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Abstract: The authors present a novel approach to control this kind of motor. Modify-
ing published results for nonlinear identification using dynamic neural networks, they
propose a new neural network identifier of triangular form. Based on this model a
new control law, which combines sliding mode and block control is derived. This new
neural identifier and the proposed control law allow trajectory tracking for induction
motors. Applicability of the approach is tested via simulations.
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1. INTRODUCTION

Adaptive control of induction motors is one
of most interesting application control problem.
This problem has been extensively studied during
the last decade, and considering that the rotor
resistance and the load torque are unknown but
constant, several adaptive controllers have been
proposed, see for instance (Krstic, et al., 1995;
Kwan,et al., 1996; Marino, et al., 1996; Ortega,
and Espinoza-Pérez, 1993).

In this paper it is assumed that all of the
induction motor parameters can change in a wide
range. Particularly the rotor resistance and the
load torque can vary both as continuous and dis-
continuous functions of the time. To derive the
induction motor model, a neural networks ap-
proach combining with the rotor flux sliding mode
observer, is applied, and a novel approach is pre-
sented. Modifying existing identification schemes
based on dynamic neural networks (Kosmatopou-
los, et al., 1997), a neural network identifier of
block controllable form is proposed. Based on this
model, two versions of discontinuous control law,
which combines block control (Loukianov, 1998)
and VSS with sliding mode techniques (Utkin,
1992), are derived. The block control approach is
used to design a nonlinear sliding surface such that
the resulting sliding mode dynamics is described

by a desired linear system. The proposed neural
identifier and control strategy allow trajectory
tracking for induction motors.

2. MOTOR MODEL

The starting point is the following set of
induction motor equations presented in the stator-
fixed α− β coordinate system, see for instance
(Bose, 1986 ):

dω

dt
= c1(ψαiβ − ψβiα)− c0TL

dψα
dt

=−c2ψα − npωψβ + c3iα (1)

dψβ
dt

=−c2ψβ + npωψα + c3iβ
diα
dt
= c4ψα + c5npωψβ − c6iα + c7uα

diβ
dt
= c4ψβ − c5npωψα − c6iβ + c7uα

where ω represents the angular velocity of the
motor shaft, ψa and ψβ are, respectively, the rotor
magnetic flux leakage components, iα and iβ are,
respectively, the stator current components, uα
and uβ stand, respectively, for the voltage applied
on the stator windings, and TL represents the load
torque perturbation. The constants ci, i = 0, ..., 7
are calculated as follows
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LsLr−M2 with Ls,
Lr and M , respectively, the stator and rotor
inductances and mutual inductance between the
rotor and the stator, Rs and Rr, the stator and
rotor resistances, J the rotor moment of inertia,
and np the number of stator winding pole pairs.
The magnitude of the control should be bounded

|uα| ≤ u0 and |uβ | ≤ u0, u0 > 0. (2)

It is more suitable for neural network identifica-
tion to present the induction motor model (1)
in new variables defined as χ

1
= ω, χ

2
= ψα,

χ
3
= ψβ, χ4

= iα, χ5
= iβ. Henceforth, the model

(1) can be rewritten as

χ̇1 = c1(χ2χ5 − χ3χ4)− c0TL
χ̇2 =−c2χ2 − npχ1χ3 + c3χ4
χ̇3 =−c2χ3 + npχ1χ2 + c3χ5 (3)

χ̇5 = c4χ2 + c5npχ1χ3 − c6χ4 + c7uα
χ̇6 = c4χ3 − c5npχ1χ2 − c6χ5 + c7uβ .

This system is a quasi Nonlinear Block Con-
trollable Form (or NBC-form), (Loukianov, 1998).
Based on this fact, the so-called dynamic block
controllable neural network is proposed below.

