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Abstract: This paper introduces a concept of detectability for discrete-time infinite
Markov jump linear systems that relates the stochastic convergence of the output with
the stochastic convergence of the state. It is shown that the new concept generalizes a
known stochastic detectability concept and, in the finite dimension scenario, it is reduced
to the weak detectability concept. It is also shown that the detectability concept proposed
here retrieves the well known property of linear deterministic systems that observability
is stricter than detectability.
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1. INTRODUCTION

This paper is concerned with the discrete-time Infinite
Markov jump linear system (MJLS) defined in a fixed
stochastic basis (Ω,F , (Fk),P ) by

Ψ :

{
x(k+1) = Aθ(k)x(k), k ≥ 0,

y(k) = Cθ(k)x(k), x(0) = x0,θ(0)= θ0

(1)
where x and y are the state and the output variables,
respectively. The mode θ is the state of an underlying
discrete-time Markov chain Θ = {θ(k);k ≥ 0} taking
values in S = {1,2, . . .} and having a stationary tran-
sition probability matrix P = [p i j], i, j ∈ Z. θ0 ∈ S is a
random variable for which µi = P(θ0 = i), i ∈ S , and
x0 is a second order random variable. It is assumed
that matrices Ai and Ci, i ∈ S , belong respectively
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to the collections of real matrices A = (A1,A2, . . .),
dim(Ai) = n×n, and C = (C1,C2, . . .), dim(Ci) = q×
n, for which supi∈S ‖Ai‖< ∞ and supi∈S ‖Ci‖< ∞. We
also assume that x(k) and θ(k) are observed at each
time instant k.

When one deals with system Ψ, the usual detectability
concept is the stochastic detectability (S-detectability),
which is a dual concept of stochastic stabilizability;
see (Costa and Fragoso, 1995) in the same setting of
this paper, or (Fragoso and Baczynski, 2001) in the
continuous time case, or (Costa, 1995) and (Morozan,
1995) in the finite dimension case. However, the S-
detectability concept presents the drawbacks pointed
out in the sequel.

Consider the weak observability (W-observability)
concept that follows from the extension of the finite
state space case, see Section 4. It appears in (Costa
and do Val, n.d.b), (Costa and do Val, 2001) and
(Morozan, 1995), and it is more general than other
observability concepts for MJLS, like the ones appear-

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain



ing in (Ji and Chizeck, 1990). We show by means
of an example in Section 5 that S-detectability does
not generalize W-observability. This suggests that S-
detectability is conservative, recalling that detectabil-
ity generalizes observability in the context of linear
deterministic systems, linear time-varying systems,
see e.g.(Anderson and Moore, 1981), or even in the
context of MJLS in finite state space, see (Costa and
do Val, n.d.b), (Costa and do Val, 2001), and (do Val
and Costa, 2002). Moreover, W-observability does not
generalize S-detectability as well, and the concepts are
not comparable; this sometimes compelled authors to
consider both concepts, like in (Morozan, 1995). We
also mention that some basic properties of the usual
detectability concept in the linear deterministic setting
are not retrieved by the S-detectability concept; along
this line, S-detectability does not assure that non-
observed trajectories are stable in the stochastic sense
and it does not relate convergence (in the stochastic
sense) of the state and output trajectories.

In the finite space state case, the above criticism was
overcome by the introductionof the weak detectability
(W-detectability) concept in (Costa and do Val, n.d.b)
and (Costa and do Val, 2001), or in (Costa and do
Val, n.d.a) for the continuous-time case. The concept
generalizes the S-detectability concept and it repro-
duces geometric and qualitative properties of the de-
terministic concepts within the MJLS setting.

This paper extends the weak detectability concept to
the infinite Markov state space case. The new concept,
which is referred to as WS-detectability, relates the
stochastic convergence of the output with the stochas-
tic convergence of the state. It is shown that the new
concept generalizes the S-detectability concept and,
in the finite dimension scenario, it is reduced to the
concept of weak detectability. It is also shown that WS-
detectability generalizes W-observability.

The paper is organized as follows. In Section 2 we
present basic concepts. In Section 3 we introduce
the concept of WS-detectability and we present the
comparison with the S-detectability concept; the WS-
detectability concept in finite state space is studied in
Section 3.2. The concept of W-observability is studied
in Section 4 and Section 5 presents examples showing
that a non S-detectable system can be WS-detectable.

