Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain

ON A DETECTABILITY CONCEPT OF
DISCRETE-TIME INFINITE MARKQV JUMP LINEAR
SYSTEMS*

Eduardo F. Costa* Jozo B. R. do Val *1
Marcelo D. Fragoso **

* UNICAMP - FEEC, Depto. de Telematica, C.P. 6101,
13081-970, Campinas, SP, Brazil

** LNCC/CNPq, Av. Getulio Vargas 333, Quitandinha,
25651-070, Petropolis, RJ, Brazil

Abstract: This paper introduces a concept of detectability for discrete-time infinite
Markov jump linear systems that relates the stochastic convergence of the output with
the stochastic convergence of the state. It is shown that the new concept generalizes a
known stochastic detectability concept and, in the finite dimension scenario, it is reduced
to the weak detectability concept. Itis also shown that the detectability concept proposed
here retrieves the well known property of linear deterministic systems that observability

is stricter than detectability.
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1. INTRODUCTION

This paper is concerned with the discrete-time Infinite
Markov jump linear system (MJLS) defined in a fixed
stochastic basis (Q, F , (Fx),P) by

g . ) X(k+1) =Agux(k), k=0,
(k) = Cogx(k), X(0) = Xo,6(0) = 69

D
where x and y are the state and the output variables,
respectively. The mode 6 is the state of an underlying
discrete-time Markov chain © = {6(k); k > 0} taking
valuesin S = {1,2,...} and having a stationary tran-
sition probability matrix P = [pij], i, j€ Z.6p € S isa
random variable for which p; = P(6p =), i€ S, and
Xo 1S a second order random variable. It is assumed
that matrices A; and C;, i € S, belong respectively
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to the collections of real matrices A = (A1,Az,...),
dim(Aj) =nxn,andC = (C1,Cyp,...), dim(Ci) =q

n, for which sup;cs [|Ail| < e and supjcs ||Cil| < e=. We
also assume that x(k) and 6(k) are observed at each
time instant k.

When one deals with system W, the usual detectability
concept isthe stochastic detectability (S-detectability),
which is a dual concept of stochastic stabilizability;
see (Costa and Fragoso, 1995) in the same setting of
this paper, or (Fragoso and Baczynski, 2001) in the
continuoustime case, or (Costa, 1995) and (Morozan,
1995) in the finite dimension case. However, the S
detectability concept presents the drawbacks pointed
out in the sequel.

Consider the weak observability (W-observability)
concept that follows from the extension of the finite
state space case, see Section 4. It appears in (Costa
and do Val, n.d.b), (Costa and do Val, 2001) and
(Morozan, 1995), and it is more genera than other
observability conceptsfor MJILS, likethe ones appear-



ing in (Ji and Chizeck, 1990). We show by means
of an example in Section 5 that S-detectability does
not generalize W-observability. This suggests that S-
detectability is conservative, recalling that detectabil-
ity generalizes observability in the context of linear
deterministic systems, linear time-varying systems,
see e.g.(Anderson and Moore, 1981), or even in the
context of MJLS in finite state space, see (Costa and
do Val, n.d.b), (Costa and do Val, 2001), and (do Val
and Costa, 2002). Moreover, W-observability does not
generalize S-detectability aswell, and the conceptsare
not comparable; this sometimes compelled authors to
consider both concepts, like in (Morozan, 1995). We
also mention that some basic properties of the usual
detectability concept inthelinear deterministic setting
are not retrieved by the S-detectability concept; along
this line, S-detectability does not assure that non-
observed trajectories are stable in the stochastic sense
and it does not relate convergence (in the stochastic
sense) of the state and output trajectories.

In the finite space state case, the above criticism was
overcome by theintroduction of theweak detectability
(W-detectability) concept in (Costa and do Val, n.d.b)
and (Costa and do Val, 2001), or in (Costa and do
Val, n.d.a) for the continuous-time case. The concept
generalizes the S-detectability concept and it repro-
duces geometric and qualitative properties of the de-
terministic concepts withinthe MJL S setting.

This paper extends the weak detectability concept to
theinfinite Markov state space case. The new concept,
which is referred to as Ws-detectability, relates the
stochastic convergence of the output with the stochas-
tic convergence of the state. It is shown that the new
concept generalizes the S-detectability concept and,
in the finite dimension scenario, it is reduced to the
concept of weak detectability. It isalso shown that Ws-
detectability generalizes W-observability.