3. NONLINEAR OBSERVER

Since only the rotor speed and the stator
currents are measured, rotor fluxes estimation
is required for neural networks identification. In
order to get the flux estimation, the only the stator
currents dynamics, which does not depend on
the external perturbation, is used. The proposed
observer has the following form:

.
χ̃4 =−c5χ4 + c6u1 + vα
.
χ̃5 =−c5χ5 + c6u2 + vβ

where χ̃4 and χ̃5 are the estimations of the cur-
rents χ4 and χ5. Observer inputs vα and vβ are
chosen as

vα = l1
εα

|εα|+ δ
and vβ = l2

εβ
|εβ |+ δ

where l1, l2 and δ are positive observer parame-
ters. Then, the error dynamics have the following
form:

ε̇α = c4χ2 + c5npχ1χ3 − l1
εα

|εα|+ δ

ε̇α = c4χ3 − c5npχ1χ2 − l2
εβ

|εβ |+ δ

where εα = χ4 − χ̃4 and εβ = χ5 − χ̃5. For
sufficiently large values of l1 and l2, and small
value of δ, the sliding surfaces εα = 0 and εβ = 0
are attractive, and ones the trajectory reaches

these surfaces, its remain on these surfaces (Utkin,
1991). It means that ε̇α = 0 and ε̇α = 0, or

0 = c4χ2 + c5npχ1χ3 − vαeq (4)

0 = c4χ3 − c5npχ1χ2 − vαeq
where vαeq and vβeq are the equivalent values of
vα and vβ respectively. Measuring these values, it
is possible to obtain from (4) estimations χ̂2 and
χ̂3 of χ2 and χ3, as·
χ̂2
χ̂3

¸
=

1

c24 + (c5npχ1)
2

·
c4 −c5npχ1

c5npχ1 c4

¸ ·
vαeq
vβeq

¸

The obtained estimated fluxes χ̂2 and χ̂3 will be
used for the neural network identification.

4. RECURRENT HIGH ORDER NEURAL
NETWORK IDENTIFICATION

In this section, the problem of the identifying
of nonlinear model (3), is considered.

4.1 Dynamic Block Controllable Neural Network
for Induction Motors

Based on the mathematical model for induc-
tion motors (3), the following Recurrent Neural
Network High Order (RHONN), is proposed:

ẋ1 =−a1x1 + w11S(x1) + w12S(x3)x4
+w13S(x2)x5 (5)

ẋ2 =−a2x2 + w21S(x2) + w22S(x1)S(x3)
+w23x4

ẋ3 =−a3x3 + w31S(x3) + w32S(x1)S(x2) (6)
+w33x5

ẋ4 =−a4x4 + w41S(x1) + w42S(x2)
+w43S(x3) + w44S(x4) + w45u1

ẋ5 =−a5x5 + w51S(x1) + w52S(x2)
+w53S(x3) + w54S(x5) + w55u2

where xi, i = 1, ..., 5 is the i-th component of the
RHONN; ai > 0, i = 1, ..., 5; wi,j are time-varying
weights, and S(·) a smooth sigmoid function for-
mulated by:

S(x) =
2

1 + exp(−βx) − 1

for the sigmoid S(x) ∈ [−1, 1]. This new struc-
ture is more flexible than the classical neural net-
works (Kosmatopoulos, et al., 1997), and allows
to incorporate to the identification model a priori
information about the plant structure. It is worth
noting that this structure, with conditions defined
below for the case of induction motors, guarantees
controllability. On the basis of this model, in the
following subsection an algorithm for on-line iden-
tification of the motor, is considered.



4.2 On-line Identification

In order to identify the induction motor model
(3), it is assumed, that this system is approxi-
mated by the following system:

χ̇i = −aiχi + w∗>i ρi(χ, u) + vi(χ, u) (7)

and, instead of RHONN (6) it is used the following
so-called series-parallel model:

ẋi = −aixi + wTi ρi(χ, u), i = 1, ..., 5 (8)

where the optimal unknown parameters vector w∗i
is defined as

w∗i = arg min
wi

(
sup
χ,u

|fi(χ) + gi(χ)u
+aiχi − wTi ρi(χ, u)|

)
with ρ1 = [S(χ1), S(χ2), S(χ3)x4, S(χ2)χ5]

