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CNRS – Supélec – Univ. Paris-Sud
91192 Gif sur Yvette cedex, France

∗∗ PSA Peugeot Citroën
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Abstract: In this work we obtain a new description of the vertical motion of the
car including the active suspension. It consists of 4 completely decoupled subsystems.
The first 3 ones are of order 4 each and they are analogous to standard quarter car
suspension models. The 4th subsystem is of order 2 and it introduces a new abstract
variable denoted by γ. One of the novelties of this modeling result is that the full
suspension system is no more seen as 4 decoupled quarter car suspension models with
sprung mass for each suspension being equal to a quarter of the total vehicle mass.
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1. INTRODUCTION

Car active suspension has been the object of many
studies in the last decade. The basic objectives of
car active suspension are: increasing the passenger
comfort and providing a good road handling, see
for instance (Butsuen, 1989; Hrovat, 1990; Al-
leyne and Hedrick, 1995; Lin and Kanellakopou-
los, 1997; Campos et al., 1999). Most of the con-
trol strategies we find in the literature use an
over-simplified model of the suspension system.
In this model the vehicle is supposed to consist
of 4 decoupled so-called quarter car suspension
models with sprung masses equal to a quarter
of the vehicle mass (Hrovat, 1990; Alleyne and
Hedrick, 1995; Lin and Kanellakopoulos, 1997).
The only works we have found which really ad-
dress the control of the complete vehicle sus-

1 Work partly supported by Peugeot-Citroën Automo-
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pension system are (Butsuen, 1989; Campos et
al., 1999).

The vehicle consists of one rigid mass suspended
on four contact points by means of the suspen-
sions (dampers and springs) and the wheels. For
instance, it is not clear at all how to set up the
active suspension actuators in order to regulate
the roll without disturbing the pitch and the heave
motions.

In addition to this decoupling problem, there is
a major issue in car suspension control: roughly,
we have an over-actuated system with 3 degrees
of freedom controlled by 4 actuators.

In this work we obtain a new description of the
vertical motion of the car including the active
suspension. It consists of 4 completely decoupled
subsystems. The first 3 ones are of order 4 each
and they are analogous to standard quarter car
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suspension models. The 4th subsystem is of order
2; it introduces a new abstract variable denoted
by γ. The variable γ will actually be seen as not
completely decoupled from the previous 3 virtual
suspension variables in that the latter appear in
its dynamics. But this is of no concern in general.
One of the novelties of this modeling result is
that the full suspension system is no more seen as
4 decoupled quarter car suspension models with
sprung mass for each suspension being equal to a
quarter of the total vehicle mass. We note that the
latter equal sprung mass assumption is, actually,
never valid. The fact that the sprung masses are
different is precisely the reason why the center
of gravity of the vehicle is not located at the
geometric center of the chassis. In the new mod-
eling we do not make such an assumption on the
distribution of the vehicle mass. There is precisely
no restrictive hypothesis on the vertical dynamic
model of the car. The 3 fourth order subsystems of
the new model may be seen as virtual suspensions
which are truly decoupled, and able to describe
the modification of the sprung mass distribution
during vehicle accelerations. These 3 virtual sus-
pensions are decoupled in the sense that they may
be controlled independently. In particular we may
use classic control laws designed for quarter car
suspensions, say, ”skyhook“ (Butsuen, 1989). How
these virtual actuators are linked to the 4 real
ones? Here is where the 4th subsystem, that is,
the dynamics of γ, comes into play. It insures a
rational distribution of the 3 virtual suspension
efforts to the 4 real ones.

This new model allows the design of control laws
which satisfy the basic objectives of vehicle dy-
namics: passenger comfort and car handling.

The remainder of this paper is organized as fol-
lows. In the next section we derive our new full
suspension model. In section 3 we provide some
interpretations of the new model. In section 4
we describe a potential new suspension system
with the particularity of having asymmetric front
rear suspensions. The last section is devoted to
numerical simulations using classical controls such
as skyhook.

