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Abstract: A fundamental property of fault-tolerant systems, called reconfigura-
bility, is discussed for a class of hybrid control systems based on the hybrid
controllability concept. A faulty hybrid system is reconfigurable if it preserves
the property of hybrid controllability under assumption that the nominal system
is hybrid controllable. The approaches proposed in (Yang et al., 1998; Yang
and Blanke, 2000) for the analysis of hybrid controllability are extended for the
reconfigurability analysis. In addition, the modelling of the faulty system and the
functional redundancy are also discussed and illustrated by examples.
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1. INTRODUCTION

Fault-tolerance in control is the ability of a
controlled system to maintain or gracefully de-
grade control objectives despite the occurrence
of a fault. A large amount of work has been
done for Continuous/Discrete-Time Dynamical
Systems (C/DTDS) as reviewed by (Patton, 1997;
Blanke et al., 2001) and Discrete Event Dynamical
Systems (DEDS) as the work done by (Sampath et
al., 1995). However, there is little work focusing
on the fault-tolerance analysis of systems which
contain a mixture of continuous/discrete-time and
discrete-event dynamics.

A system with a mixture of continuous/discrete-
time and discrete-event dynamics is usually re-
ferred to as a Hybrid System (HS) (Branicky et
al., 1998; Lemmon et al., 1999; Tittus and Egardt,
1998). Based on the HS framework, (Blanke et
al., 2001) abstractly formalized the fault-tolerance
problem as the procedure of solving the problem
[0,S, P,U] based on a control objective O, a
class of control law U, and a set (S,P) of possible
structures and parameters. By focusing on the LTI

systems which can be regarded as a kind of special
HS, (Frei et al., 1999) discussed recoverability us-
ing the controllability and observability gramians
and (Wu et al., 2000) explored control reconfigura-
bility by using the second-order modes. However,
these results can not be directly applied to general
HS with respect to the mixture of two distinct
dynamics in HS. Like most typical system proper-
ties, e.g., stability (Branicky et al., 1998) and con-
trollability (Tittus and Egardt, 1998; Yang and
Blanke, 2000), the fault-tolerant properties need
to be re-examined for hybrid systems. Since the
general analysis often leads to an undecidable or
NP-hard problem for hybrid systems (Bemporad
et al., 2000; Blondel and Tsitsiklis, 1999), here we
focus on the reconfigurability analysis of a class of
hybrid systems.

Reconfiguration means to change the input-output
between the controller and plant through change
of the controller structure and parameters, so as to
maintain the original control objective(Blanke et
al., 2001). The reconfigurability can be evaluated
according to different control objectives, such as
satisfying some performance requirements or pre-



serving some system properties. Motivated by the
work in (Frei et al., 1999; Blanke et al., 2001), we
discuss the configurability for a class of hybrid sys-
tems based on the hybrid controllability concept.
The approaches originally proposed for hybrid
controllability analysis in (Yang et al., 1998; Yang
and Blanke, 2000) can be extended for the recon-
figurability analysis.

The rest of this paper is organized as follows:
Section 2 introduces the HIOA as a formal model
for the considered systems and discusses the fault
scenario. Section 3 formulates the reconfigurabil-
ity problem. Section 4 discusses the reconfigura-
bility analysis. Section 5 presents some examples
to illustrate the proposed approach. Finally, we
conclude the paper in Section 6.

2. HIOA MODELLING

A kind of hybrid automata named Hybrid In-
put/Output Automate (HIOA) used in (Yang et
al., 1998; Yang and Blanke, 2000) is employed as
the formal model of considered systems. Other
similar formulations can be found in{Lemch et
al., 2001; Tittus and Egardt, 1998).

2.1 Hybrid Input-Output Automata - HIOA

Definition 1: A HIOA model is defined as a tuple
Mﬁ(QaX:U,E:A:QXaooxDin‘)a (1)

where the components are:

e A set Q of discrete states with Q=Q,%xQ., where
Qp/Q. denotes a set of discrete internal/input
states.

e A set of continuous variables used to describe
local continuous-time dynamics, which includes® :
Piecewise continuous state (input) X (U) with
X:Tw Xp (U:Tw— Up), where T represents
the time and Xp C R™ (Up CR").

o A set I of events, where £=X, UX; and £, N
¥, = ¢. £, is a set of internal events, which
represent all possible discrete actions triggered by
the internal evolving mechanism of the controlled
plant. ¥, is a set of input events, which represent
all possible discrete inputs from the outside, such
as those discrete activities triggered by the con-
troller or environment. Within the HIOA model
events belong to X,/X. can not be synchronized,
iedllo => (€ TpAoc € D)V € ZcAo € 3p).
Therefore, all discrete behaviors in HIOA+ can
be represented by X=X U {d||o | 4,0 € X}.

