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Abstract: The task of an extremum seeking controller is to drive or to command a system
in order to extremize the value of a performance function that only depends on the present
output of that system. Here, an approach for designing such a controller for cases in which
the performance function is fully determined by the value of a multi-dimensional parameter
is presented. The designed controller will be indeed adaptive; it will estimate the (unknown)
value of the parameter, determining the performance function, and accordingly it will issue a
command to the system in order to drive it to an output value that extremize the performance
function. If a dither function can be found to satisfy some persistent exitation condition, then
the output of the system will converge to a neighborhood of the extremizing output value.
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1. INTRODUCTION

Usually a control system is designed to track a known
setpoint. For an extremum-seeking (also known as
peak-seeking) controller the set-point is not known
apriori. The desired operating command that it should
issue to the system is found by optimizing, on-line, the
value of some performance function. The command
(issue by the controller) that result in the extremization
of the performance function is the desired set-point or
command for the system.

Investigation of this class of problems dates back at
least to 1922 (Leblanc, 1922). A subsequent flurry
of interest arose in the 1950s and 1960s (Morosanov,
1957; Ostrovskii, 1957). A recent rejuvenation of the
field has been witnessed in the form of applications
to pressure-maximizing compressors, drag-reducing
flight formations (D. Chichka, 1999; R.N. Banavar,
2000), and efficient fuel-burning in IC engines (B. Wit-
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tenmark, 1995; M. Krstić, 1997; H-H. Wang, 1998).
The approaches reported by these authors separate
the problem by a timescale, assuming that the system
dynamics (i.e. the dynamics of the closed-loop sys-
tem composed by the plant and the stabilizing main
controller) are fast with respect to the dynamics of the
peak-seeking controller. The approach presented here
differs from that approach in the following manner:
It is assumed that the performance function is fully de-
termined by the value of a multi-dimensional parame-
ter and moreover it has some additional properties to
be specified later on.
It is assumed that a dither function can be found to
satisfy some persistent exitation condition rather than
assuming a time scale separation.

Section 2 describes the dynamical system and the
class of performance functions under consideration.
We also properly define the problem of designing a
peak-seeking control-law. In section 3 a peak-seeking
control-law and in fact a methodology for designing
one is presented. The behavior of the closed-loop sys-
tem is analized in this section. A numerical example
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is presented in section 4 and conclusions are given in
section 5.

2. STATEMENT OF THE PROBLEM AND
DESCRIPTION OF THE CLASS OF

PERFORMANCE FUNCTIONS

The system under consideration is described by:����������
	����������������� (1)����������� !�"��#%$ � �
where �'&)(+*-,.*!/	0&1()*-,.23/�4&+(65�,.*�7
The parameter $ � &�8:9;(+< is given (constant, but
unknown).

In addition it will also be assumed that �=�>?	@?�A� are
such that the following condition is satisfied:�"B/CD� There exist matrices E � &F()2>,.*G E)H &()2A,�53I

J3KMLON��P �Q�Q	 E � 	 E H� �SR is Hurwitz.

A characterization of the triplets ���TU	)?�A� satisfying
condition �VBWCX� is given in (J.L. Speyer, 2000) via a
Lemma that we state here for completeness.

Lemma 1 ((J.L. Speyer, 2000)). A triplet �=�>U	)?�A�
satisfies condition �VBWCX� if and only if the following is
satisfied:

(i) ���TU	Y� is stabilizable, and

(ii) P �Z	�[�@R is full row rank.

The class of performance functions under considera-
tion is described by:

 !���\#U$]�@�_^/�%`"ab���c�d%$]eU���$6&f8g9Q( <
where:h

The function a)Ii( 5>j ( < has continuous first
partial derivatives.

h
The function ^�I]( jlk 9m( is a homeomor-
phism.

h
The set 8g9n(+< is closed and convex.

h
For each $o&p8 ,  !���\#%$�� has an unique
minimizer H � 2rqs* ��$]� , and moreover the func-
tion � 2tqs* I]8 j (65 has continuous first partial
derivatives.

u
Or for each vrwyx , zr{}|�~�vd� has an unique maximizer �U��� .

