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Abstract: Over the last four years efforts have been devoted towards the devdopment and
validation d mechanical test result models relating to a range of alloy steds. Seveal
neural-network based models have been devdoped, two of which are related to the
medhanical test results of Ultimate Tensile Srength (UTS), Reduction d Area (ROA),
Elongation, etc. The ultimate aim of devdoping these models is to pave the way to
processoptimisation through ketter predictions of mecharical properties. In this research
we propose to exploit such neural network modelsin order to determine the optimal all oy
composition and [eat treatment temperatures required, given certain predefined
mecharical properties auch asthe UTS by including certain econamic factors relating to
the price of compaosites andthe energy necessary for tempering. Genetic Algorithms, with
their power of searching arelativdy large space withou requiring the gradient of a
function, are used for this purpose. The results obtained are vey encouraging in that
steds with adequate properties and optimised costs are obtained. Copyright © 2002
IFAC
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1. INTRODUCTION

Hea treaments are commonly used to develop the
required mechanicd properties in a range of aloy
steds. The hea tredment process consists of a
hardening stage and a tempering stage. During the
hardening stage, the sted is aked at a temperature
of typicdly 850°to adhieve full transformation to
austenite, followed by quenching in an oil or water
medium. Tempering is performed to improve
ductility and toughress by heding the sted to

typicd temperatures in the ranges 500-670° and then
air-coding. The medanicd properties of the
material are dependent on many fadors, including

the tempering temperature, quenchant, composition
of the sted, geometry of the bar, etc. Metalurgicad
reseach has led to the understanding of the
mechanicd properties generated by the hea
treament process However, this physicd knowledge
does not alow one to redaily compute the
mechanicd properties that would be obtained
through the hea treament of a range of aloy steds.
A hea treament metalurgist usually balances the
process parameters through the egplicaion of
metallurgicd knowledge, but would also use process
experience, to oktain the required mechanicd
properties. Over the last few yeas, empiricd models
using reural networks have been built to predict
mechanicd test results for steds covered by a wide
range of training data. Such models have been shown



to improve product reliability and processefficiency
(Tenrer, 1999. The ultimate am of developing such
medhanicd test result models is to fadlit ate process
optimisation. In this reseach work, we investigate
the exploitation of such models for optimal alloy
design wsing target values for the Ultimate Tensile
Strength (UTS). The Genetic Algorithm (GA)
approac is applied to a set of input variables which
will produce pre-spedfied mechanicd test result
values. Moreover, such algorithmis sown to be ale
to incorporate emnomic and qualitative fadors such
the price of composites as well as energy costs. This
paper is organised as follows: Sedion 2 will give a
brief introduction to Genetic Algorithms (GA), while
Sedion 3 will show how a hybrid structure
combining this evolutionary seach method and the
neura-network based predictive models was
achieved. Sedion 4 will present and anayse the
results obtained with such a structure. Finaly,
Sedion 5 will draw conclusions in relation to this
overall study.

2. INTRODUCTION TO GENETIC
ALGORITHMS
(GA)

Genetic Algorithms (GA) are exploratory seach and
optimisation methods that were devised on the
principles of natural evolution and popilation
genetics. Holland (1973 1975 first developed the
technique of GA, and several other reseach studies
provided a comprehensive review and introduction of
the oncept (Goldberg, 1989. Unlike other
optimisation techniques, GA does not require
gradients, but insteal relies on a function, better
known as a "fitness function", in order to assessthe
fitness of a particular solution to the problem in
guestion. Posdble solution candidates are
represented by a population of individuas
(generation) and ead individual is encoded as a
binary string containing a well-defined number of
chromosomes (1'sand 0s).

Initially, a population of individuals is generated and
the fittest individuals are dchosen by ranking them
acording to an a priori-defined fitnessfunction,
which is evaluated for ead member of this
population. In order to creade another better
population from the initial one, a mating processis
caried out among the fittest individuals in the
previous generation, since the relative fitnessof eah
individual is used as a aiterion for choice Hence
the seleded individuals are randomly combined in
pairs to produce a offspring by crossng over parts
of their chromosomes at a randomly chosen pasition
of the string. The new offspring is supposed to
represent a better solution to the problem. In order to
provide etra excitation to the processof generation,
randomly chosen bits in the strings are inverted (0's
to Is and Is to 0s). This medhanism is known as
mutation and helps to speed up convergence ad
prevents the population from being predominated by
the same individuals. All in all, it ensures that the

solution set is never empty. A compromise, however,
should be readied between too much excitation and
none by choosing a small probability of mutation.