The paper is organized as follows. In Section 2 we
present basic concepts. In Section 3 we introduce
the concept of Ws-detectability and we present the
comparison with the S-detectability concept; the Ws-
detectability concept in finite state space is studied in
Section 3.2. The concept of W-observahility is studied
in Section 4 and Section 5 presents exampl es showing
that a non S-detectable system can be Ws-detectable.

2. NOTATION AND BASIC RESULTS

Let R" represent the linear space of all n-dimensional
vectors. Let R™" (respectively, R") represent the
normed linear space formed by all r x n real matrices
(respectively, n x n) and R "0 (R "*) the closed convex
cone{U e R":U =U’ > 0} (theopen cone {U € R":
U = U’ > 0}) where U’ denotes the transpose of U;
U >V (U >V)signifiesthat U -V e R (U -V ¢
R ™). Let H" (H.2") denote the linear space formed
by sequences of matrices H = {H;;i € S} such that
Sies [IHil] < e (Supics |[Hil| < eo); also, H" = H™,

We denote by H® (H'*) the set H " when it is made
up by Hi e R" (H; e R"") foralieS and similarly
for H.% and H°. For H € H,"" we define the inner
product
<H,V >= Y tr{HVi}

ieS

and the norm
IH[ly =Y IHill )
ieS

and for H € H.5" we define ||H ||, = sup;cs |[Hil|.

Remark 1. Notice that for H € H/"© we have that
|[H[|1 << H,1><n||H||1. Indeed,

IH]ly = XS, [Hil| < Y tr(Hi) =<H,1>
le

ieS

:tr(iezg'Hi> <n ieZS'Hi

<nY [Hil =n|H];
ieS

Let us define the operators E : H" — H", and T :
H" - H"as

Ei(U) = ZépijUj ©)
je

Ti(U)=AEiU)A, i=12,...

andL : H" — H{", thedual of operator T , as
Li(u)= Z pjiAjUjA/j, ieS
jes

It is shown in (Costa and Fragoso, 1995) that the
limitsin (3) are well defined. We denote T °(U) = U,
and for k > 1, we can define TX(U) recursively by
TXU) =T (TkLU)) and similarly for L. Notice
that T and L are linear. We also define the following
linear system related to system W:

J Xi(k+1) =Li(X(k)),k >0
> {X(O) =X e H{® @

The relationship between systems W and @ is pre-
sented in the following proposition. The result is
adapted from (Costaand Fragoso, 1995).

Proposition 1. Consider systems¥ and ®. In connec-
tion with the initial condition (x o, 60), define X € H{"
as Xg, = XoXp and X; = 0,1 # 6o. Then,

Xi(K) = Exgpuo {X(K)X(K) Lgo)—i } 5
Notice that with thisresult we can write, for instance,

Exo.60{1X(K)[2} =< X(K), | >. We introduce the func-
tional

wN(X)=§<X(k),c'C> (6)
k=0

whenever X (0) = X, and

W(X) = limwN(X) (7

N—oo



2.1 Stochastic Detectability

Definition 1. We say that (A, P) is stochastically sta-
ble (S-stable) if for each X € H"°,

=

2 X (k) <o

k_

Remark 2. Notice from Remark 1 that the condition
of S-stability is equivalent to Y o < X(k),l ><
o and, in view of Proposition 1, we have that
S oE{|x(k)[?} < o for each initial condition xo and
00.

Remark 3. Consider alinear operator R : H' — H",
let rs(R ) denote the spectral radius of R ; it isknown
that rs(R) < 1if and only if Y5 o||[R¥(H)|| < e.
Then, (A,P) is Sstable if and only if rs(L) < 1,
VH e H/.

Definition 2. We say that (A,C,P) is stochastically

detectable (S-detectable) if there exists L € H>" for
which (A+LC,P) is S-stable.

3. WEAK DETECTABILITY
Notice that the functional in (7) has the physica

interpretation of the accumulated energy of the output
processy in the sense that

= I|m E{Zx
ZMQOE{Z ly(k)|?}
k=0

whenever Xo, = XoXg and X; = 0,i # 6o. Then, the
weak detectability concept relates the energy of the
output and the trgjectory, as follows.

)'CoCoox(K)} (8

Definition 3. (Ws-detectability). We say that (A,C,P)
isWs-detectable provided that

ZW

whenever W (X) < eo.

M <ee 9)

Remark 4. In view of (8), the condition W (X) < oo
has the interpretation of stochastic convergence of
the output. Then, the Ws-detectability concept relates
stochastic convergence of the state and the output.

