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Abstract: It has been shown, that stability regions for PID-controllers in a (kp, kj)-
plane for fixed kp are convex polygons. This result allows a simple calculation of
the set of all stabilizing PID controllers for a given plant. In the present paper
this result is transferred to the case of discrete-time PID controllers or three-
term controllers, where stability with respect to the unit circle or other circles in
the z-plane must be checked. Since the orientation of the cross section planes for
polygonal stability regions does not depend on the plant, it is easy to find the set
of all simultaneous stabilizers for several representative plant parameters and to
select a robust discrete-time controller from this set. A mass-spring-mass system
proposed in (Bernstein and Wie, 1990) as a benchmark control problem for digital
robust control is used to illustrate the method.
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1. INTRODUCTION

It has been shown (Ho et al., 1998), (Ho et al., 2000),
that stability regions of PID controllers with fixed
proportional gain consist of convex polygons. The
proof was given via a generalization of the Hermite-
Biehler theorem. An alternative proof was given more
recently (Munro and Soylemez, 2000) by calculation
of the real-axis intersections of the Nyquist plot. In
(Ackermann and Kaesbauer, 2001) a derivation and
generalization of this result was given by parameter
space analysis. It turns out that for variations of two
specific controller parameters (or linear combinations
thereof) the eigenvalues can cross the imaginary axis
(or a parallel to it) only at singular frequencies, that
are determined as the roots of a polynomial. At
these singular frequencies the stability boundaries are
straight lines that bound the stable convex polygons.

In the present paper it is shown that a similar result
holds for circles in the eigenvalue plane. They may

1 Referring address for notes is Juergen.Ackermann@dlr.de
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have arbitrary real center and radius. Of special in-
terest is the unit circle, as it is the Schur-stability
boundary for discrete-time systems. It is also shown,
that circles and half-planes are the only eigenvalue
regions for which polygonal stability regions exist.
Other controller structures yield other singular eigen-
value regions, see (Bajcinca, 2001).

A discrete-time equivalent of the PID controller has
the transfer function

co+c1z+ 0222

Cz) = (z+21)(z—-1)

1)

Its structure follows in the quasi-continuous con-
sideration by applying the rectangular integration
rule (s = (z —T}) to the ideal PID controller
kr/s + kp + kps, resulting in z; = 0, or by the
trapezoidal integration rule (s — 2(z =T§¢  +1)),
resulting in z; = 1. Also the realizable PID controller
kr/s+kp+kps/(1+T1s) converts by the trapezoidal
integration rule to the controller structure (1) with
apoleat 2y =R 1 —TJ/@ 1+ T). The following
derivation also holds for a three-term controller with
an arbitrary second order denominator polynomial.



Here we do not restrict ourselves to a quasi-
continuous design, but consider the direct design of
the three controller terms cg,c; and ¢z. The denom-
inator of the controller is combined with the plant
transfer function such that the closed-loop character-
istic polynomial is

P(2) =4) )

with C(z) = co+c12+ca2?. A;(z) and B;(z) describe
dfferent o perating conditions of the plant. The goal is
to design a simultaneous stabilizer C(z) for the plant
family. Stabilization may-Eaddilitgfer to

with the admissible eigenliz@lue region presented
by a smaller circle inside the unit circle. First the
stability region for a single representativéz), B(z)
is constructed in tomographic cross section planes
such that the stable region is a convex polygon in
each plane. We call”this a polygon slice

C(z) + Bi(z), # L,L2N

It is then shown, that the orientation of the polygon
slices depends only on theFstahilaty region

and not on the plant representativélherefore it is
easy to find the set of alFstibillizengous

by the intersection of convex polygons.

2. SINJA REKWES

The characteristic polynomial

P(z) ) ( co+erz+e22”) + B() 3)

has a rootat z = + jn if and only if both the real
part R and the imaginary partIof P(z) vanish. Now
writedand B in terms of their real and imaginary
parts as

Af +jn)=Ra +jla
B(t + jn)=Rp +jlIB

and substitute z = + jn,

The matrix multiplying[ co,co]? is always singular,
i.e. §) re presents two parallel lines in the (cg,c2)-
plane. A solution exist if and only if the two lines
become identical, i.e. if

R4 —cilan+ Rp
d(n) = det =
In  caRan +1IB
R4aR B andl p are polynomials in 7, therefore

d(n) is a polynomial in 5. Its roots yield the singu-
lar frequencies, for each of them a straight line is
obtained as stability boundary. The polygon slice in
this case is the (cg, ¢2)-plane for fixed ¢;.