2. NOTATION AND BASIC RESULTS

Let R
n represent the linear space of all n-dimensional

vectors. Let R r,n (respectively, R n) represent the
normed linear space formed by all r×n real matrices
(respectively, n×n) and R n0 (R n+) the closed convex
cone {U ∈ Rn : U = U ′ ≥ 0} (the open cone {U ∈ Rn :
U = U ′ > 0}) where U ′ denotes the transpose of U ;
U ≥ V (U > V ) signifies that U −V ∈ R n0 (U −V ∈
R n+). Let H r,n

1 (H r,n
∞ ) denote the linear space formed

by sequences of matrices H = {Hi; i ∈ S} such that
∑i∈S ||Hi|| < ∞ (supi∈S ||Hi|| < ∞); also, H n ≡ H n,n.

We denote by H n0
1 (H n+

1 ) the set H n when it is made
up by Hi ∈ R n0 (Hi ∈ R n+) for all i ∈ S and similarly
for H n0

∞ and H n0
∞ . For H ∈ H r,n

1 we define the inner
product

< H,V >= ∑
i∈S

tr{H ′
iVi}

and the norm

‖H‖1 = ∑
i∈S

‖Hi‖ (2)

and for H ∈ H r,n
∞ we define ‖H‖∞ = supi∈S ‖Hi‖.

Remark 1. Notice that for H ∈ H n0
1 we have that

||H||1 ≤< H, I >≤ n||H||1. Indeed,

‖H‖1 = ∑
i∈S

‖Hi‖ ≤ ∑
i∈S

tr(Hi) =< H, I >

= tr
(

∑
i∈S

Hi

)
≤ n

∥∥∥∥∥∑i∈S
Hi

∥∥∥∥∥≤ n ∑
i∈S

‖Hi‖ = n‖H‖1

Let us define the operators E : H n
1 → H n

1 , and T :
H n → H n as

Ei(U) = ∑
j∈S

pi jUj

Ti(U) = A′
iEi(U)Ai, i = 1,2, . . .

(3)

and L : H n
1 → H n

1 , the dual of operator T , as

Li(U) = ∑
j∈S

p jiA jUjA
′
j, i ∈ S

It is shown in (Costa and Fragoso, 1995) that the
limits in (3) are well defined. We denote T 0(U) = U ,
and for k ≥ 1, we can define T k(U) recursively by
T k(U) = T (T k−1(U)) and similarly for L . Notice
that T and L are linear. We also define the following
linear system related to system Ψ:

Φ :

{
Xi(k+1) = Li(X(k)),k ≥ 0

X(0) = X ∈ H n0
1

(4)

The relationship between systems Ψ and Φ is pre-
sented in the following proposition. The result is
adapted from (Costa and Fragoso, 1995).

Proposition 1. Consider systems Ψ and Φ. In connec-
tion with the initial condition (x 0,θ0), define X ∈ H n

1
as Xθ0 = x0x′0 and Xi = 0, i �= θ0. Then,

Xi(k) = Ex0,µ0{x(k)x(k)′1θ(k)=i} (5)

Notice that with this result we can write, for instance,
Ex0,θ0{|x(k)|2} =< X(k), I >. We introduce the func-
tional

W N(X) =
N

∑
k=0

< X(k),C′C > (6)

whenever X(0) = X , and

W(X) = lim
N→∞

W N(X) (7)



2.1 Stochastic Detectability

Definition 1. We say that (A,P) is stochastically sta-
ble (S-stable) if for each X ∈ H n0

1 ,
∞

∑
k=0

‖X(k)‖1 < ∞

Remark 2. Notice from Remark 1 that the condition
of S-stability is equivalent to ∑∞

k=0 < X(k), I ><
∞ and, in view of Proposition 1, we have that
∑∞

k=0 E{|x(k)|2} < ∞ for each initial condition x0 and
θ0.

Remark 3. Consider a linear operator R : H n
1 → H n

1 ,
let rσ(R ) denote the spectral radius of R ; it is known
that rσ(R ) < 1 if and only if ∑∞

k=0 ||R k(H)|| < ∞.
Then, (A,P) is S-stable if and only if rσ(L) < 1,
∀H ∈ H n

1 .

Definition 2. We say that (A,C,P) is stochastically
detectable (S-detectable) if there exists L ∈ H q,n

∞ for
which (A+LC,P) is S-stable.