1 In order to avoid the observability problem for hybrid
systems, which is still open, here we assume all the contin-
uous states can be observed directly.

e A partial transition function? A : Q x Iy~ Q,
which describes the transfer relationship between
discrete states, e.g.,

A((Qpan),a)é{ 8::32;: ZE g: @

e A partial jumping function ®x : X} xQxX) —

'
X7%, which specifies the discontinuous jumps
of continuous states when some event occurs, is
defined as (assume o occurs at point ¢)

X(tt), where 0 € &,
Algo) =4, X(t7) € X},
and X(t*) € X7°.

X)) =X(@t7) = X({¢), ®
where o € £, Alg,0) = ¢,
and X(t) € X5 nX77.

QX(X(t-)ﬂI)a)é

Here X is called the jumping set of transition
¢ — ¢' and is defined as:

X% ={z|z € Tx(q), and ®x(z,q,0) € Tx(¢')}. (4)

XB"' is the reachable set of transition ¢ — ¢’ and
is defined as:

Xg¥' 2{zlz € Tx(¢'), and 3z’ € Tx(q),

satisfies ®x (', 9, 0) = z}, (5)

where T'x (¢)(I'x (¢")) is the projection of T'(g)(T'(¢"))
into real space Xp.

o A set of initial states 8o=(Qo, Xo) with Qo C @
and Xy C Xp.

e A continuous dynamic operator Dx : Q — (T x
Xp x Up — dXp), is specified as:

Dx(q) : X(8) = fo(t, X(£), U(t)), (6

with X(tqo) = Xo.

e A mode invariant function T : Q — Xp x Up,
which specifies the restrictions to the continuous
state and input with respect to different discrete
states. q=(g, X, U, Dx(q),T'(q)) is called a mode
of HIOA.

2.2 Foult Scenario

Within hybrid systems, the system characteristics
and parameters are classified into two distinct
groups: those for continuous dynamic and those
for discrete dynamic. Therefore, the fault mod-
elling in hybrid systems need to be within the lines
of these two groups.

From the description (1), it can be seen that
the discrete dynamic of the considered system is

2 Here we only consider the deterministic case, the nonde-
terministic case can be defined similarly as the nondeter-
ministic automaton.



described by sets @, ¥ and function A. Their
relationship is constrained by some quantitative
conditions in HIOA, which are expressed in (3)
and related sets (4) and (5). For example, one
internal event, denoted as g, € X, is said to
occur at some time in the HIOA model, if and
only if at this point, the following two conditions
are satisfied:

(1) 3q1,¢2 € Qp’ g: € Q., such that
A((q1,9c),0p) = (¢2,9c); and

(2) 371 € X5°%,z2 € X7®, such that
QX(xla (q11Q¢:)’ ap) = T2.

The continuous dynamic of the considered system
is described by (6), and further constrained by
I'. Within each mode, the system must keep the
corresponding I'(q) velid, otherwise, the system
will leave this mode and an internal event will be
triggered.

With respect to the possible effect on different
dynamics, faults in hybrid systems can be divided
into different categories, such as:

o Qualitative faults: these kinds of faults only
affect the discrete dynamic of the considered sys-
tem, and they can be further distinguished as:

(a) Completely Qualitative (CQ) faults: With
these kinds of faults, some events in ¥ or discrete
states in @ will disappear, or some new events or
discrete states will appear after a fault occurs. For
example, consider the gear shifting operation of an
automobile power system. When some gear posi-
tion can not be switched into due to some possible
mechanical problem, then in the model of this
faulty system, the corresponding discrete state of
this gear position will disappear. In the HIOA
framework, the disappeared events or states can
be modelled as that the jumping set (4) and/or
the reachable set (5) of the corresponding event
or state intersect with the empty set.

(b) Distorted Qualitative (DQ) faults: these kinds
of faults partially affect constraints of the discrete
dynamic, i.e., they may distort some related jump-
ing and/or reachable sets of some transitions, or
distort the mode invariance I'(g) of some mode
g € @, such that the discrete dynamic may change
with respect to these changed constraints. For ex-
ample, consider again the automobile power sys-
tem, some gear position may lose some efficiency
due to wear or a mechanical problem such that
the vehicle speed can not reach the expected max-
imum within this position. That means the mode
invariance corresponding to this position shrinks,
like the relationship I'/(¢) < T'(g). Within the
HIOA framework, the DQ faults can be modelled
as the intersection or union of related sets with
some specific sets.