>,
ρ2 = [S(χ2), S(χ1)S(χ3),χ4]

>,
ρ3 = [S(χ3), S(χ1)S(χ2),χ5]

>,
ρ4 = [S(χ1), S(χ2), S(χ3), S(χ4), u1]

>, and
ρ5 = [S(χ1), S(χ2), S(χ3), S(χ5), u2]

>.
Hence, the modelling error term vi(χ, u) in (7)

can be defined as

vi(χ, u) = fi(χ) + gi(χ)u+ aiχi − w∗Ti ρi(χ, u)

4.3 On-Line Weight Update Law

Let define the i−th identification error
ei = xi − χi

and the i−th parameter error
w̃i = wi − w∗i .

Then the error equation can be derived from (8)
and (7) as

ėi = −aiei + w̃>i ρi + vi(χ, u), i = 1, ..., 5. (9)

In order to guarantee the boundness of the
identification error and weights, the following
adaptive law adaptive law is applied:

ẇi = −Γ−1i (eiρi − σiwi), i = 1..., 5 (10)

with the σ-modification

σi =


0, if ||wi|| ≤Miµ ||wi||

Mi

¶q
σi0, if Mi < ||wi|| ≤ 2Mi

σi0, if ||wi|| > 2Mi

where Γi is a symmetric positive definite matrix;
integer q ≥ 1 , and σi0 and Mi are positive
constants.

Lemma 1. Consider the system (7) and the
RHONN (6) whose parameters are adapted using
the law (10), and suppose that

kvi(χ, u)k ≤ d0 (11)

Then ei and wi are bounded.

Proof. The derivative of the Lyapunov func-
tion candidate

Vi =
1

2
(e2i + w̃

>
i Γiw̃i) (12)

along the trajectories of (9) and (10) is given by

V̇i = −aie2i − σiw̃
>
i wi − eivi(χ, u).

Using (11) and applying the triangular in-
equality, gives

V̇i ≤ −aie2i − σiw̃
>
i wi +

e2i
2
+
d0
2

2
.

Since w̃i = wi − w∗i , then

−w̃>i wi ≤ −(w̃>i w̃i + w̃>i w∗i ) ≤ −
1

2
||w̃i||2 + 1

2
||w∗i ||2.

Therefore

V̇i ≤ −αe2i −
1

2
σi||w̃i||2 + 1

2
σi||w∗i ||2 +

d20
2

where α = ai− 1
2 . Substituting ei from (12) in the

above inequality, gives

V̇i ≤ −αVi + αw̃>i Γiw̃i −
1

2
σi||w̃i||2 + 1

2
σi||w∗i ||2 +

d20
2
.

Considering the worst case, when ||wi|| > 2Mi,
the parameter σio is selected as

σio > 2α||Γi||
then

V̇i ≤ −αVi + 1
2
σio||w∗i ||2 +

d20
2
.

Therefore ei and wi converge exponentially to the
residual set

D =
½
ei, wi

¯̄̄̄
Vi ≤ 1

2α
σio||w∗i ||2 +

d20
2α

¾
and the proof is complete.

4.4 Identifier Initialization

Before to apply the control law, the system
was excited in order to get a good estimation of
the optimal parameters. These values will be used
as initial values for the identifier parameters when
we apply the control law.

The inputs to excite the plant are

uα = 200 cos(800(cos(0.1t)
2)t)

uβ = 200 sin(800(cos(0.1t)
2)t)]

Figure 1 shows the behavior of the parameters.
The obtained values guarantee that the identifier
is block controllable initially, and these values do
not vary much, hence controllability is not lost.



5. INDUCTION MOTOR CONTROL

In this section, the control law for the induc-
tion motor is developed, on the basis of the neural
identifier, and using the block control and VSS
techniques. Assuming that xi = χi, i = 1, ..., 5,
two control strategies will be considered:

Type I: Control of the speed and the rotor
flux, and

Type II: Control of the speed only.