The problem is the one of designing a (peak-seeking)
controller that operating on the signals ���-%��%���
will guarantee the stability of the closed-loop system
and moreover ensure that �����%� converges to some
neighborhood of � 2tqs* �"$ � � . In developing the design
of such a controller we only assume knowledge ofacA^c�8��� 2tqs* and some E �  E H for which the
triplet �=�>?	@?�A� obey condition �VBWCX�d7
An example of a family of performance function that
can be represented in the aforementioned manner is
the following:� �"�\#X�=�3��DU�M�U� KMLON� C� `��3�\%�be��;`=�DU�ce\�Q�
with ��&�()*c,.*b����3� �  satisfying � �M�@� � ���H � for some given �Y� � � � �-H 7
The above family of functions can be expressed in the
following manner:� ���\#����3?�D?�M�%�@�_ !�"�\#U$]�@��^/�U`Va��"�b��%$�e%�
where,^/�"�.�b����a��"�c����� C� � H � � � � H 7M7M7U� � � 5 C� � HH � H �-��7M7M7%� H � 5 7M7M7� � � H 7M7�7%� 5 CX� � $����"� ��� � � ��� H 7M7�7�� ��� 5 � H � H � H � �W7�7M7U� H � 5 7�7M7� � �M� � 
with the set 8 �¢¡�$�&�(+<QI � �d��� � � �-H �6£ 7 In
this case � 2tq}* �"$]���'¤��¦¥ � �D7

3. DESIGN OF A PEAK-SEEKING
CONTROLLER

Here, a control-law for the problem stated above is
presented. In doing so, a loop transformation is first
performed via,�/�"�%��� E � ���"�%�A� E H>§�¨� �����"©���¤�ª.��©��%�.«]©�7
The resulting system is described by:�¬ �"�%��� J ¬ ���%�>�0@ª.���%�F ¬ �=�]��� ¬ � (2)�®�"�%����B ¬ �"�%��c�"�%���� !�������%��#%$ � �
where,B KMLON�l¯ �o�t° ,  K�LON��P �¤ � R ,

¬ � KMLON��P � ���R 7
Notice that the above LTI system represented by the

triplet � J Uy%B\� has transfer function ± �=²D� KMLON�BW��² � ¤ J ��¥ �  which satisfies ± �=�]��� � , implying
that ���"�%� will track ª.���%� provided it is ‘slow’ enough.



It seems therefore natural to consider the following
adaptive control-law in order to tackle the problem in
hand:� �$��"�%�@�����U^ ¥ � ���c�"�%�U�Y¤Z`"ab�����"�%�U�� �$-�"�%�Ue��Ma��"�®�"�%�U�r�$�������� �$ � ª.���%�@�F� 2tqs* ���
	�� �$-�"�%�%���T�0«c�"�%� (3)

where, ��� � is an estimation gain, «�I�(� j (65
is a dither function which is chosen to be a member
of ��� � ������n� , and �
	�I](+< j 8 is the projection
operator onto 8 .

With respect to the closed-loop system described by
(2)-(3), the following straight-forward result stated
here as a proposition is in order.

Proposition 1. Under the above assumptions, for ev-
ery initial condition �"���] �$D�X�g& ()*��m8 the dif-
ferential equation (2)-(3), that describes the behav-
ior of the closed-loop system, has an unique solu-
tion � ¬ ���%�� �$-���%�%� on � ������n� , and moreover � ¬  �$]�)&��� � ������n��7
Further, if a dither function d ( «@& �
� � ������Q� ) can
be chosen to satisfy the following persistant exitation
(PE) condition;

(PE) There exist � � ���� � �� � 5�� � I� ¨ ��¨ � a��"����©��%��a � �"�®�"©��%���X«]© � � �  �c� � � 5 7
Then, !#"%$

¨ &  �(' �$��"�%�Y¤4$ � ' �;��� in fact ' �$����%�Y¤4$ � ' j � exponentially �
and

