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Abstract: Over the last four years efforts have been devoted towards the development and 
validation of mechanical test result models relating to a range of alloy steels. Several 
neural-network based models have been developed, two of which are related to the 
mechanical test results of Ultimate Tensile Strength (UTS), Reduction of Area (ROA), 
Elongation, etc. The ultimate aim of developing these models is to pave the way to 
process optimisation through better predictions of mechanical properties. In this research 
we propose to exploit such neural network models in order to determine the optimal alloy 
composition and heat treatment temperatures required, given certain predefined 
mechanical properties such as the UTS by including certain economic factors relating to 
the price of composites and the energy necessary for tempering. Genetic Algorithms, with 
their power of searching a relatively large space without requiring the gradient of a 
function, are used for this purpose. The results obtained are very encouraging in that 
steels with adequate properties and optimised costs are obtained. Copyright © 2002 
IFAC 
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1. INTRODUCTION 

 
Heat treatments are commonly used to develop the 
required mechanical properties in a range of alloy 
steels. The heat treatment process consists of a 
hardening stage and a tempering stage. During the 
hardening stage, the steel is soaked at a temperature 

of typically 8500 to achieve full transformation to 
austenite, followed by quenching in an oil or water 
medium. Tempering is performed to improve 
ductilit y and toughness, by heating the steel to 

typical temperatures in the ranges 500-6700 and then 
air-cooling. The mechanical properties of the 
material are dependent on many factors, including 

the tempering temperature, quenchant, composition 
of the steel, geometry of the bar, etc. Metallurgical 
research has led to the understanding of the 
mechanical properties generated by the heat 
treatment process. However, this physical knowledge 
does not allow one to readily compute the 
mechanical properties that would be obtained 
through the heat treatment of a range of alloy steels. 
A heat treatment metallurgist usually balances the 
process parameters through the application of 
metallurgical knowledge, but would also use process 
experience, to obtain the required mechanical 
properties. Over the last few years, empirical models 
using neural networks have been built to predict 
mechanical test results for steels covered by a wide 
range of training data. Such models have been shown 
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to improve product reliabilit y and process eff iciency 
(Tenner, 1999). The ultimate aim of developing such 
mechanical test result models is to facilit ate process 
optimisation. In this research work, we investigate 
the exploitation of such models for optimal alloy 
design using target values for the Ultimate Tensile 
Strength (UTS). The Genetic Algorithm (GA) 
approach is applied to a set of input variables which 
will produce pre-specified mechanical test result 
values. Moreover, such algorithm is shown to be able 
to incorporate economic and qualitative factors such 
the price of composites as well as energy costs. This 
paper is organised as follows: Section 2 will give a 
brief introduction to Genetic Algorithms (GA), while 
Section 3 will show how a hybrid structure 
combining this evolutionary search method and the 
neural-network based predictive models was 
achieved. Section 4 will present and analyse the 
results obtained with such a structure. Finally, 
Section 5 will draw conclusions in relation to this 
overall study. 
 
 

2. INTRODUCTION TO GENETIC 
ALGORITHMS 

(GA) 
 
Genetic Algorithms (GA) are exploratory search and 
optimisation methods that were devised on the 
principles of natural evolution and population 
genetics. Holland (1973, 1975) first developed the 
technique of GA, and several other research studies 
provided a comprehensive review and introduction of 
the concept (Goldberg, 1989). Unlike other 
optimisation techniques, GA does not require 
gradients, but instead relies on a function, better 
known as a "fitness function", in order to assess the 
fitness of a particular solution to the problem in 
question. Possible solution candidates are 
represented by a population of individuals 
(generation) and each individual is encoded as a 
binary string containing a well -defined number of 
chromosomes (1's and 0's).  
 
Initially, a population of individuals is generated and 
the fittest individuals are chosen by ranking them 
according to an a priori-defined fitness-function, 
which is evaluated for each member of this 
population. In order to create another better 
population from the initial one, a mating process is 
carried out among the fittest individuals in the 
previous generation, since the relative fitness of each 
individual is used as a criterion for choice. Hence, 
the selected individuals are randomly combined in 
pairs to produce an offspring by crossing over parts 
of their chromosomes at a randomly chosen position 
of the string. The new offspring is supposed to 
represent a better solution to the problem. In order to 
provide extra excitation to the process of generation, 
randomly chosen bits in the strings are inverted (0's 
to 1's and 1's to 0's). This mechanism is known as 
mutation and helps to speed up convergence and 
prevents the population from being predominated by 
the same individuals. All i n all , it ensures that the 

solution set is never empty. A compromise, however, 
should be reached between too much excitation and 
none by choosing a small probabilit y of mutation. 
 