3. WEAK DETECTABILITY

Notice that the functional in (7) has the physical
interpretation of the accumulated energy of the output
process y in the sense that

W (X) = lim
N→∞

E
{ N

∑
k=0

x(k)′C′
θ(k)Cθ(k)x(k)

}
= lim

N→∞
E
{ N

∑
k=0

|y(k)|2}
(8)

whenever Xθ0 = x0x′0 and Xi = 0, i �= θ0. Then, the
weak detectability concept relates the energy of the
output and the trajectory, as follows.

Definition 3. (WS-detectability). We say that (A,C,P)
is WS-detectable provided that

∞

∑
k=0

‖X(k)‖1 < ∞ (9)

whenever W (X) < ∞.

Remark 4. In view of (8), the condition W (X) < ∞
has the interpretation of stochastic convergence of
the output. Then, the WS-detectability concept relates
stochastic convergence of the state and the output.

Remark 5. We use the subscript S in the definition
above to emphasize the condition (9) which comes
from the stochastic stability condition. Variants of
the concept of detectability arise with different con-
ditions on the trajectory. For instance, when one re-
places (9) by the weaker condition limk→∞ ‖X(k)‖1 =
0, which is a mean square condition, then we de-
note WMS-detectability. Of course, one has that WMS-
detectability is weaker than WS-detectability.

3.1 WS-detectability and S-detectability

In this section we examine the relationship between
S-detectability and WS-detectability to show that the
former implies the latter. We show by means of exam-
ples, in Section 5, that the reverse implication fails.

Theorem 1. Suppose (A,P) is S-stable. Then (A +
GD,D,P) is WS-detectable for each G ∈ H n,q

∞ and
D ∈ H q,n

∞ .

In the proof of the above theorem, X(·) will refer to
the system Φ trajectories and likewise, X̂(·) will refer
to:

Φ̂ :


x(k+1) = (Aθ(k) +Gθ(k)Dθ(k))x(k),k ≥ 0

y(k) = Dθ(k)x(k),
x(0) = x0, θ(0) = θ0

We need the following preliminary result. Let ε > 0
be such that (1 + ε2)rσ (L) < 1 (recall that rσ(·) is
the spectral radius) and for H ∈ H n0

1 we define the
operator LG : H n0

1 → H n0
1 as

LGi(H) = (1+1/ε2) ∑
j∈S

p jiG jD jHjD
′
jG

′
j

Lemma 1. The series ∑∞
k=0 LG(X̂(k)) converges pro-

vided that Ŵ (X) < ∞.

PROOF. We start evaluating, for H ∈ H n0
1 ,

||LG(H)||1 = ∑
i∈S

‖LGi(H)‖

= ∑
i∈S

∥∥∥∥∥(1+1/ε2) ∑
j∈S

p jiG jD jHjD
′
jG

′
j

∥∥∥∥∥
≤ (1+1/ε2)||G||2∞ ∑

j∈S
∑
i∈S

p ji
∥∥D jHjD

′
j

∥∥
= α ∑

j∈S

∥∥D jHjD
′
j

∥∥ = α
∥∥DHD′∥∥

1

(10)

where α = (1 + 1/ε2)‖G‖2
∞. Employing (10) we can

write, for T1 < T2,∥∥∥∥∥ T1

∑
k=0

LG(X̂(k))−
T2

∑
k=0

LG(X̂(k))

∥∥∥∥∥
1

≤
T2

∑
k=T1

∥∥LG(X̂(k))
∥∥

1

≤
T2

∑
k=T1

α
∥∥DX̂(k)D′∥∥

1

(11)
Recalling that Ŵ (X) < ∞, we obtain

T2

∑
k=T1

< DX̂(k)D′, I >→ 0 as T1,T2 → ∞

and Remark 1 provides that
T2

∑
k=T1

||DX̂(k)D′||1 → 0 as T1,T2 → ∞ (12)

From (11), and (12) we obtain∥∥∥∥∥ T1

∑
k=0

LG(X̂ (k))−
T2

∑
k=0

LG(X̂(k))

∥∥∥∥∥
1

→ 0



as T1,T2 → ∞.