!#"%$
¨ &  �(' �����%�Y¤4� 2tqs* �"$ � ��¤F�*),+r«��d���%� ' �;��

where, )@� � ¥ � ¡ ± £ 7
Proof:. Via the change of variable - K�LON� $ � ¤ �$�
the differential equation (2)-(3) can be equivalently
written in the following form:�¬ � J ¬ �0�� � 2tq}* �.� 	 �"$ � ¤ - �U�>� «c�"�%���4¬ ���]��� ¬ ��- �G¤/�0� a��VB ¬ ��a � �VB ¬ �1� -  - �=�]���m$ � ¤ �$X�
Under the above assumptions, the right-hand side sat-
isfies the Carathéodory conditions and also it is lo-
cally Lipschitz in � ¬  - � (recall that the operator � 	 is
non-expansive). Therefore (Hale, 1969) the above dif-
ferential equation has an unique solution � ¬ ���%�� - ���%�%�
on some interval. That this solution can be indefi-
nitely extended follows from Maximal Interval of Ex-
istance Theorem (Hale, 1969) and from the fact that� ¬ ���%�� - ���%�%� will be allways confined to be in a compact

set. Indeed, ' - ���%� ' � ' - ����� ' together with the facts
that «)& ��� � ������n� , � 2tqs* �.�
	��32 �U� is continuous andJ

is Hurwitz, implies that also ' ¬ ���%� ' �54 for some
finite 4 7
The above reasoning also shows that� ¬  - �r& � � � ������Q�d7
The continuity of a , implies that ab�"B ¬ �t& � � � ������n�
which together with the (PE) condition implies (see
(K.S. Narendra, 1989) for details) that ' - �"�%� ' j �
exponentially. The last result follows from the facts
that � 2tqs* �.� 	 �32 �U� is continuous, $ � &�8 , and ± ���]�r�� .
Some remarks are in need at this point.

Remarks. 1. It is important to stress here that the
proposed control-law does not use directly the data�=�>U	)?�A� that represent the system (1). Indeed, the
above result remains valid for any �=�>?	@?�A� pro-
vided that

J
remains Hurwitz for the E �  E@H used

by the controller.
In fact, regarding the robustness of the above pro-
posed controller, it is important to mention that

defining � KMLON� ' ¯ � �t° ��² � ¤ J ��¥ � P � � R ' �  the

following can be claimed:
h

If � in (1) is perturbed by 6 & (+*-,.* I
' 6 ' � �7 then, regarding the behavior of
the new closed-loop system, all the assertions
in Proposition 1 remain valid (it is just needed
the change of ) by 8)�� � ¥ � ¡ 8± £  with 8± �BW��² � ¤ 8J ��¥ � � 8J � J � P 6 �� � R # it

is well-known (see (D. Hinrichsen, 1986) for
instance) that 8J is Hurwitz).

h
If � in (1) is perturbed by 6 Ic(+*���(0 j()*-,.* I/9o�;:=<?>A@�BDC�E � ¨ F � ¡ 6 �"�b%�%� £ � �7 
and assume the function 6 is smooth enough,
then, regarding the behavior of the new closed-
loop system, all the assertions with exeption of
the last one remain valid. The last one should
be replaced by
!%"#$
¨ & � ' �®�"�%�Y¤HGJILK�M EJN#OQP3R �*Sc� ' �_�� with S ,

the radius of the ball, proporsional to ' « ' and9�7
Of course in such a case the proof of the propo-
sition should be modified. In this case it is
needed the use a common or joint Lyapunov
function (D. Hinrichsen, 1986), to do the anal-
ysis of the dynamics described by�¬ � 8J ¬ �0T� � 2tqs* �.� 	 ��$ � ¤ - �%�A� «c�"�%����¬ ���]��� ¬ ��
and also it is necessary to resort to the Com-
parison Principle (Hale, 1969; Vidyasagar,
1993).