5.1 Control Law I

The neural model (6) has the quasi NBC-form
consisting of two blocks:

ẋ1 = f1(x1) +B1(x1)x2

ẋ2 = f2(x1,x2) +B2u (13)

with x = [x1,x2]
T , x1 = [x1, x2, x3]

T , x2 =
[x4, x5]

T , u = [uα,uβ]
T ,

f1 =

 −a1x1 + w11S(x1)
−a2x2 + w21S(x2) + w22S(x1)S(x3)
−a3x3 + w31S(x3) + w32S(x1)S(x2)



f2 =


−a4x4 +−a4x4 +

4X
i=1

w4,iS(xi)

−a5x5 +
5X
i=1

w5,iS(xi), i 6= 4


B1 =

−w12S(x3) w13S(x2)w23 0
0 w33

 and
B2 =

·
w45 0
0 w55

¸
.

For the speed, x1 and flux amplitude ϕ, ϕ =
|Ψ|2 = x22 + x

2
3, tracking objectives, define the

tracking errors as

z1 = x1 − ωref

z2 =ϕ− ϕref (14)

where ωref and ϕref are the smooth bounded
reference signals for the speed and flux magnitude
consequently. Then, the first block of the NBC-
form can be expressed as·

ż1
ż2

¸
= f̄1(x1) + B̄1(x1)x2 (15)

where

f̄1 =

·
f̄1
f̄2

¸
, B̄1 =

·
w12S(x3) w13S(x2)
2w23x2 2w33x3

¸
f̄1 = −a1x1 + w11S(x2)− ω̇ref

f̄2 = 2x2(−a2x2 + w21S(x2) + w22S(x1)S(x3) +
2x3(−a3x3 + w31S(x3) + w32S(x1)S(x2)− ϕ̇ref

Following the block control strategy, the quasi
control vector x2 in (15) can be formulated as

x2 =

·
x4
x5

¸
= xc2 − B̄−11

·
k1z1
k2z2

¸
+

·
z4
z5

¸
(16)

with

xc2 = −B̄−11 f̄1 (17)

where z4 and z5 are new variables, k1 and k2 are
scalar positive parameters, and

B̄−11 =
1

δ

·
2w33x3 −2w23x2
−w13S(x2) w12S(x3)

¸
with δ = 2w12w33x3S(x3) − 2w13w23x2S(x2).
The equations (16) and (17) give the following
transformation:·

z4
z5

¸
= B̄−11

·
k1 (x1 − ωref ) + f̄1
k2
¡
ϕ− ϕref

¢
+ f̄2

¸
+

·
x4
x5

¸
: = α(x1,x2, γ), γ = (ωref ,ϕref )

T .(18)

On the second step, taking the derivative of
(18) along the trajectories of (13), the second
block of the NBC-form in the new variables z4
and z5 can be presented of the form·

ż4
ż5

¸
= f̄2 +B2

·
uα
uβ

¸
where f̄2 = ∂α

∂x1
f1 +

∂α
∂x2
f2 +

∂α
∂γ γ̇.

Now, taking in the account the bound (2), the
VSS control strategy, formulated as

uα =−u0sign(w45)sign(z4)
uβ =−u0sign(w55)sign(z5)

under condition

|w45|u0 ≥
¯̄
f̄4(x

1, x2, γ)
¯̄ ≤ , |w55|u0 ≥ ¯̄f̄5(x1, x2, γ)¯̄

guarantees a sliding mode on the surfaces

z4 = 0 and z5 = 0

in finite time. The sliding dynamics, in the track-
ing errors variables z1 and z2 (14), is governed by
the second order linear system

ż1 =−k1z1
ż2 =−k2z2

with desired eigenvalues −k1 and −k2.

5.2 Control Law 2

Given a reference ωref , the following tracking
error, is defined:

z1 = x1 − ωref . (19)

Differentiating (19) along the trajectories of (13),
gives

ż1 = f̂1 + B̂1x2 (20)

where f̂1 = −a1x1 + w11S(x1) − ω̇ref , B̂1 =£
w12S(x3) w13S(x2)

¤
.