Consider now again the generd).chseyi(l be
analyzed, which stability regions lead to axis-parallel
polygon slices in a tramsformed ( ¢, 71, 72)-space that
is linearly related with (co,c1,¢2), i-e.

c=Tr det T#0, and T real (6)

or, written in detail,

co =1t1170 + t1or1 + t1372
c1 =t2170 + t22T1 + t23T2
Ca = 13170 + t3271 + t3372

Without loss of generality we fix ; (Fixing ¢ orra
only leads to index permutations).4Teads

Ra Rhxr  nRfg >—n’) AT 7
I4 IaT+ Ran Iaf 2—772)—}—2RA7'7;
t11 t13
X | ta1 to3 [TO]-I-[RB]-I-?H X
T2 IB
t31 t33

[t12RA + tQQ(RAT —I An) +t32 (RA(T2 - 772) —.[2 AT’I]) :|
tiola + too(Ia™Ra n) +t32 (IA(' 2 _ph)+ ZRATT))

-[i]

Again the 2 x 2 matrix multiplying[ ro r2]* is ana-
lyzed for singularity. Calculation of its determinant
shows the nontrivial fact that it fadtorizes into an
dependent factor, a factor 1 and a factor that depends

(7)

]T

Ra (co+aT+cea(r® —=n?)) =Ih c1n+2comn) + Re=0o0nly on T andr 7

Ia(co+am+c(r? —=n%) + Ra (cin + 2comn) + Ip=0

or in matrix notation

Iy Iam + Ran Io(12 — 1) 4+ 2Ramn
Co
0
| m]=10)

1

C2
The imaginary axis as stability boundary as treated
in (Ackermann and Kaesbauer, 2001) follows as a

R4 RaT - an RA(T2 - 172) 12 ATU:|

Rp

X I

(4)

special case witl). Then for fixed c1
Ra —Ran? co N —c1lan+ RB 0 5)
Iy —IA’I’}2 Co caRan +1Ip 0

J=n(R4 +I13) (a(® +n*) + 2br +¢)  (8)
with
a =t21t33 + t23ts1
b=t 11t33 + t13t31
c=t11ta3 + ta1t13
Clearlyvanishes for arHitrary if
- 1 =0, i.e. on the real root bgandary, and
-a(m?+n?) +2br+c=0
For a = 0 there results a straight line ¢ = —¢/%

parallel to the imaginary axis with the special case of
the imaginary axis if also ¢ = 0.



Note that the equations

a =1t21t33 — t23t31 =0
To=—c¢/D=# ( 11t23 — tartis)/2 11t33 — t13t31)

allow for many solutions in the nine unknown ele-
ments of T'. A simple solution is

10 0
Th=101=%2, 9)
00 1
For 7, = 0, i.e. the imaginary axis as stability

boundary, T7 becomes the unit matrix. This case has
been handled in (Ackermann and Kaesbauer, 2001).

The only other case ofizanishing a # 0, then (8)

describes a circle with real center  and radius
(rh 2P =0 (10)
whermm  andssatisfy
ti11=m tog + (T2 — m2)t31 (11)

tiz=m to3 + (7’2 - mz)t33

the t;; must be chosen such that det T’ # 0. A possible
choice is

2 2

r“—m"1-m
T, = 0 01 (12)
1 0 0

In terms of the left and right real axis intersections
77 =m —1nand 7117 = m + r, the transformation
matrix becomes

-7t 1 #( ~+7h))2
T,=| 0 0 1 (13)
1 0 0
3. PN S LIG5 FOR CIRGAR
EGBPAWLERTONS

The previous section has shown that for circles with
real center the solution of tHe eqiatidns

Ip = 0 is geometrically described by two parallel
lines in the ( ¢, 72)-plane with fixed 7. A T'-stability
boundary exists if and only if the two lines become
identical. With T' = T5 of (10) substituted into (
one obtains

Ra Ravda n Rt *—-n°)+ 2IA7'77]
Iy IamRa 1 Iat > —n0°) -Rar 1
7‘2 — m2 —m
X 0 1 [
1 0

TO] + [RB+RA — o)

) Ip+14

Choosing now thespircle (
I'-stability boundary we have

n=\r—(-n * (19

2492 =712 =0 as

withrd ~ m —r,m +7] and the equations in (14) can
be written in the form

Al(O') ro + AQ(O’) ro + Ao(O’) 0 (16)
Bl(U)T0+BQ(0)T’2 +Bo(0’):0 (17)

