that would be 
to a priori process a very large number of 
optimisations for different values of . This 
method is prohibitive due to its computational 
intensity and its inability to guarantee accurate 
solutions. On the contrary, parametric programming 
can be used to derive the explicit solution of the 
problem avoiding these computational difficulties. 
Problem (9) is recast as a multi-parametric quadratic 
program (mp-QP) and can be solved with the method 
proposed by Dua, et al. (2002).  
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The solution method for mp-QPs provides a set of V  
piecewise affine profiles (linear expressions) 

 for the robust control law for all admissible 
initial states . The solution is partitioned in the 

- space into a set of regions of optimality  
that are characterized by certain solution properties 
(e.g. activity of inequality constraints, optimal 
solution profile). The final parametric solution 
provides the relation between the control and the 
current state of the system that ensures the robustly 
optimum system regulation. The derived control law 
is proved to be (Dua et al., 2002) piecewise affine 
with respect to the states and is of the form: 
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where is the number of region in the state space, 

,  are matrices and ,  vectors that are 
determined from the solution of the parametric 
programming problem. 
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3.5 Robust MPC Algorithm 
 
The above theoretical analysis can be summarized in 
the following robust MPC algorithm (Kakalis, 2001) 
consisting of four steps: 

Step I: Calculate the critical disturbance values, , 
as described in section 3.2. 

iw

 
Step II: Formulate the initial MPC problem of the 
form (3). 
 
Step III. Use the critical disturbance values, , 
derived from Step I to reformulate (3) into the robust 
MPC problem of the form (7) and use (8) to 
reformulate (7) as an mp-QP (9). 

iw

 
Step IV. Solve program (9) as an mp-QP using the 
method of Dua, et al. (2002) to derive a set of V  
linear parametric solutions u  and corresponding 
regions of optimality in the form of (10) and (11). 
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3.6 Remarks 
 
• This approach (7) to feasibility of the MPC 

controller along with the stability assurance 
showed before leads to robust operation for every 
possible disturbance – uncertainty – realization 
without exploring the complete uncertainty space 
and corresponds to a less conservative control 
action since it minimizes the nominal and not the 
worst-case quadratic cost. 

 
• The critical uncertainty values for systems like (1) 

can be derived by procedures similar to the one 
described in Kakalis (2001), where the “depth” of 
the MPC controller’s feasible region is explored by 
studying the corresponding feasibility functions 
derived using parametric optimisation (Bansal, et 
al., 2000).  

 
 

4. ILLUSTRATIVE EXAMPLE 
 
Consider the next simple SISO example which is a 
second order system with persisting additive, zero 
mean (W ) disturbance considered and where 
discrete-time, state-space representation is given by 
the following model: 
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The task is to regulate this system to the origin while 
fulfilling the following constraints for output horizon 

: 2=yN

                               2.21 ≤≤− ox                          (13)                              
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For illustrative purposes, first consider the nominal 
case ( 0)( =tw ). Solving this problem in the way 
described above, i.e. as an mp-QP, for 
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, ten different control law 
expressions with the corresponding regions of 
optimality are derived, for instance: 
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Performing simulations on these results from the 
starting point , it can be seen in Figure 1, 
that the MPC algorithm indeed regulates the system 
to the origin, without any constraint violation (the 
state constraint (13) is shown in the graph).  
 
Since in the control law derivation no uncertainty 
was taken into account, this algorithm cannot 
guarantee safe operation for all possible operations 
scenarios. Consider, for instance, that a sinusoidal 
type disturbance (with amplitude 0.2) enters the 
system. Then, as it can be seen in Figure 2, the state 
constraint is violated and no control law exists to 
recover the system leading to an undesired constraint 
violation. The remedy for such a case is to design 
robust MPC algorithms that can guarantee safe 
operation for all possible uncertainty –disturbance- 
realizations. To do that, the procedure described in 
section 3 is followed. First, following the procedure 
mentioned in Remark 2, the critical disturbance 
values  and  are identified. 
Then, using again the same values for the tuning 
parameters, the robust MPC problem (7) is 
formulated and solved as an mp-QP to obtain 
eighteen different robust control law expressions 
with the corresponding regions of optimality, for 
instance the fifth control law is given by: 
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Performing again simulations on the robust, now 
control law, starting from the same starting point, it 
is shown in Figures 3, 4 and 5 that the robust MPC 
algorithm regulates the system to the origin, without 
any constraint violation despite the disturbance. 
 
This simple illustrative example shows clearly how 
the proposed method can guarantee the robust 
performance of an MPC controller providing thus a 
plant with stable and safer operation. 
 
 

5. CONCLUSIONS 
 
In this paper a framework is presented for deriving 
explicitly  the  robust  MPC  control  law  for process 
systems  represented  by  linear, discrete - time, time- 
invariant   process  models. The robust control policy 

 
Fig. 1. Trajectory profile for the nominal MPC. 
 

 
Fig. 2. Trajectory profile with disturbance for the    

nominal MPC. 
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Fig. 3. Region partition of the robust optimal control 
policy 

 

 
Fig. 4. Trajectory profile for the robust MPC . 
 

     



Fig. 5. Control profile for the robust MPC problem. 
 
is given by a piecewise affine form as a function of 
the current state variables and it is shown that it 
guarantees robust and safe operation. The on-line 
implementation of the control action is achieved by 
simple function evaluations for the measurements 
that specify the system state. Recently, this work has 
been extended to proportional integral (PI) 
controllers (Sakizlis, et al., 2002) and our current 
work focuses on extending it to general nonlinear 
systems. 
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