¢ Quantitative faults: These kinds of faults only
affect the local continuous dynamic of the con-
sidered system, i.e., causing some deviations of
characteristics of the dynamic description (6). The
fault modelling methods for continuous dynamical
systems can be used directly for modelling this
kind of faults, such as (Patton, 1997).

o Hybrid faults: These kinds of faults combine the
effects of the qualitative and quantitative faults
together, i.e., they not only affect the continuous
dynamic but also the discrete dynamic as well.

It can be observed that from the hierarchical point
of view, the quantitative fault has a ”local and
low” effect on the system dynamic, the qualitative
fault has a ”global and high” effect while the
hybrid fault has both effects together. In general,
if we use the HIOA model

M"&(Q‘n’ X’ U’ Zn’ An, an 00’ Dna Fn) (7)

to denote the nominal system, then the faulty
system can be obtained as

Mfé(Qfa X) U, Efy Af’ Qfaoﬁan)Ff>' (8)

from M™ through (i) deleting those discrete states
from Q" within which all the reachable sets
changed to be empty due to the fault(s) so as
to get Qf; (ii) deleting those events from " for
which the jumping set or reachable set becomes
empty so as to get X7; (iii) adjusting functions
A", ®", D™ and set ' so as to fit the new sets Qf
and ¥/, and (iv) modifying the structure and/or
parameters of (6) if necessary.

we make further assumptions about the consid-
ered systems with respect to the undecidable
problem:

o All the input signals of the HIOA™ are from
the hybrid controller;

o Within any mode q, any pair of jumping
sets related to internal events if they exist,
such as 61,02 € Tp, has the property X&' n
X2 = ¢; and

o Within each mode q, any pair consisting of
a jumping set and a reachable set related to
internal events, such as 01,02 € X, has the
property X5 N X7 = ¢.

3. RECONFIGURABILITY FORMULATION

Within the HIOA model, any hybrid state, de-
noted as (g,z), is called a valid state, once z €
I'x(q)- Then we can have:

Definition 2(Yang and Blanke, 2000): Given two
valid states (go,z¢) and (gs,zs), once a mode
evolving process, denoted as

ar=((qo, — do, = * -+ — o, ) AUo[[to, 1)) —



(a1, = Qip ~ - = a1, ) AUL[(B1,82)) = - =

{(Qrey = Qg =+ = Qup ) AlUn, [(tnr s tne+1))(9)

determined by an input (control) hybrid sequence,
denoted as:

7 ={Uo [to, 1) 81 Us[(t1,t2) 82 -+ &n,

Uny [(trn s trn+1))s (10)

satisfies the conditions:

® (gs,zs) can be reachable from (go, 2o) Within
finite time, and

o I'(gi;) is always satisfied when the system
stays in q;; for ¢ = 0,1,---,n, and i; =
1,2,---,im, where i,, are integers, qo, = Qo
and q,, = qy.

Then = in (10) is called a Permitted Control
Sequence (PCS) from (go, o) to (q7,%¢).

Here §; € 5, and there is A(g(i—1ym, ) = gi for
i=1,---,ng. U[(ti, tir1) denotes a specific real-
time regulation, such as a feedback control law
U;=K;(X (t)), which is executed within (t;,%;11).
{(@;; = --+ = i) AUi[(t;,tiy1)) denotes the
case that the mode transition evolves from q;, to
qi,, within (¢;,%:y1) and within all q;, --,q;,
the executing real-time regulation is U;.

Definition 3(Yang and Blanke, 2000): A HS is
called hybrid controllable, once for any pair of
valid states, there exists at least one PCS from
the initial state to the final one.

Assume the nominal system M™ described by (7)
is hybrid Controllable with respect to definition 3,
then:

Definition 4: The faulty system M7 described
by (8) is reconfigurable (with respect to control-
lability) if M7 is still hybrid controllable.

It is obvious that the reconfigurability is the abil-
ity of M’ to preserve the hybrid controllability.
This definition seems a hard condition for discus-
sions of LTI systems (Frei et al., 1999; Blanke et
al.,, 2001; Wu et al.,, 2000), but it will be seen
through the following analysis and examples that
for hybrid systems, this definition is reasonable
with respect to the quite flexible structure and
dynamics of hybrid systems.

4. RECONFIGURABILITY ANALYSIS
4.1 A Unified Approach towards Reconfigurability

The unified approach proposed in (Yang and
Blanke, 2000) for hybrid controllability can be
used for the reconfigurability analysis directly.
This approach contains of three steps:

Step 1: Global Analysis in DEDS Level. In this
stage we just consider the reachability problem for
discrete states, i.e., this analysis is under assump-
tion that the evolving process of continuous-time
dynamic (6) and the jumping function (3) already
satisfy the properties required by this analysis.
This analysis can be copied by any methods for
reachability analysis in DEDS theory (Yang and
Blanke, 2000).