Remark 5. We use the subscript S in the definition
above to emphasize the condition (9) which comes
from the stochastic stability condition. Variants of
the concept of detectability arise with different con-
ditions on the trajectory. For instance, when one re-
places (9) by the weaker condition limy_... || X (k)||; =
0, which is a mean sguare condition, then we de-
note Wy s-detectability. Of course, one has that Wys-
detectability is weaker than Ws-detectability.

3.1 Ws-detectability and S-detectability

In this section we examine the relationship between
S-detectability and Ws-detectability to show that the
former impliesthelatter. We show by means of exam-
ples, in Section 5, that the reverse implication fails.

Theorem 1. Suppose (A,PP) is S-stable. Then (A+
GD,D,P) is Ws-detectable for each G € H.% and
D e H"

In the proof of the above theorem, X(-)
the system @ tragjectories and likewise, X (-
to:

will refer to
(+) will refer

R x(k+ 1) (Ae(k) + Ge( )De(k>)X(k), k>0
@ : ¢ Y(k) = Dgyx(k),
X(O) = Xo, (0) 90

We need the following preliminary result. Let € > 0
be such that (1+¢?)rs (L) < 1 (recall that rs(-) is
the spectral radius) and for H € H 1“0 we define the
operator Lg : H{©® — H as

Lei(H) = (1+1/¢%) ¥, p;iGjD;H;D)G]

jes

Lemma 1. The series 33 oLg(X (k) converges pro-
vided that W (X) <

PROOF. We start evaluating, for H € H,0,

IILe(H)]l2= Y, [ILai(H)|| (10)
ieS
=3 | (1+1/€%) Y p;iGjDjH;D’G]
ieS jes
< (1+1/€2)||G||3<,Z > pji [|DjH;Dj||
jeSieS

=0 [[DjH;Dj|| = o |[DHD'|[,
jes

where oo = (14 1/¢2) ||G||%. Employing (10) we can
write, for Ty < To,

T R T R
2 Le(X(k) = X La(X(k))
k=0 k=0

Ty R

< 2 [ILe(X (k)|
1

Ty R
< Y o|DX(k)D’
k=T

Iy

A (11)
Recalling that W (X)) < o, we obtain

Y <DX(k)D',1 >— 0asTy, T, —
and Remark 1 provides that
Z ||DX (K)D'||1 — 0asTy, T — oo (12)

k=T;
From (11), and (12) we obtain

T R T2 R
Y Le(X(k)) = >, Le(X(k))|| —0
k=0 k=0

1
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Proof of Theorem 1

We shall show that 37 ||X (k)||, < e provided that

= i < X(
k=0

s

k),D'D >< o

Let usdefineL, : H{© — H™ by L, = (1+¢?)L, that
is, Le(H) = Yjes Pji(1+€%)AjH;A]. We also define
the series M (k), k > 0, with M (k) € H by

{M(k+1):LS(M(k))JrLG()?(k))
M(0) = X(0)
Note that
M(m) = L (X(0)) + LI (Le (X(0)))
+LI2(Le(X(1)) + ...+ Lo(X(m—1))

(13)
and we can write
i <M(K), | >= i < L&(X(0)),1 >
k=0 . k=0 (14)
+ZZ< L (Le(X(m—k—1))),1
m=0k=

Lemma 1 alows us to define M = 3o Lg(X(m)).
Then, for the second term in the right hand side of
(14) we evaluate

k:0m=k+1 } (15)
=Y <Lf Y LG(X(m))> >

k=0 m=0
= i <Lfm),1>

k=0

From (14) and (15) we obtain
Z < M(k)
k=0

and one has that Y5> o||LX(X(0) + M)||1 converges
(recall that rs(Le) < 1 and see Remark 3) and from
Remark 1 we conclude that

=Y <LKRO+MLI> (1)
k=0

Z [IM(K)[|1 < (17)
Now we show by mductlon that
X (k) < M(k) (18)

Indeed, for k = 0 we defined M(0) = X (0); assuming
X(k) <M(k) one can check that
X(k+1) = %(Aj —GjDj)X (k)(Aj - G;D;)’
je

< Le(X (k) + La(X (k)

and the induction is complete. Finally, from (17) and
(18) we abtain

Mx

||1<Z||'\/I

1< oo

kO

Theorem 2. If (A,C,P) is S-detectable then (A,C,P)
isWs-detectable.

PROOF. Since (A,C,P) is S-detectable, from defini-
tion there existsL € M "9 such that (A+LC,P) isS
stable and, from Theorem 1, (A+LC + GD,D,P) is
Ws-detectable for each G € M%9 and D € M %5, The
proof iscompleted by retrieving the original system ®
withthe choiceD =C and G = —L.