Ai(0) Az(o0)
Bi (o) Bx(o)
tically. So the equation for the singular frequencies
o =o * (the equations in (16) must be proportional)

18

i (310 |- o« 520 20| =0

The determinant det [ ] vanishes iden-

*

The straight line corresponding deo is then
Re P(ro,rz)‘ = 0. Additionally we have two
straight linesgc?);responding to the intersection points

71 andod T with the real axis:
P(zyr 0,7’2)‘ . =0
P(zyo,72) =0

=7~

For each singular frequency resulting form the solu-
tion of (18) a straight line is the stability boundary
in the ( o,r2)-plane. These lines are boundaries of

stable (Bstable) polygons.
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Fig. 1. Schematic diagram of the benchmark problem

4. EXAMP LE A B ENCHMARK PROBLEM
4.1 Bxcri ption of the system

In (Bernstein and Wie, 1990) a simple mechanical
system is proposed as a benchmark problem for
robust controller design. The scheme of the system
is shown in Fig. 1. It consists of two masses ; and
me, which are connected with a spring k. The input

of the system is the forerting on the mass 1
while the output is the positiongf the mmass 2.
The open-loop transfer function of the system is
k m
G(s) = /o . i)m (18)
s%(s? + k02

The goal consists in robustly stabilizing the system
for each operating point inside the parameter uncer-
tainty Q-domain 0.5 < k£ < 2 and 0.5 < m; < 1,
Fig. 2. We will close the loop by a simple feedback
control structure shown in Fig. 3. The sampling rate
is chosen to be T;= 0.1 s.
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Fig. 2. The uncdtlaimizin
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Fig. 3. The control structure

Since the open-loop system has four oscillating
modes, the controller structure (1) needs two addi-
tional zeros to attract the four eigenvalues into the
specified stable region. Therefore we use the following
three-term controller structure,

C(z) = 10*

(22 — 1.5412 + 0.5992) (co + c12 + ¢22?)

i.e. we place two zeros left to z = 1 at 21/, = 0.7705+
70.0744, and the other two controller zeros remain a
matter of design (see next subsection).

4.2 Schur-stability

In this subsection we consider the Schur-stability
of the system, i.e. we want to find the region of
controller parameters such that the eigenvalues of the
system remain inside the unit-circle.

A Schur-transformation matrix T has the simple form

(20)

N

I
=
o O =
O = O

and the new parameter space r is defined by the
following equation,

c=Tr. (21)

with r; being gridded.

In the first step just one operating point from the
uncertain Q-domain is considered, e.g. k = 0.5,m; =
0.5. The computation showed that besides the RRB’s
at z12 = =1, complex singular frequencies (i.e.
CRB’s) of this operating point live in the interval
—0.2745 x 10%° < r; < 12.248: a singular frequency
in —0.2745 x 10%? < r; < —0.52236, three of them
in —0.52236 < r; < 0, four singular frequencies in
0 < r < 0.00290 and two singular frequencies in
0.00290 < r; < 12.248. Apart from RRB, outside
these intervals there are no singular frequencies. The

z(z +0.4047)(z + 0.2162) (2 — 0.4934)

-1.5+
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Fig. 4. The stable polygon lying on the plane r; =
—0.26118.

stable polygons, however appear just in the second
interval, —0.52236 < r; < 0.00290. For illustration
purposes, let us examine the plane r; = —0.26118.
The corresponding singular frequencies lying on the
Schur-circle are,

(19) zp =1
z9 = —0.85435 % j0.51968
20 = 0.56281 + ;j0.82656 (22)
zg = 0.91725 + j0.39829
zg = —1

Each of these singular frequencies generates a singu-
lar line on the plane r; = —0.26118. The resulting
stable polygon is shown in Fig. 4. It is enclosed by
the singular frequencies (i.e. lines) 2¢, 25 and 2¢.
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Fig. 5. The root-locus of the feedback system (k1 =
0.5,m1 = 0.5) in the vicinity of z = 1.

In Fig. 5 the new locus (x) of the oscillating modes of
the mass-spring-mass is shown. Note that the left ze-
ros were already set in the controller structure, while
the right ones are a result of the design procedure.



We solve further the Schur-stability in the three-
parameter space for the operating point k = 0.5, m; =
0.5. The solution is represented by using a tomo-
graphic view in the next figure.