Hence, for a given population of trials and set of
operators together with procedures for evaluating
ead trial, a GA proceals as foll ows:

An initia random popdation o trids,
no)=A,0),m=1..,M, where M is the
number of trials in the popdation, is
generated.

For succesdve sample instances:

a) The performance of ead trial, u(A,(T)),
T=0,1 ..., isevauated and stored.

b) One or more trials are seleded hy taking a

sample of M(T) using the probability
distribution:
p(An(T)) = -E AT M
H(A(T))

=

¢) One or more genetic operators are gplied to the
seleded trials to produce new offspring,
A.°(T),m=1..,N, where N is the number of
off spring which is usually equal to the number of
seleded trials (parents).

d) The next generation of population, M(T +1), is
formed by sdeding A;(T)OMN(T), j=1...,N
to be replacal by the offspring, A;°(T); the
criterion for seleding which trids dould be
replaced may be random, on the basis of the least
fit or some other fitnessbasis.

€) The GA processis terminated after a pre-spedfied
number of generations or on the basis of a
criterion which determines convergence of the
population.

It was pointed out that the succesgul runring of a
GA involves having to set a number of control
parameters, which include population size, the nature
and rates of the recombination operators; crosover,
mutation and reproduction. Reproduction is defined
as the process through which ‘parent structures are
seleded to form new offspring, by applying the
above genetic operators, which can then replace
members of the old generation. The method d
seleding an individual to produce off springs (or to be
deleted from the population) determines its lifespan
and the number of its offsprings. For example, if p;
is the probability that an individual AOT is sleded
to produce offspring during a sample step and p, is
the probability that it will be deleted during that
sample step, then the expeded number of offspring

of A is Py (Holland, 1975. The most common
P2

reproduction techniques ae  Generationa
Replacanent (GR), Steady-State (SS, Generational
Gap (GG), and Seledive Breading (SB). Only one of



these will be the subjed of this gudy, i.e. SB, which
is described below.

2.1 Sledive-Bredaing reproduction technique

The Seledive Breeding reproduction technique is
designed to overcome some of the deficienciesin the
other methods. In the steady-state breeding method, a
sampling error till occurs in the seledion of the
parents and deletion of individuals from the
population, and dften good individuals can appea
and be deleted without a thance of recombination.
Seledive bredaling introduces determinism in order
to eliminate stochastic sampling error in deletion of
candidates. The method oferates as foll ows:

1. Aninitial population, M(0) is creaed in the usual
manner.

2. The population is evaluated to determine the
performance of eath individual,
H(Ay, m=1,..., M).

3. For successve generations, theredter:

a) An entire population of offspring, M°(T), is
produced by seleding parents and applying
genetic operators.

b) The off spring population is then evaluated.

¢) The next generation of population is obtained by
choosing the best M individuals from bath M(T)
and N°(T) .

2.2 Evaluation d trials

Each individual (genotype) in a population is a
hypotheticd candidate solution to the optimisation
problem under consideration. The procedure of
evaluating these candidate solutions consists of
submitting ead to a ssmulation model, and returning
an asssgnent value acording to a given fitness
function. A controlled processis defined by a set of
state variables X ={x;, X,,.-., X,} which are
controlled by a set of control variables
C= {ol, Coyunny cm} . The genotypes are trial ‘control
padicies for seleding C as a function of X. The role
of the aaptive plan is to derive an optima
pdlicy A)pt which minimises a given performance
function. Such a performance function is very much
dependent upon the optimisation process itself and
can be expressd in terms of :

LI Furnction rinirmisation;
Ll Goal achievernent:

O Intecval specification.

In the cae of this reseach a mmbination of goal
achievement and parameter minimisation was chosen
aswill be seen in the next sedions.