Proof of Theorem 1

We shall show that ∑∞
k=0

∥∥X̂(k)
∥∥

1 < ∞ provided that

Ŵ (X) =
∞

∑
k=0

< X̂(k),D′D >< ∞

Let us define Lε : H n0
1 → H n0

1 by Lε = (1+ε2)L , that
is, Lε(H) = ∑ j∈S p ji(1 + ε2)A jHjA′

j. We also define
the series M(k), k ≥ 0, with M(k) ∈ H n0

1 by{
M(k+1) = Lε(M(k))+LG(X̂ (k))
M(0) = X̂(0)

Note that

M(m) = Lm
ε (X̂(0))+Lm−1

ε (LG(X̂(0)))

+Lm−2
ε (LG(X̂ (1)))+ . . .+LG(X̂(m−1))

(13)
and we can write

∞

∑
k=0

< M(k), I >=
∞

∑
k=0

< Lk
ε (X̂(0)), I >

+
∞

∑
m=0

m−1

∑
k=0

< Lk
ε
(
LG(X̂(m− k−1))

)
, I >

(14)

Lemma 1 allows us to define M = ∑∞
m=0 LG(X̂(m)).

Then, for the second term in the right hand side of
(14) we evaluate

∞

∑
m=0

m−1

∑
k=0

< Lk
ε
(
LG(X̂(m− k−1))

)
, I >

=
∞

∑
k=0

∞

∑
m=k+1

< Lk
ε
(
LG(X̂(m− k−1))

)
, I >

=
∞

∑
k=0

< Lk
ε

(
∞

∑
m=0

LG(X̂(m))

)
, I >

=
∞

∑
k=0

< Lk
ε (M) , I >

(15)

From (14) and (15) we obtain
∞

∑
k=0

< M(k), I > =
∞

∑
k=0

< Lk
ε (X̂ (0)+M), I > (16)

and one has that ∑∞
k=0 ||Lk

ε (X̂(0) + M)||1 converges
(recall that rσ(Lε) < 1 and see Remark 3) and from
Remark 1 we conclude that

∞

∑
k=0

||M(k)||1 < ∞ (17)

Now we show by induction that

X̂(k) ≤ M(k) (18)

Indeed, for k = 0 we defined M(0) = X̂(0); assuming
X̂(k) ≤ M(k) one can check that

X̂(k+1) = ∑
j∈S

(A j −G jD j)X̂ (k)(Aj −G jD j)′

≤ Lε(X̂ (k))+LG(X̂ (k))
≤ Lε(M(k))+LG(X̂(k)) = M(k+1)

and the induction is complete. Finally, from (17) and
(18) we obtain

∞

∑
k=0

||X̂(k)||1 ≤
∞

∑
k=0

||M(k)||1 < ∞

Theorem 2. If (A,C,P) is S-detectable then (A,C,P)
is WS-detectable.

PROOF. Since (A,C,P) is S-detectable, from defini-
tion there exists L ∈ M n,q such that (A+LC,P) is S-
stable and, from Theorem 1, (A + LC + GD,D,P) is
WS-detectable for each G ∈ M s,q and D ∈ M q,s. The
proof is completed by retrieving the original system Φ
with the choice D = C and G = −L.

3.2 WS-detectability in Finite State Space

In this section we study the concept ofWS-detectability
of Markov jump linear systems in finite state space,
S = {1, . . .,N}. We show that the concept of WS-
detectability and the concept of W-detectability pre-
sented in (Costa and do Val, 2001) are equivalent.

Definition 4. (W-detectability). We say that (A,C,P)
is W -detectable when there exist integers Nd , kd ≥ 0
and scalars 0 ≤ δ < 1, γ > 0 such that W Nd (X) ≥ γ‖X‖
whenever ‖X(kd)‖1 ≥ δ‖X‖1

We shall need the following preliminary results, which
are adapted from (Costa and do Val, 2001, Lemmas 7
and 8).

Proposition 2. (i) W (X) = 0 if W n2N(X) = 0;

(ii) (A,C,P) is W -detectable if and only if ||X(k)||1 →
0 as k → ∞ whenever Wn2 N(X) = 0.

Ji et al. in (Ji et al., 1991) have shown that the S-
stability concept is equivalent to other second moment
stability concepts, such as MS-stability and exponen-
tial stability. The next result follows.

Proposition 3. (i) ||X(k)||1 → 0 as k → ∞ if and only
if the series ∑∞

k=0 ||X(k)||1 converges.

(ii) If ∑∞
k=0 ||X(k)||1 diverges, then ‖X(k)‖1 ≥

ρξk ‖X(0)‖1 for some 0 < ρ ≤ 1 and ξ ≥ 1.