2. DERIVATION OF THE FULL
SUSPENSION MODEL

We refer to Figure 1 for the notations. The motion
of the chassis consists of the rotation about the X
and Y axes and the vertical displacement along
the Z axis. The frame G X Y Z which is used to
write the dynamics equations is defined as follows.
The plane G X Y is parallel to the road’s plane.
The origin of the frame, G, is the position of
the vehicle’s center of gravity at rest. This frame

is then moving along the road but it is able to
capture the rotational and vertical translation mo-
tions of the vehicle. The three variables defining
these three motions are the roll, θ, the pitch, ϕ,
and the heave, z.
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Figure 1. A schematic view of the car

Applying the laws of dynamics we obtain


msz̈ = F1 + F2 + F3 + F4 + dz

Ixxθ̈ = vfF1 − vfF2 + vrF3 − vrF4 + dθ

Iyyϕ̈ = −LfF1 − LfF2 + LrF3+
LrF4 + dϕ

(1)

where the symbols are defined in Table 1. The
term dz is created by the lateral and longitudi-
nal accelerations which result from the kinematic
quantities anti-roll, anti-dive and anti-squat. The
terms dθ and dϕ are kinematic moments created
by the longitudinal and lateral accelerations. We
shall not specify them: they are considered as
perturbing terms.

The previous equations may be written in matrix
form as follows

M z̈s = AF + ds (2)

with

M =


 ms 0 0

0 Ixx 0
0 0 Iyy


 ,

A =


 1 1 1 1

vf −vf vr −vr
−Lf −Lf Lr Lr


 .

F =




F1
F2
F3
F4


 , ds =


 dz

dθ

dϕ


 , zs =


 z

θ
ϕ


 .

The Fi’s are defined by

Fi = −ks(xs,i − xw,i) − bs(ẋs,i − ẋw,i) + ui (3)

where

xs =




z − vf sin θ − Lf sinϕ
z + vf sin θ − Lf sinϕ
z − vr sin θ + Lr sinϕ
z + vr sin θ + Lr sinϕ


 ,



Symbol Signification

ms Vehicle sprung mass, or chassis mass

Ixx Inertia moment with respect to the
G X axis

Iyy Inertia moment with respect to the
G Y axis

F1 Vertical force created by suspension 1
(Front left wheel)

F2 Vertical force created by suspension 2
(Front right wheel)

F3 Vertical force created by suspension 3
(Rear left wheel)

F4 Vertical force created by suspension 4
(Rear right wheel)

ks Spring coefficient

bs Damping coefficient

ui Force created by the active suspension at
the ith wheel (control input)

vf Half distance between front wheels
vr Half distance between rear wheels
xw Vertical displacement of the center of

gravity of the wheels

Table 1. Notations

and

u =




u1
u2
u3
u4


 .

Assuming θ and ϕ to be small we have

xs =




z − vfθ − Lfϕ
z + vfθ − Lfϕ
z − vrθ + Lrϕ
z + vrθ + Lrϕ




so that
xs = A′zs (4)

where the prime denotes the transposition of
matrices. Equation (2) then becomes

M z̈s = −ksA(xs − xw) − bsA(ẋs − ẋw) + Au + ds .

Given equation (4) we have

Mz̈s = −bsA A′żs − ksA A′zs + bsAẋw+
ks A xw + A u + ds

(5)

which represents the chassis dynamics equation.

2.1 Model of the wheels dynamics

The wheels dynamics are given by

mwẍw = −F − kt(xw − r)

with

xw =




xw,1
xw,2
xw,3
xw,4


 , r =




r1
r2
r3
r4


 .

Using the previous notations we obtain

mwẍw = bsA
′żs + ksA

′zs − bsẋw − ksxw−
u − kt(xw − r) .

(6)

2.2 The new model of the full suspension

The vertical motion of the vehicle is described by
the combination of equations (5) and (6)



Mz̈s = −bsA A′żs − ksA A′zs+
bsAẋw + ksAxw + Au + ds ,

mwẍw = bsA
′żs + ksA

′zs − bsẋw−
ksxw − u − kt(xw − r) .

(7)

These equations are the ones usually considered
in the literature, see for instance (Butsuen, 1989;
Ikanaga et al., 2000; Campos et al., 1999). They
are interpreted as a dynamic system of order 14.

In this communication we present a quite new
vision of these equations. The main point of this
development is to rewrite them into the full sus-
pension model consisting of

• three decoupled subsystems of order 4. Each
one of those represents a standard quarter
car suspension model.

• An extra subsystem of order 2 which de-
scribes the interrelation between the previous
three quarter car suspensions.