On the next step, following the block control
technique, the quasi control x2 in (20) is chosen
of the form

x2 = x
c
2 − B̂+1 (c1z1), xc2 = −B̂+1 f̂1, c1 > 0 (21)

that gives the following transformation:

z2 = c1(x1 − ωref ) + f̂1 + B̂1x2 (22)

and (20) with (21) becomes

ż1 = −k1z1 + z2
Differentiating (22) along the trajectories of

(13) gives

ż2 = f̂2 + B̂2u (23)

where f̂2 is a bounded function of the variables
and parameters of (13), and

B̂2 = B̂1B2 =
£
w12w45S(x3) w13w55S(x2)

¤
Now the discontinuous control law is proposed

as

u =

·
uα
uβ

¸
=

·−u0sign(w12w45S(x3))sign(z2)
−u0sign(w12w45S(x3))sign(z2)

¸
(24)

Then (23) with (24) can be rewritten of the form

ż2 = f̂2 − u0(|w12w45S(x3)|+ |w13w55S(x2)|)sign(z2)

Under the following condition:

(|w14w55S(x2)|+ |w14w45S(x3)|)u0 > |f̂2|
a singular sliding mode motion ( two components
of the vector control have the same switching
function, z2) arises on the surface z2 = 0, and
this motion is described by the reduced first order
system

ż1 = −c1z1
with eigenvalue −c1. Therefore, the tracking error
z1 converges asymptotically to zero.

6. SIMULATIONS

In this section, the authors present results
obtained using the identification scheme and the
control law proposed above. The nominal values of
the induction motor parameters are given in the
next table

Parameter Value Description
Rs 14Ω Stator Resistance
Ls 400mH Stator self Inductance
M 377mH Mutual Inductance
Rr 10.1Ω Rotor Resistance
Lr 412.8mH Rotor self Inductance
np 2 Number of pairs of poles
J 0.01Kgm Inertia Momentum
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Fig. 1. Weights w12, w13, w23 and w33

The design parameters for the fluxes observer
are l1 = l2 = 3500. The neural network param-
eters are selected as a1 = 100, a2 = a3 = a4 =
a5 = 500, β = 0.1, Γ−11 = diag{500, 500, 500},
Γ−12 = Γ−13 = diag{500, 500, 50}, Γ−14 = Γ−15 =
diag{500, 500, 500, 500, 500}, and the controller
gains for control law 1 are k1 = 600 and k2 = 140,
and for the control law 2 c1 = 600. In order to test
the proposed scheme performance, a variation of 2
Ohm per second is added to the stator resistance.
In addition, a square load torque perturbation
with an amplitude of 2 Nm and a period of 0.3
seconds is performed.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

20

40

60

80

100

120

A
ng

ul
ar

 V
el

oc
ity

 (
ra

d/
s)

Time (s) 

χ  
1 

x 1 

ω  r 

Fig. 2. Real speed χ1, reference speed ωr and
speed estimation x1.
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Fig. 3. Flux magnitude ϕ and flux reference ϕ.
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Fig. 4. Load torque TL
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Fig. 5. Rotor Resistence Rr
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Fig. 6. Flux χ2, flux observer estimation χ̂2 and
flux identifier estimation x2.

The results for velocity and flux are presented
in Fig. 2 and Fig. 3, respectively. As can be seen,
the performance of the proposed scheme is very
satisfactory. Even is the flux desired value is not
obtained, it is important to remind that the main
objective control is to track the reference signal
for velocity, which is indeed attained.

7. CONCLUSIONS

In this paper, the authors have presented a
new identification and tracking control, based on
dynamic neural networks and VSS methodology,
for induction motors. The stability, for both the
identifier and the controller, is analyzed, and it
is proved that the proposed control laws force
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Fig. 7. Control 2. Real speed χ1, speed reference
ωr, speed identifier estimation x1.

the closed loop trajectory to converge and stay
in sliding manifolds, which guarantees that the
tracking error is zero. Work is progress to test the
robustness of this control scheme in presence of
different kind of disturbances such as load torque
variations and change on the induction motor
parameters.
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