3. COMBINING GA’SWITH NEURAL
NETWORKS

The various routines relating to the Genetic
Algorithm, previoudly written in ‘C’ programming
language, had to be linked to the neural models
developed using MATLABO. Initidly, the GA is
used to find a set of input values to the neural model
to give cetain target UTS values. The neural models
hence developed include arelatively large number of
inputs (22 in total for the UTS model) and there ae
many fadors which can influence the UTS of sted.
Although the GA can determine optimal values for
al those inputs to read a target UTS value, the
present study is limited to five variables only which
are:

e Carbon

¢ Manganese

e Chromium

¢ Molybdenum

e Tempering temperature

The remaining inputs would not affea the UTS
values for the sted. To ensure that that these values
do not prevent the GA from converging to an optimal
solution, they were set to that of the median 1%CrMo
values (Tenner, 1999.

Coding of the genetic dgorithm is based on defining
the number of individuals in the population and the
chromosome length of ead one using the so-cdled
‘concaenated binary mapping. This coding is
usually redised by joining segment codes of al the
parameters into one mompasite string.

In this gudy, the GA was st with the following
parameters:

Popuationsize= 60

Chromosome length (in hits) = 60
Probalility of Crosover = 0.95

Number of Crosover Points= 5
Probakility of Mutation = 0.09
FitnessScaling: Function Normalisation

Each individua (candidate solution) was then
organised into 60 hts, with ead block of 16 hLts
representing the following parameters to be
optimised: carbon (C), manganese (Mn), chromium
(Cr), molybdenum (Mo), and tempering temperature.
Figure 1 summarises the organisation of the
chromosome.



4. STANDARD AND PARTIALLY
CONSTRAINED OPTIMISATION

4.1 Using GAto Find aTarget UTSValue

The first experiment using GA consisted of setting a

target UTS value (868 N/mmz). The following
fitness function was used to guide the GA to an
optimal solution:

Jurs = (UTS-UTS4,)? @)

The final UTS value obtained after 50 generations

was 867.99 N /mm? with a Chromium compasition
of 2.60%! knowing that chromium is a relatively
expensive dement compared to carbon, metall urgists
would certainly not favour this composition.

4.2 Using GA to find atarget UTS value with model
standard deviation

In the previous experiment the GA had provided a
(non-unique) solution which is different to that of the
median analysis. Particularly, it would not make
financial sense to use less cabon and more
chromium if the only medanicd test requirement
was a predefined UTS target value. Hence, a more
reliable solution can be obtained if the standard
deviation (SD) between all predictors was included
in the fitnessfunction as a penalty parameter, i.e.

uT -UTS
St arget )2+A2( SD ., 3)

J =A
uts, sp = A1 UTS! arge 100

The standard deviation value is that related to the
ensemble member’'s predictions for a given set of

input variables, and the mnstants A; and A, will

alow one to oktain all the pareto solutions to the
problem by expresdsng priorities. It is worth noting
that the standard deviation term is very important as
its presence means that the UTS target value will not
be met unlessit lies in a dense aeaof the data (low
SD values).

The GA was alowed to run for 2000 generations
with A; =90and A, =70. Figuwe 2 shows the
evolution of the dloy sted compasition throughout
this number of generations. In turn, Table 2 displays
the GA adjusted values against the 1%CrMO values,
which appea to be much closer now.

Table 1 GA-based optimal composition versus
1%CrMo analysis for run of Figure 4.

Variableto be 1%CrMo | GA-Adjusted
Optimised Value Value
C(%) 041 0.3302
Mn(%) 0.78 0.7878
Cr(%) 1.08 1.0552
Mo(%) 0.22 0.2167
Tempering 630 580
Temperature
(°c)

5. CONSTRAINED OPTIMISATION INCLUDING
ECONOMIC FACTORS

The fadors contributing to the st of hea treament
operation are shown in Tables 2a, 2b" and are related
mainly to the price of composites and the energy
costs incurred through tempering. In this gudy, only
these fadors have been considered athough other
compaosites and temperatures can also be included:

Table 2a Contribution of composites to the st of
hed treament

Composite Cost ($ per tonne)
Manganese (Mn) 18
Chromium (Cr) 42
Molybdenum (Mo) 52

Table 2b Contribution of anneding (tempering) to
the st of hed treadment

Item Cost
($: 1.3GJ/tonne at 600° C)

Anneding (tempering) | 4.88

Taking into acount the @ove data we cnducted
three more experiments with the GA by modifying
the fitnessfunction as foll ows:

UTS; arget — uTts

Jutssp,economy = Ax( uTS, )2 +
arget
SD .,
A + 4
2(1008 4)
A [Mn_Cost+Cr _Cost+Mo_ CostLT
*H 10000 H

Depending on the relative values given to A4, A,, and
A5, priority will be given to adieving the desired
mechanicd property with a minimum standard

deviation or having the total costs (for composites
and/or energy) down.