We first recall the form of a quarter car suspension
model.
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Figure 2. The quarter car sus-
pension model



ms ẍs = −bs ẋs − ks xs + bs ẋw+
ks xw + u + ds

mwẍw = bs ẋs + ks xs − bsẋw−
ksxw − u − kt(xw − r)

(8)

Comparing system (7) and system (8) we see
that the former lacks some of the symmetries
in the latter. In other words the full suspension
model (7) does not present itself as an assembly
of four quarter car suspension models.

As we may, we multiply the second equation in
system (7) by an invertible matrix T to obtain

mw T ẍw = bs T A′żs + ks T A′zs − bs T ẋw−
ks T xw − T u − kt T (xw − r)

Assume for a moment that there is a real vector
Γ of R4 such that



T =
(

A
Γ′

)
(9)

is invertible. We shall exhibit a specific Γ with
that property. If we denote

γ = Γ′ xw

the previous equation now reads as


mw A ẍw = bs A A′żs + ks A A′zs − bs A ẋw−
ks A xw − A u − kt A (xw − r) ,

mw γ̈ = bs Γ′ A′żs + ks Γ′ A′zs − bs γ̇−
ks γ − Γ′ u − kt(γ − Γ′ r) .

We adopt the following notations

zw = A xw, uw = A u,
rw = A r, uγ = Γ′ u, rγ = Γ′ r .

The previous equations then become


mw z̈w = bs A A′żs + ks A A′zs − bs żw−
ks zw − uw − kt (zw − rw) ,

mw γ̈ = bs Γ′ A′żs + ks Γ′ A′zs − bs γ̇−
ks γ − uγ − kt(γ − rγ) .

Therefore the full suspension model then takes the
following form



Mz̈s = −bsA A′żs − ksA A′zs+
bs żw + ks zw + uw + ds

mw z̈w = bs A A′żs + ks A A′zs−
bs żw − ks zw − uw−

kt (zw − rw)

(10a)

mw γ̈ = bs Γ′ A′żs + ks Γ′ A′zs − bs γ̇−
ks γ − uγ − kt(γ − rγ) .

(10b)

A necessary and sufficient condition for

Γ =




a
b
c
b




to make T invertible is the following one

vr (b − a) �= vf (d − c) .

The matrix A A′ may be seen as

A A′ = Λ + ∆

where

Λ =


 4 0 0

0 2(v2
f + v2

r ) 0
0 0 2(L2

f + L2
r )




and

∆ =


 0 0 2(Lr − Lf)

0 0 0
2(Lr − Lf) 0 0




With the following pre-compensation

uw = vw + ks∆zs + bs∆żs

the dynamics of the chassis (10a) becomes one of
a system of three single input single output



Mz̈s = −bsΛżs − ksΛzs+
bs żw + ks zw + vw + ds ,

mw z̈w = bs Λżs + ks Λzs−
bs żw − ks zw − vw−

kt (zw − rw) ,

(11a)

mw γ̈ = bs Γ′ A′żs + ks Γ′ A′zs − bs γ̇−
ks γ − uγ − kt(γ − rγ) .

(11b)

Remark 1. The system (10a) is observable (in the
absence of disturbances, i. e., r = 0) in the sense
that we may estimate zs, żs, zw, and żw in order
to implement any control strategy which is a
feedback on the latter variables.

Indeed, the suspension quantities which are usu-
ally assumed available as measurements are 4 ac-
celerations of the 4 wheels and the 4 following
variables 


xs,1 − xw,1
xs,2 − xw,2
xs,3 − xw,3
xs,4 − xw,4


 .

If we take
y = A (xs − xw)

we have the following measurements for the sys-
tem (10a) {

aw = z̈w ,
y = A A′zs − zw .

(12)

Now the control system consisting of the dynam-
ics (10a) together with the measurements (12) is
observable as may be easily checked.

Remark 2. The suspension control problem is
then reduced to the control of three decoupled
single input single output systems, and the control
of an extra linear system which is stable.

3. INTERPRETATION

The lower level control variables take the form

u = T−1ud + T−1
(

vw
uγ

)

where

ud =
(

ks∆ zs + bs∆ żs
0

)

is the part of the control which achieves the
decoupling.