2. It was purposely avoided, in the proposition above,
the issue of existance of a dither function « satisfy-
ing the (PE) condition and also the issue of devising
one such a «�7 Obviously (PE) can not be achieved
if there is overparametrization in the representa-



tion of  !�"�\#U$]� ; this implies that the (PE) condition
strongly depends on the function a�� 2 � (not only on
the function � ). If a periodic function � exist such
that the scalar functions, components of a��"�b� , are
linearly independent, then (see (Chen, 1984)) such
a function will satisfy the (PE) condition. Then, the
question is whether or not it is possible to generate
such an output � by means of a dither « . With
regard to that question recall that since ± ������� � 
it may be possible to find « such the output of the
system will approximate a ‘very slow’ signal.
The above comment suggest a method for devising
dither functions that satisfy the (PE) condition. Fur-
thermore, this comment may be the basis of future
research in the analysis of adaptive peak-seeking
feedback systems that take into consideration the
issues left out in the proposition above.

4. AN EXAMPLE

As an example it was considered the system (1) with,�;� �� � C �� � C¤���¤���¤��
�� U	4� �� �� C

�� ?� � ¯ C@���t° 
and  !�"��#%$ � ��� � �"��#��%C�MC]MCD�%��7
The set 8 was chosen to be,8m� ¡X$Y&+( � I]��7}C � $ � � � £ 7
In the control-law it was used E � � �� E H �¤AC�7��.
�0�_��7��17 The dither function was chosen as«c�"�%��� :
	 <���
� � ��� ^c�%�!A� � � with ^Z�l��7sC��f�
( :�	�<�������32 � �(: "���� � : "�� � 2 �%� ).
This numerical example was run with initial condi-
tions� � � �� ���

��  �$ � � �� �¤ ��
�� # the results are depicted

in Figures 1-2.
As observed in Figure 1 the rate of convergence of
the estimated parameter to the true value is very low.
An explanation for that effect can be given by not-
ing that the output can be roughly approximated by�����%���'¤AC���� : " � � ��� ^c�%�� ( �!�;��7#" ) for ‘big’ � (this
can not be seen from Figure 2). Substitution of this
signal into an� � �H � H �!CD� �

shows that the three func-
tions are linearly independent (see (Chen, 1984)) only
by the ‘small’ term

�$ � H&%(' :�� � � ^c�%� . This reasoning
suggest that by increasing �� it may be possible to in-
crease the rate of convergence. This is really the case;
in fact by increasing the amplitude of the dither from
1 to 2 the rate of convergence dramatically increase
to the point that at 500 sec better results are achieved,
than previously at 5000 sec. It was also included in
Figure 3 some plots showing the results of such a
numerical simulation.

5. CONCLUSIONS

An adaptive control-law -and indeed and approach for
devicing one- was presented here which is suitable

0 1000 2000 3000 4000 5000
0

1

2

3

4

5

6

t (sec.)

er
ro

r

Parameter Estimation Error

0 1000 2000 3000 4000 5000
1

1.5

2

2.5

3

3.5

4

t (sec.)

th
et

a 1

Estimation of First Parameter

0 1000 2000 3000 4000 5000
−4

−3

−2

−1

0

1

2

3

t (sec.)

th
et

a 2

Estimation of Second Parameter

0 1000 2000 3000 4000 5000
0

1

2

3

4

t (sec.)

th
et

a 3

Estimation of Third Parameter

Fig. 1. Evolution of the Estimated Parameter.
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for a particular class of systems requiring set-points
that extremize a performance funtion. The approach
presented for designing such a controller, is intended
for cases in which the performance function is fully
determined by the value of a multi-dimensional pa-
rameter. The designed controller has the capability of
estimating the (unknown) value of the parameter, de-
termining the performance function, provided a dither
function can be found to satisfy a persistent exitation
condition; then the output of the system will converge
to a neighborhood of the extremizing output value.
Neither the issue of noisy measurements nor the is-
sue of robustness in the representation of the perfor-
mance function were addressed in the present work,
however the control-law intrinsicaly poses some ro-
bustness properties that take care of uncertanty in the
parameters that describe the dynamical system.
An numerical example was presented in order to illus-
trate the methodology and, most important, to face the
delicate issue (left out in the analysis of the behavior
of the closed-loop system) of devising an appropiated
dither function that ensure the success of the estimator.
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