Hence, for a given population of trials and set of 
operators together with procedures for evaluating 
each trial, a GA proceeds as follows:  
 
An initial random population of trials, 

MmAm ...,,1),0()0( ==Π , where M is the 
number of trials in the population, is 
generated. 

For successive sample instances: 
a) The performance of each trial, ))(( TAmµ , 

...,,1,0=T is evaluated and stored. 
b) One or more trials are selected by taking a 

sample of )(TΠ  using the probabilit y 
distribution:   
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c) One or more genetic operators are applied to the 

selected trials to produce new offspring, 
NmTA o

m ...,,1),( = , where N is the number of 
offspring which is usually equal to the number of 
selected trials (parents). 

d) The next generation of population, )1( +Π T , is 
formed by selecting NjTTA j ,,1),()( �=Π∈  
to be replaced by the offspring, )(TA o

j ; the 
criterion for selecting which trials should be 
replaced may be random, on the basis of the least 
fit or some other fitness basis. 

e) The GA process is terminated after a pre-specified 
number of generations or on the basis of a 
criterion which determines convergence of the 
population. 

 
It was pointed out that the successful running of a 
GA involves having to set a number of control 
parameters, which include population size, the nature 
and rates of the recombination operators; crossover, 
mutation and reproduction. Reproduction is defined 
as the process through which ‘parent structures’ are 
selected to form new offspring, by applying the 
above genetic operators, which can then replace 
members of the old generation. The method of 
selecting an individual to produce offsprings (or to be 
deleted from the population) determines its li fespan 
and the number of its offsprings. For example, if 1ρ  

is the probabilit y that an individual Π∈A  is selected 
to produce offspring during a sample step and 2ρ  is 

the probabilit y that it will be deleted during that 
sample step, then the expected number of offspring 

of A  is 
2

1

ρ
ρ

 (Holland, 1975). The most common 

reproduction techniques are Generational 
Replacement (GR), Steady-State (SS), Generational 
Gap (GG), and Selective Breeding (SB). Only one of 



 

     

these will be the subject of this study, i.e. SB, which 
is described below. 
 

 
2.1 Selective-Breeding reproduction technique 
 
The Selective Breeding reproduction technique is 
designed to overcome some of the deficiencies in the 
other methods. In the steady-state breeding method, a 
sampling error still occurs in the selection of the 
parents and deletion of individuals from the 
population, and often good individuals can appear 
and be deleted without a chance of recombination. 
Selective breeding introduces determinism in order 
to eliminate stochastic sampling error in deletion of 
candidates. The method operates as follows: 
 
1. An initial population, )0(Π is created in the usual 

manner. 
2. The population is evaluated to determine the 

performance of each individual, 
).,,1,( MmAm �=µ  

3. For successive generations, thereafter: 
a)  An entire population of offspring, )(ToΠ , is 

produced by selecting parents and applying 
genetic operators. 

b) The offspring population is then evaluated. 
c) The next generation of population is obtained by 

choosing the best M individuals from both )(TΠ  
and )(ToΠ . 

 
2.2 Evaluation of trials 
 
Each individual (genotype) in a population is a 
hypothetical candidate solution to the optimisation 
problem under consideration. The procedure of 
evaluating these candidate solutions consists of 
submitting each to a simulation model, and returning 
an assessment value according to a given fitness 
function. A controlled process is defined by a set of 
state variables { }nxxxX ,,, 21 �=  which are 

controlled by a set of control variables 
{ }mcccC ,,, 21 �= . The genotypes are trial ‘control 

policies’ f or selecting C as a function of X. The role 
of the adaptive plan is to derive an optimal 

policy optA  which minimises a given performance 

function. Such a performance function is very much 
dependent upon the optimisation process itself and 
can be expressed in terms of: 
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In the case of this research a combination of goal 
achievement and parameter minimisation was chosen 
as wil l be seen in the next sections. 
 