Remark 6. In finite space state, equivalence between
the concepts of WS-detectability and WMS-detectability
follows from the equivalence among the second mo-
ment stability concepts.

The main result of the section is as follows.

Lemma 2. Assume that S = {1, . . .,N}. Then, (A,C,P)
is WS-detectable if and only if (A,C,P) is W-detectable.



PROOF.

Necessity. Assume that W n2 N(X) = 0. Proposition 2
(i) yields W (X) = 0, and the WS-detectability hypoth-
esis provides that limN→∞ ∑N

k=0 ||X(k)||1 < ∞ which
means that ||X(k)||1 → 0 as k → ∞. Proposition 2 (ii)
concludes the proof.

Sufficiency. Assuming (A,C,P) is W -detectable, we
show that W(X)= ∞ whenever the series ∑∞

k=0 ||X(k)||1
diverges. In this situation, from Proposition 3 we have
that there exists 0 < ρ ≤ 1 and ξ ≥ 1 for which

‖X(k)‖1 ≥ ρξk ‖X(0)‖1 (19)

Let us define the sequence N = {n0,n1, . . .} where
n0 = 0 and each nm, m = 1,2, . . ., is the smallest integer
such that nm ≥ nm−1 +1 and nm satisfies

‖X((nm +1)kd)‖1 ≥ δ‖X(nmkd)‖1

If the number of elements of N is finite, one can check
that

lim
t→∞

‖X(t kd)‖1 = 0

which contradicts the initial hypothesis that the series
∑∞

k=0 ||X(k)||1 converges, see also Proposition 3. Then
we conclude that N has infinitely many elements, and
we can take a subsequence from N with infinitely
many elements, N ′ = {nm0 ,nm1, . . .}, where nm0 =
m0 = 0 and each mt , t = 1,2, . . ., is the smallest
integer such that nmt ≥ nmt−1 + max{1, (Nd/kd)}. We
can write:

W N(X) =
N−1

∑
k=0

< X(k),Q+C′C >

≥
t ′

∑
t=0

Nd

∑
k=0

< X(nmt kd + k),C′C >

≥
t ′

∑
t=0

γ‖X(nmt kd)‖ ≥ γρ‖X(0)‖ t ′

where t ′ is the largest integer for which nmt ′ kd +Nd <
N, in such a manner that t ′ → ∞ as N → ∞ and we
conclude that W(X) = W ∞(X) = ∞.

4. W-OBSERVABILITY CONCEPT

The following W-observability concept is adapted
from the finite state space case, see (Costa and do Val,
n.d.b), (Costa and do Val, 2001) and (Morozan, 1995).

Definition 5. Consider system Φ. We say that (A,C,P)
is W-observable when there exist a positive integer Nd

and a scalar γ > 0 such that WNd (X) ≥ γ‖X‖1 for each
initial condition X .

Notice that the above concept reflects the idea that
there exists a number Nd for which a minimal level
γ of energy is present at the output in any interval of
lenght Nd .

Lemma 3. If (A,C,P) is W-observable then (A,C,P)
is WS-detectable.

PROOF. We shall show that ∑∞
k=0 ||X(k)||1 < ∞ pro-

vided that W(X(0)) < ∞, assuming (A,C,P) is W-
observable. From the W-observability condition we
derive, for each k ≥ 0,

||X(k)||1 ≤ 1
γ

k+Nd

∑
t=k

< X(t),C′C > (20)

and we write
∞

∑
k=0

||X(k)||1 ≤ 1
γ

∞

∑
k=0

k+Nd

∑
t=k

< X(t),C′C >

≤ 1
γ

Nd−1

∑
t=0

∞

∑
k=0

< X(k),C′C >

=
Nd

γ

∞

∑
k=0

< X(k),C′C >< ∞

(21)

5. EXAMPLES

In this section we present examples of systems in
infinite Markov space state which are W-observable
or WS-detectable but they are not S-detectable.

We shall need the following preliminary result, see
(Costa and Fragoso, 1995, Lemma 2).