Step 2: Discrete-Path Searching Algorithm. Due to
the existence of a continuous-time dynamic within
each mode, different paths with loops and differ-
ent cyclic numbers may cause different reachabil-
ity analysis results, such as examples in (Tittus
and Egardt, 1998; Yang et al., 1998). Therefore,
this discrete-path searching algorithm need not
only find all the possible minimum-size paths, but
also find all the cyclic ones. The inputs required by
this algorithm are: (a) number of discrete states
size(QF); (b) a vector EZ[E;);y, ... size(0!)> €aCh
E; represents the number of arcs leaving from
node g;; (¢) a path table R = [r (4, k)], where r(i, k)
is the node number of the kth destination from g;.
The outputs are the minimum-size path array P
and cyclic path array H. The detailed descrip-
tion of this algorithm can be found in (Yang and
Blanke, 2000).

Step 3: Local Analysis in Quantitative Level. This
analysis considers the problem of whether the
DES-reachability analyzed in step 1 and discrete-
paths acquired in step 2 can be really implemented
in the hybrid system level or not. We can see that
the mode transition sequences corresponding to
the found discrete paths have two kinds of forms:
so-called basic-sequences (without any loops) and
cyclic-sequences. The iterative backward method
proposed in (Tittus and Egardt, 1998; Yang and
Blanke, 2000) can be used for this examination. In
the following, we propose a corresponding iterative
forward method for this analysis.

Assume the initial and final valid states are given
as (¢q1,z1) and (go,22). Firstly, consider a basic-
sequence, which is denoted as a mode transi-
tion corresponding to a possible discrete path:
a=(q1 = Qm1 = Qn2 = **+ = Amp > g2). With
respect to the continuous dynamic (6) in qi, a
reachable set within mode q; can be obtained as:

Ry, (z1)={z|x € Tx(q1) A (FU(L), t5,satisfying

(X (@), U®)(Tto,ts} € T(g1) A (to < t5 < o0),
such that @3(ty, U(ty),z1,t0) = 2)}. (11)
where ¢, (¢, U, Xq,%0) is the solution of (6) with
initial time ¢y, state Xy and operating real-time
regulation U(t) in q;. Then, a set called the

jumping set of transition q; — Q1 with respect
to (q1,%1), denoted as @1 (z1), can be defined as:

O1(z1)=Ry, (z1) N X5 (12)



Considering the function (3), the image set in qm;
of ©1(x,) is:

Qmi(a1) = {zl(z € XGH™ A

(3z' € ©1(z1) such that ®(z',q1,01,m1) = z)}. (13)

Then, within the mode qm1, a reachable set can
be obtained as:

Rypy (@1)={z|z € Tx(@m1) A QU(t), ts, 2’ satisfying

(X (1), U)o, 1) € T{am1) Ao < ty < 00)A(z’ € Qm1(z1)),

such that pm1{ts,U(ts),2’,t0) = z)}. (14)

Actually, set R,,.,(z1) contains all the possible
states that are reachable from the set Qn1(z1)
within mode qmi. Therefore, similar to the anal-
ysis of mode q1, a jumping subset like (12) can be
defined with respect to ® as O (21)=R,,,, (1)N
X{§rremim2_ Then we can get the image set of this
set in mode gma2 like the form (13). This analysis
can proceed until we get the reachable set R, (z1),
which has the same formula as (14) instead of
Qmn(21) by Qm1(z1)-

This forward analysis can also be used for the
cyclic loop analysis. Then we have the fact that
(g2, z2) can be reached from (g1,z;) by the con-
sidered system through the evolution sequence a
if and only if z5 € Ry, (z1).

Proposition 5: For two given valid states (q1,21)
and (g2, %2), (g2, Z2) can be reached from (q1,21)
within the considered system within finite time if
and only if:

(1) ¢o is reachable from ¢; in the DEDS level;
and

(2) there exists at least one mode transition se-
quence corresponding to a reachable discrete
path which satisfies 2 € Ry, (21)-

Under assumption that the nominal system (7) is
hybrid controllable, then:

Theorem 6: The faulty system (8) is reconfig-
urable (with respect to the controllability) if and
only if for any arbitrary valid (q1,z1) and (g2, z2)
of (8), (g2, z2) can be reached from (g, 1) within
finite time.