3. COMBINING GA’S WITH NEURAL 
NETWORKS 

 
The various routines relating to the Genetic 
Algorithm, previously written in ‘C’ programming 
language, had to be linked to the neural models 
developed using MATLABÒ . Initially, the GA is 
used to find a set of input values to the neural model 
to give certain target UTS values. The neural models 
hence developed include a relatively large number of 
inputs (22 in total for the UTS model) and there are 
many factors which can influence the UTS of steel. 
Although the GA can determine optimal values for 
all those inputs to reach a target UTS value, the 
present study is limited to five variables only which 
are: 
 
•  Carbon 
•  Manganese 
•  Chromium 
•  Molybdenum 
•  Tempering temperature 
 
The remaining inputs would not affect the UTS 
values for the steel. To ensure that that these values 
do not prevent the GA from converging to an optimal 
solution, they were set to that of the median 1%CrMo 
values (Tenner, 1999). 
 
Coding of the genetic algorithm is based on defining 
the number of individuals in the population and the 
chromosome length of each one using the so-called 
‘concatenated binary mapping’ . This coding is 
usually realised by joining segment codes of all the 
parameters into one composite string.  
 
 
In this study, the GA was set with the following 
parameters: 
 
Population size = 60 
Chromosome length (in bits) = 60 
Probabilit y of Crossover = 0.95  
Number of Crossover Points = 5 
Probabilit y of Mutation = 0.09 
Fitness Scaling: Function Normalisation 
 
Each individual (candidate solution) was then 
organised into 60 bits, with each block of 16 bits 
representing the following parameters to be 
optimised: carbon (C), manganese (Mn), chromium 
(Cr), molybdenum (Mo), and tempering temperature. 
Figure 1 summarises the organisation of the 
chromosome.  
 
 
 
 
 
 
 
 
 
 



 

     

4. STANDARD AND PARTIALLY 
CONSTRAINED OPTIMISATION 

 
 
4.1 Using GA to Find a Target UTS Value 

 
The first experiment using GA consisted of setting a 

target UTS value (868 2/ mmN ). The following 
fitness function was used to guide the GA to an 
optimal solution: 
 

2)( trgtUTS UTSUTSJ −=                                        (2) 

 
The final UTS value obtained after 50 generations 

was 867.99 2/ mmN  with a Chromium composition 
of 2.60%! knowing that chromium is a relatively 
expensive element compared to carbon, metallurgists 
would certainly not favour this composition. 
 
 
4.2 Using GA to find a target UTS value with model 

standard deviation 
 
In the previous experiment the GA had provided a 
(non-unique) solution which is different to that of the 
median analysis. Particularly, it would not make 
financial sense to use less carbon and more 
chromium if the only mechanical test requirement 
was a predefined UTS target value. Hence, a more 
reliable solution can be obtained if the standard 
deviation (SD) between all predictors was included 
in the fitness function as a penalty parameter, i.e. 

2
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SDUTS λλ +
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=    (3) 

The standard deviation value is that related to the 
ensemble member’s predictions for a given set of 

input variables, and the constants 1λ  and 2λ  will 

allow one to obtain all the pareto solutions to the 
problem by expressing priorities. It is worth noting 
that the standard deviation term is very important as 
its presence means that the UTS target value will not 
be met unless it li es in a dense area of the data (low 
SD values). 
 
The GA was allowed to run for 2000 generations 
with 901 =λ and 702 =λ . Figure 2 shows the 

evolution of the alloy steel composition throughout 
this number of generations. In turn, Table 2 displays 
the GA adjusted values against the 1%CrMO values, 
which appear to be much closer now. 
 
 
 
 
 
 
 
 
 

Table 1 GA-based optimal composition versus    
1%CrMo analysis for run of Figure 4. 

 
Variable to be 

Optimised 
1%CrMo 

Value 
GA-Adjusted 

Value 
C(%) 0.41 0.3302 

Mn(%) 0.78 0.7878 
Cr(%) 1.08 1.0552 
Mo(%) 0.22 0.2167 

Tempering 
Temperature 

 ( Co ) 

630 580 

 
 
 
5. CONSTRAINED OPTIMISATION INCLUDING 

ECONOMIC FACTORS 
 
The factors contributing to the cost of heat treatment 
operation are shown in Tables 2a, 2b1 and are related 
mainly to the price of composites and the energy 
costs incurred through tempering. In this study, only 
these factors have been considered although other 
composites and temperatures can also be included: 
 
Table 2a Contribution of composites to the cost of 

heat treatment    
 

Composite Cost ($ per tonne) 
Manganese (Mn) 18 
Chromium (Cr) 42 
Molybdenum (Mo) 52 