3.2 Ws-detectability in Finite State Space

Inthis section we study the concept of Ws-detectability
of Markov jump linear systems in finite state space,
S ={1,...,N}. We show that the concept of Ws-
detectability and the concept of W-detectability pre-
sented in (Costaand do Val, 2001) are equivalent.

Definition 4. (W-detectability). We say that (A,C,P)
is W -detectable when there exist integers Ng, kg > 0
andscalars0 < 8 < 1, y> Osuchthat W™Ne (X) > y||X||
whenever ||X (ky)[[; > 8IX[l

We shall need thefollowing preliminary results, which
are adapted from (Costa and do Val, 2001, Lemmas 7
and 8).

Proposition 2. (i) W (X) = 0if W™N(X) = 0;

(ii) (A,C, P) isW-detectable f and only if ||X (K)|| 1 —
0 ask — e whenever W"N(X) = 0.

J et a. in (J et al., 1991) have shown that the S
stability concept is equivalent to other second moment
stability concepts, such as M S-stability and exponen-
tial stability. The next result follows.

Proposition 3. (i) ||X(k)||1 — 0 ask — « if and only
if the series Y ||X (k)||1 converges.

(i) If 3o [[X (k) |[1 diverges, then [[X (k)||, =
pEX||X(0)||, forsomeO < p <land& > 1.

Remark 6. In finite space state, equivalence between
the concepts of Ws-detectability and Wy s-detectability
follows from the equivalence among the second mo-
ment stability concepts.

The main result of the section is as follows.

Lemma 2. AssumethatS ={1,...,N}.Then, (A,C,P)
isWs-detectableif and only if (A,C, P) isW-detectable.



PROOF.

Necessity. Assume that W™N(X) = 0. Proposition 2
(i) yieldsW (X) = 0, and the Ws-detectability hypoth-
esis provides that limy_.. Yk o||X(k)||1 < e which
means that || X (k)||1 — 0 as k — . Proposition 2 (ii)
concludes the proof.

Sufficiency. Assuming (A,C,P) is W-detectable, we

show that W (X ) = o whenever theseries Y || X (K)||1
diverges. In thissituation, from Proposition 3 we have

that thereexists0 < p < 1and & > 1 for which

IX(K)lly = pE X (0]l (19)

Let us define the sequence N = {ng,n1,...} where
no=0andeachny, m=1,2,..., isthesmallestinteger
such that Ny > np_1+ 1 and ny, satisfies

X ((Nm -+ 1)ka)[[g = S[IX (Nmka ) |4

If the number of elementsof N isfinite, one can check
that

fim X tke) | =0

which contradictsthe initial hypothesisthat the series
Yo lIX(k)||1 converges, see aso Proposition3. Then
we concludethat N has infinitely many elements, and
we can take a subsequence from N with infinitely
many elements, N’ = {ny,,Nm,, ...}, where nyp, =
mo =0 and each m;, t = 1,2,..., is the smallest
integer such that N, > Ny, , +max{1, (Ng/kq)}. We
can write:

Z <X(k),Q+CC >
t’ Nd

>3 Y < X(Nmkg +k),C'C >
{=0k=0

t/
> 2 VX (nmeka) [ = w0 [X (O] ¢
t=0

wheret’ isthe largest integer for which nm, kg +Ng <
N, in such a manner that t’ — « as N — « and we
conclude that W (X) = W= (X) = oco.

4. W-OBSERVABILITY CONCEPT

The following W-observability concept is adapted
from thefinite state space case, see (Costaand do Val,
n.d.b), (Costaand do Val, 2001) and (Morozan, 1995).

Definition 5. Consider system ®. We say that (A,C, P)
is W-observable when there exist a positive integer Ng
and ascalar y > 0 such that WNe (X) > y||X ||, for each
initial condition X.

Notice that the above concept reflects the idea that
there exists a number Ny for which a minimal level
v of energy is present at the output in any interval of
lenght Ng.

Lemma 3. If (A,C,P) is W-observable then (A,C,P)
isWs-detectable.

PROOF. We shall show that 35>_o||X (K)||1 < e pro-
vided that W(X(0)) < e, assuming (A,C,P) is W-
observable. From the W-observahility condition we
derive, for each k > 0,
1 k+Ng
IIX(k)II1§§ Yy <X(t),cC> (20)
t=k

and we write
[ 1 o k+Nd
ZIIX( <= > <X(),cC> (21)
-0 Y k=0 t=k
1Nd—1 oo
<= <X(k),C'C >
Y t=0 k=0
Ny =
=93 < X(k),C'C>< oo
Y =0
5. EXAMPLES

In this section we present examples of systems in
infinite Markov space state which are W-observable
or Ws-detectable but they are not S-detectable.