! Profesor M C Sellars; Private Communication



Hence in the first experiment the GA relied on a
fitness function where A, > A5 > A, which trandlates
into: “we would not mind if the UTS is dightly away
from the target, but we would like the GA to look
into a dense region of the model with the st of
composites being taken into acount”. At the end of
this experiment the GA converged to the following
values:

UTS=878\/mn?; SD=262 Costs=$7354

It is worth noting that such a st is lower than the
one obtained using the experiment of Sedion 4.2
which was$ 7454, asavingof $ 1 per tonne!

The second experiment consisted of the following
combination of the weights: A; >A, >A;, which
trand ates to the same linguistics as above with not so
much emphasis on the standard deviation but on the
costs. The result of the experiment led to the
following values:

UTS=867N/mnf; SD=450 Costs=$7241.

A final experiment was conducted in which a penalty
on the energy costs was also included as foll ows:

HJTS UTS; arget g

J
UTS,SD, ECONOMY — B UTS]— arget H
B3R
F10000] )
D\/Iang Cost+Cr _Cost+ Mo CostD2
s 10000 H*

BAnnealmg_ Cost
1000 O

In this experiment the following combination of the
weights was adopted: A3 >A, >A, > Ay, which
ensures that a reliable modd is elicited (through a
low SD) but with a composition and a tempering
temperature which will drive the total costs down.
Hence, the result of the experiment, also shown in
Figure 3, led to the foll owing values:

UTS=869N/mn?; SD=3.99 Costs=$7117.

Table 3 summarises the various compositions and

costs obtained under various optimisation strategies

(costs include energy costs); it is worth noting that

the number alocaed to ead case can be identified

asfollows:

e Case1: the standard 1%CrMo compaositi on.

e Case2: asper Sedion 4.2.

e Case 3: as per Sedion 5 with priority given to
SD.

e Case 4: as per Sedion 5 with priority given to
composite sts, energy costs not included.

e Case 5. as per Sedion 5 with energy costs

included.

Table 3 Summary of compaositions and costs after

GA-based opimisation.

Case | Mn Cr Mo Temp | SD Costs
. $

1 078 |108 |0.22 |630 N/A 76.02

2 079 106 |0.22 |580 368 | 7454

3 079 |105 |0.20 |579 262 | 7354

4 071 |108 |0.18 |585 450 | 7241

5 076 |104 |018 |573 399 | 7117

6. CONCLUSIONS

In this reseach work we have proposed a novel
method to find ogtimal model inputs given certain
constraints using genetic dgorithms. The aility of
GA to adjust a number of variables (a total of 5) to
med a target UTS value was initially demonstrated.
It was aso shown that if the model standard
deviation was included in the fitness function as a
penalty term, the GA can provide a reliable and
generally more pradicd solution, in terms of lower
tempering temperatures (energy savings) and
pradicd composition levels (reasonable percentage
composition of chromium for instance). Further
experiments, which include the Reduction of Area
(ROA) mechanicd test and the crresponding SD,
were dso conducted which pointed to the same
conclusion. The work was later extended to include
eoconomic fadors, such the wsts asociated with the
compaosites and anneding (tempering), and showed
that through a caeful choice of weights (penalties),
priorities can be set vis-a-vis the optimisation of the
mechanicd properties, model acaracy, and aso the
overall costs incurred. Future experiments will
consider the use of other mechanicd properties such
as the ROA and Elongation together with the
inclusion of all composite @msts and temperaturesin a
multi-objedive mntext.
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o &3
El <
=T 1)
z 0s L 2 1
3 :
] =0
] 500 1000 1500 2000 ] 500 1000 1500 2000
@ 3 Mumber of Generations a2 Mumber of Generations
) L
E E0s
= 1 b T
£ = fr———————————
5o 2@
] 500 1000 1500 2000 ] 500 1000 1500 2000
a00 Mumber of Generations Mumber of Generations
= 700
£ 5m0 l
=
500
] 500 1000 1500 2000
Mumber of Generations
Fig. 2 Evolution of the 5 inputs throughout successve generations

for constrained optimisation; no economic fadors included.
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