Proof: Follow definition 3, 4 and proposition 5.

Specially, when considered faults have some spe-
cific characteristics, the proposed analysis proce-
dure can be simplified. For example, when the
considered fault is a kind of DQ fault, the first
and second step are not necessary in the recon-
figurability analysis, and within step three only
those reachable sets like (11) and (14) related to
the faulty modes need to be reanalyzed. The same
situation exists for the consideration of quantita-
tive faults. However, when a hybrid-fault occurs,
all three steps need to be performed.

When the considered system has some specific
characteristics, some further results can be ob-
tained, such as for controlled-switching linear
systems(Yang et al., 1998).

4.2 Reconfigurability of Linear Switched Systems

Consider a class of linear switched systems (LSS),
denoted as:

&(t) = A(a(t)=(t) + Ble®)ult), (5
y(t) = Clo(t)=(t)

where the state z(t) € R", (controllable) input
u(t) € R™ and output y(t) € R*. ¢(t) : R* » N
is a piecewise constant switching function map-
ping from R* to an integer set N. Matrices
A(o), B(o) and C(o) are piecewise constants de-
pending on values of . We further assume the
system satisfies the following: (i) o(t) is left-
continuous, and any time interval within which
o(t) is constant is no less than a dwelling time
(Liberzon and Morse, 1999); (ii) the switching
time and corresponding destination of switching of
o(t) both can be determined by the control design,
as well as the continuous-time control signal u(f)
within each selected mode; and (iii) there is no
discontinuous state jumps during mode switches.
A sufficient condition for the controllability of LSS
was proposed in (Yang et al., 1998) and it can be
extended for the reconfigurability analysis.

When some fault(s) happens in the consid-
ered nominal system, which can be denoted as
M"={(A;, B;)}L,, the faulty system can be de-
noted as M¥={(A], B/)}2_,. Then, we have:

Theorem 7: System M/ can be reconfigured with
respect to the considered fault if:

wtzw{ - wii=[B{ --- (A])""'B{
+ B] -+ (A" B]). (16)

is of full row rank.
Proof: Follow the theorem in (Yang et al., 1998).

If some fault happens such that some mode will
disappear from the nominal system, and we as-
sume that the subsystem (A, B;) can not appear
in the faulty system, then:

Theorem 8: System M7 can be reconfigured with
respect to the considered fault if:

wi=wy - We]2[By - ATTIB
« By +++ (Ag-1)""'Bg1]. a7)

is of full row rank.

Remark 9: If M/ satisfies the condition in the-
orem 7 or 8, it can be noticed that the nominal
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Fig. 1. Gear position vs Speed Limitation

system M™ has dual functional redundancy with
respect to the considered fault. Similarly, if the
faulty system can still preserve the controllabil-
ity when a further subsystem is isolated, we say
the nominal system has triple redundancy with
respect to the considered fault. If the above prop-
erties are always true when the isolated subsys-
tem(s) is any subsystem of (15), then we say M™
has dual/triple redundancy.

5. ILLUSTRATIVE EXAMPLES

We consider an automobile power system with
gear shifting operation as our first example.
Assume the gear-position-vs-speed-limitation as
shown in Fig.1l. With respect to the detailed de-
scription of this system, it can be observed that
the nominal system is hybrid controllable. When
a fault happens such that the gear stick can not
switch into one position, The faulty system has
only four modes available in comparison to the
five modes in the nominal system. However, this
faulty system is still hybrid controllable through
the proposed analysis, i.e, this faulty system is
reconfigurable. When the gear is stuck in some
position, it can be seen that this faulty system
is not reconfigurable with respect to the speed
limitation periods, which correspond to the set of
mode invariance.

In the second example, we consider a binary-mode
LSS, whose parameters under nominal case are:

010 1 000 0
Aij=|001|,Bi=|1}.A2=]100{|,B2=1{0].
000 0 010 1

It can be checked that the nominal system is
hybrid controllable. When some fault happens
such that in mode-1 the matrix B; changes to
be B;=[1 0 0]7, i.e., the second actuator is out
of order. Through the proposed approach for
reconfigurability analysis, it can be observed that
this faulty system is reconfigurable with respect
to this considered fault.

6. CONCLUSIONS

Based on the hybrid controllability concept, the
reconfigurability regarded as a kind of system
property is discussed for a class of hybrid control
systems. The faulty system can be reconfigured

with respect to the considered faults if it preserves
the nominal property about hybrid controllabil-
ity. A unified approach for the reconfigurability
analysis is proposed and some further results are
obtained for a class of linear switching systems.
Finally, some examples are provided to illustrate
the proposed approaches.
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