The matrix T−1 is the effort distribution matrix.
It may be explicitly computed in terms of a, b,
c and d. With the decoupling of the system we
can design 3 independent linear single input single
outputs higher level controls, namely, the vw. The
role of T−1 is precisely to indicate how these



decoupling controls are distributed to the lower
level controls, i. e., the active suspension actua-
tors. For instance, for an active roll suspension
control the distribution made is quite intuitive:
it is symmetric with respect to the actuators.
But, for controls designed for pitch and heave the
distribution achieved by means of T−1 is quite
sophisticated. Note also that, once vw is designed
for some specified purpose, the choice of Γ still
provides us with some freedom on the distribution
of these controls.

For instance, we may be fortunate to be able to
find a, b, c and d in order to keep the controls u
below some saturation bounds. Another example
of utilization of a, b, c and d is to minimize the
energy of the control u.

4. ON AN ASYMMETRIC SUSPENSION

We show that the previous analysis can be ex-
tended to the case of an asymmetric suspension
for which the coefficients of the two front wheel
suspensions are the same, the coefficients of the
two rear suspensions are also the same, but the
corresponding front and rear coefficients may be
different. The basic model (1) remains the same,
only the equations of the Fi’s, namely, equation-
s (3), change according to the following ones

Fi = −ks,i(xs,i−xw,i)−bs,i(ẋs,i−ẋw,i)+ui , (13)

where

ks,1 = ks,2 and ks,3 = ks,4 ,

and
bs,1 = bs,2 and bs,3 = bs,4 .

Equations (7) become


Mz̈s = −A bsA
′żs − A ksA

′zs+
A bsẋw + A ksxw + Au + ds

mwẍw = bsA
′żs + ksA

′zs − bsẋw−
ksxw − u − kt(xw − r)

(14)

where bs and ks are now diagonal matrices.

In order to recover our decoupled form (11) of
the latter dynamics we use the following trick. We
define

ρ1 =
ks,1

ks,1 + ks,3
; ρ1 =

ks,3

ks,1 + ks,3

ρ2 =
bs,1

bs,1 + bs,3
; ρ2 =

bs,3

bs,1 + bs,3

so that

ρ1 + ρ1 = 1 ; ρ2 + ρ2 = 1

Now ks and bs take the form

ks = ksΛ1 bs = bsΛ2

with

ks = ks,1 + ks,3 , bs = bs,1 + bs,3

and

Λ1 =




ρ1 0 0 0
0 ρ1 0 0
0 0 ρ1 0
0 0 0 ρ1


 ,

Λ2 =




ρ2 0 0 0
0 ρ2 0 0
0 0 ρ2 0
0 0 0 ρ2


 .

Defining

Λ1 = I − Λ1 , Λ2 = I − Λ2

where I is the unit matrix of order 4, then pre-
compensating with the following control

u = v − ksΛ1(xs − xw) − bsΛ2(ẋs − ẋw) (15)

we recover the type of model we started with
at (7), that is,




Mz̈s = −bsA A′żs − ksA A′zs+
bsAẋw + ksAxw + Av + ds

mwẍw = bsA
′żs + ksA

′zs − bsẋw−
ksxw − v − kt(xw − r)

(16)

The procedure we used to obtain the decoupled
form of the model (11) can now be applied to have




Mz̈s = −bsΛżs − ksΛzs + bs żw+
ks zw + vr + ds

mw z̈w = bsΛżs + ksΛzs − bs żw−
ks zw − vr − kt (zw − rw)

(17a)

mw γ̈ = bs Γ′ A′żs + ks Γ′ A′zs − bs γ̇−
ks γ − vγ − kt(γ − rγ) .

(17b)

5. SIMULATIONS

To illustrate the usefulness of the new modeling
of the active suspension, we have chosen to apply
standard control laws one may find in the litera-
ture to our new model. In the simulations below
we have selected the so-called ”skyhook” control
strategy.

A more sophisticated utilization of the variable γ
is done in (Lakehal-Ayat et al., 2002) where we
propose a new control strategy for the yaw rate.
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Figure 3. The roll for the passive (in red discontinuous
line) and active (in blue continuous line) suspen-
sion.
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Figure 4. The pitch for the passive (in red discontin-
uous line) and active (in blue continuous line)
suspension.
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Figure 5. The heave for the passive (in red discontin-
uous line) and active (in blue continuous line)
suspension.
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Figure 6. The actuator forces on the 4 wheels
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