Proposition 4. (A,C,P) is S-detectable if and only if
there exists L ∈ H r,n

∞ and P ∈ H n+
∞ such that

Pi − (Ai +LiCi)′Ei(P)(Ai +LiCi) > 0 (22)

Example 1. In this example, a change in a single
Markov state induces the lost of S-detectability with-
out affecting the W-observability. Let n = 1 and Ci =
1, i ∈ S . Notice that (22) holds with L = −A and one
has that (A,C,P) is trivially S-detectable, no matter
how A = (a1,a2, . . .) is chosen. Moreover, W (X) ≥<
X ,C′C >≥ ‖X‖1 and (A,C,P) is W-observable. Now,
assume that there exists j ∈ S for which a2

j p j j > 1 and
p j j < 1, and let C j = 0. In this case, (22) provides

(1−a2
j p j j)Pj −a2

j(∑
i�= j

p jiPi) > 0

which leads to (1 − a2
j p j j)Pj > 0 and Pj < 0; then,

from Proposition 4 we conclude that (A,C,P) is not
S-detectable. On the other hand, we evaluate

W 2(X) =
1

∑
k=0

< Lk(X),C′C >=< X ,
1

∑
k=0

T k(C′C) >

≥ ∑
i�= j

tr(XiC
′
iCi)+ tr(Xj(T j(C′C)))

= ∑
i�= j

tr(Xi)+ tr
(
a2

j(1− p j j)Xj
)

≥ min{1, (a2
j(1− p j j))}∑

i∈S
tr(Xi)

≥ min{1, (a2
j(1− p j j))}||X ||1

and we have that (A,C,P) is W-observable.



The conservativeness of the S-detectability in face of
WS-detectability in the infinite Markov state space case
is inherited, in some extension, from the finite state
space case. For instance, let us consider systems that
presents Markov chains with distinct communicat-
ing classes S j = {i1, . . ., in j}, j = 1, . . .,N, for which
P{θ(k + 1) ∈ S j|θ(k) ∈ Si} = 0 for all i �= j. Let us
denote such a system by Φc; we also denote A j = (Ai),
i∈ S j and similarly for C j and P

j. The following result
holds.

Lemma 4. Consider system Φc. (A,C,P) isWS-detectable
(respectively, S-detectable) if and only if (A j,C j,P j)
is WS-detectable (S-detectable) for j = 1, . . .,N.

PROOF. We only present the guidelines of the proof.
Necessity is straightforward to verify.

Sufficiency. Assume that W (X) < ∞. Let us decom-
pose the initial condition X as X = X 1 + . . .+ XN in
such a manner that X j

i = 0 for i �= j, and W (X j) < ∞,
j = 1, . . .,N. From WS-detectability of (A j,C j,P j),
one has that ∑∞

k=0 ||Lk(X j)||1 < ∞. The linearity of
system Φc provides X(k) = ∑N

j=1 Lk(X j) which leads

to ∑∞
k=0 ||X(k)||1 = ∑N

j=1 ∑∞
k=0 ||Lk(X j)||1 < ∞ and

one has that the system (A,C,P) is WS-detectable. As
regards to S-detectability, the result follows from the
fact that there is no coupling between the equations in
(22) related with different clusters.

The next example relies on an example with finite state
space in (Costa and do Val, 2001).

Example 2. Let S1 = {1,2} and S2 = {3,4, . . .},

P =



p11 (1− p11) 0 . . .
(1− p22) p22 0 . . .

0 0 p33 p34 . . .
...

... p43 p44 . . .
...

...


Let A1 = a1, A2 = a2, C1 = 1, C2 = 0, p11 > 0 and
p22a2

2 > 1 and assume that the system associated
with S2 is S-detectable. For this simple example (22)
provides (1−a2

1 p11)P1 > a2
1(1− p11)P2 which has no

positive solution, and thus the overall system is not S-
detectable. On the other hand, it is shown in (Costa
and do Val, 2001) that the system associated with S1

is W-observable, and we conclude from Lemma 4 that
the overall system is WS-detectable.

6. CONCLUSIONS

In this paper we study the concept of WS-detectability
for discrete-time infinite Markov jump linear systems.
The WS-detectability concept relates stochastic con-
vergence of the output and the state, or equivalently
the finiteness of the quadratic functional W (X) and

stochastic stability of the system; this is an important
feature in filtering and in control problems.

The paper shows that the WS-detectability concept
generalizes the previous S-detectability concept and,
in the finite dimension scenario, it is reduced to the
W-detectability concept. It is also shown in the paper
that WS-detectability generalizes W-observability, thus
retrieving a well known property of linear determinis-
tic systems.
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