1z
7

0.2
"1-0.25
-0.3

-0.35

Fig.6 The

set of Schur-stable polygons for the
operating point £ = 0.5,m 1 = 0.5.

5. IBGN OF R@BUST THR
CONTHD

E-TRM

Schur-stability does not guarantee satisfactory dy-
namics of a discrete-time control system. A simple
approach would be to keep circles centerad-at)

and to reduce the radius from 1 towards zero in order
to get a faster decaying envelope of the transients
(decaying circles). This approach would however give
equal weight to an exponentially decaying solution
(positive real pole) and the same solution with al-
ternating sign at each sampling instant (negative
real pole). A desirable eigenvalue region that also
guarantees enough damping is therefore an additional
asymmetric contraction of a satisfactory decaying
circle, during which the eenter of the circle is
shifted to the right as much as possible. An alter-
native asymmetric contraction of circles is proposed
in (Ackermann et al., 199.

For a circle of given center and radius the direction
of the polygonal slices is fixed independently of the
plant.

The design procedure for a robust controller goes
through following steps (Ackermann et al., 199:

- Design a simultaneous I'-stabilizer for critical
(typically edge)s operating points of th€
domain of uncertain parameters.

- Analyzd¥tlability of the resulting control
system by mappingFstability boundaries to the
space of uncertain parameters.

- The vertices of the operating domain must be
contained iFstable region by construction.

Circle
or Contraction 9
Point

Fig. 7. Symmetric contraction of unit circle followed
by asymmetric contraction of decaying circles.

If this is not true for the continuum of admissi-
ble operating points, go back to step one with
inclusion of additional critical operating points.
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Fig. 8. Simultaneous (robust) Schur-stable region for
the four edges of the Q-uncertainty domain.

6. EXAMP LE (CONDINU
6.1 Robfstustabil ity

In this article we focus on the first step. In each
polygonal slice for fixed r; the simultaneous stabi-
lizers are the intersection of convex polygons, i.e.
they are convex polygons, too. We have done this for
the Schur-stability in the three-parameter space for
the four edgedbrladn of the mass-s pring-
mass system. The solution is again represented by
using a tomographic view in the Fig. 8. Note that
the region of robust Schur-stable controllers is (as
expected) reduced compared to that of the Schur-
stable controllers for just the left edge below.



6.2 Robust I'-stability

The investigatiorfferanh dicle s pecifications
have shown that transients with the decaying circle
of the radius 0.99 are possible. We fixed the right end
of thif-circle and contracted the circle towards it.
No better damping than that guaranteed by the circle
with left real axis intersection at —0.89 was possible.
A circle with center m = 0.05and radiug 94re-
sults. This guaranteegrastability with 0, =
—0.1 and damping D= 0.04 The stable polygons lie
within the interval —0.000088 < r; < 0.002R. In
Fig. 9 we show the spectrum of eigenvalues for the
four operating-points corresponding to the controller
ro = 0.39713, r1 = —0.000119, r» = —0.7805. Note
that this controller pushes the eigenvalues of the
operating-points into Ecircle.

Fig. 9. The eigenvalues of the four uncertainty ver-
tices of mass-spring-mass system.

Finally for a grid on ; the tomographic view of all
simultanebuasabilizers is generated.

6.3 Afinl note

After designing the controller in r—parameter space a
step of back-transformation of the controller param-
eters to c—space, by

c=Tr (23

could be done. However it is not trivial and really not
necessary to map back the vielable polygons.
Instead a controller should be chosen in r—space and
then back-transformed to r—space using).(2

7. CONSIONS

Discrete-time controllers with a free numerator poly-
nomial ¢y + ¢12 + c22? are designed. A tomographic
view of the set of all stabilizing controllers would
be flicult to com pute if ¢y or ¢; or ¢y is gridded.
By appropriate choice of a gridding parameter rq,
that depends linearly on cg,c; and c2, however, the

Fig. 10. Thelitabblst
circle with = 0.04 ant=

polygons fod the

0.94 Note that
for convenient depiction purposes the polygons
are rotated around an axis which passes through
ro = 0.3%7%r o = —0.5549 and is parallel to ;
with an an@e of — .95

cross section slices show convex polygons as stability
regions. Since the -direction does not depend on
the plant, simultaneous stabilization for several oper-
ating points becomes feasible by intersecting convex
polygons.

It is shown that this nice geometric property holds for
all circular eigenvalue regions with real center. The
design is illustrated by a benchmark robust control
example.
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