We shall need the following preliminary result, see
(Costaand Fragoso, 1995, Lemma 2).

Proposition 4. (A,C,P) is S-detectable if and only if
thereexistsL € H."" and P € H"* such that

Pi— (Ai +LiCi)Ei(P)(Ai +LiCi) >0 (22)

Example 1. In this example, a change in a single
Markov state induces the lost of S-detectability with-
out affecting the W-observability. Letn=1andC; =
1,i e S. Notice that (22) holds with L = —A and one
has that (A,C,P) is trivialy S-detectable, no matter
how A = (ay,ay,...) is chosen. Moreover, W (X) ><
X,C'C >>||X||; and (A,C,P) is W-observable. Now,
assume that there exists j € S for whicha?pj; > 1 and

pjj <1, andletC;=0. Inthiscase, (22) provides
(1— ap“ ZpJ.P. )>0
i#]

which leads to (1—a%p;j)P; > 0 and Pj < O; then,
from Proposition 4 we conclude that (A,C,P) is not
S-detectable. On the other hand, we evaluate

Z<Lk ,C'C>=<X, ZTk c'C) >
k=0
> Ztr (XiC{Ci) +tr(X;(T;(C'C)))
i#]
= Y tr(Xi) +tr (a3(1— pjj)X;)
i7]
>min{1, (a§(1— pjj))} X tr(X

ieS
> min{1, (a%(1 - pjj))}IX]|1
and we have that (A,C, P) is W-observable.



The conservativeness of the S-detectability in face of
Ws-detectability inthe infinite Markov state space case
is inherited, in some extension, from the finite state
space case. For instance, let us consider systems that
presents Markov chains with distinct communicat-
ing classes Sj = {i1,...,in;}, j = 1,...,N, for which
P{6(k+1) € Sj|6(k) € Si} =0 for all i # j. Let us
denote such a system by ®.; we also denote Al = (A),
i €Sj andsimilarly for CJ and PJ. The followingresult
holds.

Lemma 4. Consider system @¢. (A,C,P) isWs-detectable

(respectively, S-detectable) if and only if (Al,C1, PJ)
isWs-detectable (S-detectable) for j=1,...,N.

PROOF. We only present the guidelines of the proof.
Necessity is straightforward to verify.

Sufficiency. Assume that W (X) < oe. Let us decom-
pose the initial condition X as X = X1 +...+ XN in
such a manner that X! = 0 fori # j, andW (XJ) < oo,
j = 1,...,N. From Ws-detectability of (Al CJ,PJ),
one has that ¥ ||L*(XJ)||1 < . The linearity of
system @ provides X (k) = ¥, L*(X1) which leads
to SiolIX(K)[2 = STy 5o |ILKXD)]l1 < e and
one has that the system (A,C, P) isWs-detectable. As
regards to S-detectability, the result follows from the
fact that there is no coupling between the equationsin
(22) related with different clusters.

The next example relies on an example withfinite state
space in (Costa and do Val, 2001).

Example 2. LetS; ={1,2} and S, = {3,4,.. .},
pin (1—pu) O

(I1-p2) p2 O
P— 0 0 P33 P3s ...

Pa3 Pas ...

Let Ay =a;,A2=a,C1=1,C,=0, p171 >0and
p22a3 > 1 and assume that the system associated
with S, is S-detectable. For this simple example (22)
provides (1 —a2p11)Py > a2(1— p11)P, which hasno
positive solution, and thus the overall systemisnot S-
detectable. On the other hand, it is shown in (Costa
and do Val, 2001) that the system associated with S;
is W-observable, and we conclude from Lemma 4 that
the overall system isWs-detectable.

6. CONCLUSIONS

In this paper we study the concept of Ws-detectability
for discrete-time infinite Markov jump linear systems.
The Ws-detectability concept relates stochastic con-
vergence of the output and the state, or equivalently
the finiteness of the quadratic functional W (X) and

stochastic stability of the system; thisis an important
feature infiltering and in control problems.

The paper shows that the Ws-detectability concept
generalizes the previous S-detectability concept and,
in the finite dimension scenario, it is reduced to the
W-detectability concept. It is also shown in the paper
that Ws-detectability generalizes W-observability, thus
retrieving awell known property of linear determinis-
tic systems.
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