 
Table 2b Contribution of annealing (tempering) to 

the cost of heat treatment   
 

Item             Cost  
($: 1.3GJ/tonne at 600 o C) 

Annealing (tempering) 4.88 

 
Taking into account the above data we conducted 
three more experiments with the GA by modifying 
the fitness function as follows: 
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Depending on the relative values given to ,, 21 λλ and 

3λ , priority will be given to achieving the desired 

mechanical property with a minimum standard 
deviation or having the total costs (for composites 
and/or energy) down.  
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Hence, in the first experiment the GA relied on a 
fitness function where 132 λλλ >> which translates 

into: “we would not mind if the UTS is slightly away 
from the target, but we would like the GA to look 
into a dense region of the model with the cost of 
composites being taken into account” . At the end of 
this experiment the GA converged to the following 
values:  
 

.54.73$;62.2;/878 2 === CostsSDmmNUTS  

 
It is worth noting that such a cost is lower than the 
one obtained using the experiment of Section 4.2 
which was $ 74.54, a saving of $ 1 per tonne! 
 
The second experiment consisted of the following 
combination of the weights: 123 λλλ >> , which 

translates to the same linguistics as above with not so 
much emphasis on the standard deviation but on the 
costs. The result of the experiment led to the 
following values: 
 

.41.72$;50.4;/867 2 === CostsSDmmNUTS     

 
A final experiment was conducted in which a penalty 
on the energy costs was also included as follows: 
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In this experiment the following combination of the 
weights was adopted: 1243 λλλλ >>> , which 

ensures that a reliable model is elicited (through a 
low SD) but with a composition and a tempering 
temperature which will drive the total costs down. 
Hence, the result of the experiment, also shown in 
Figure 3, led to the following values: 
 

.17.71$;99.3;/869 2 === CostsSDmmNUTS     

 
Table 3 summarises the various compositions and 
costs obtained under various optimisation strategies 
(costs include energy costs); it is worth noting that 
the number allocated to each case can be identified 
as follows: 
•  Case 1: the standard 1%CrMo composition. 
•  Case 2: as per Section 4.2. 
•  Case 3: as per Section 5 with priority given to 

SD. 
•  Case 4: as per Section 5 with priority given to 

composite costs, energy costs not included. 

•  Case 5: as per Section 5 with energy costs 
included. 

 
Table 3 Summary of compositions and costs after 
GA-based optimisation. 
 

Case Mn Cr Mo Temp
. 

SD Costs 
($) 

1 0.78 1.08 0.22 630 N/A 76.02 
2 0.79 1.06 0.22 580 3.68 74.54 
3 0.79 1.05 0.20 579 2.62 73.54 
4 0.71 1.08 0.18 585 4.50 72.41 
5 0.76 1.04 0.18 573 3.99 71.17 
 
 
 

6. CONCLUSIONS 
 
In this research work we have proposed a novel 
method to find optimal model inputs given certain 
constraints using genetic algorithms. The abilit y of 
GA to adjust a number of variables (a total of 5) to 
meet a target UTS value was initially demonstrated. 
It was also shown that if the model standard 
deviation was included in the fitness function as a 
penalty term, the GA can provide a reliable and 
generally more practical solution, in terms of lower 
tempering temperatures (energy savings) and 
practical composition levels (reasonable percentage 
composition of chromium for instance). Further 
experiments, which include the Reduction of Area 
(ROA) mechanical test and the corresponding SD, 
were also conducted which pointed to the same 
conclusion. The work was later extended to include 
economic factors, such the costs associated with the 
composites and annealing (tempering), and showed 
that through a careful choice of weights (penalties), 
priorities can be set vis-à-vis the optimisation of the 
mechanical properties, model accuracy, and also the 
overall costs incurred. Future experiments will 
consider the use of other mechanical properties such 
as the ROA and Elongation together with the 
inclusion of all composite costs and temperatures in a 
multi -objective context. 
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C Mn Mo Cr Tempering 
Temperature 

Bit 1 Bit 12 Bit 24 Bit 36 Bit 48 

Fig. 1 A typical GA-coding of steel composition and temperature. 
 
 

Fig. 2 Evolution of the 5 inputs throughout successive generations  
          for constrained optimisation; no economic factors included. 
 
 

Fig. 3 Evolution of the 5 inputs throughout successive generations 
          when composite and energy costs are taken into account. 
 


