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Abstract: The paper constructs a method for identification of models given in partial fraction
representation by using a specific discrete bi-orthogonal system of functions specified by the
poles and their multiplicities. Using frequency domain data, an iteration algorithm convergent
in second order is given that incorporates procedures for finding not only the pole locations,
but also their corresponding multiplicity.Copyright c©2002 IFAC.
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1. INTRODUCTION

System identification based upon thepartial fraction
representationof the transfer function is recognized
as a classical approach in systems science (Keviczky
et al., 1987). It has several applications, e.g. in iden-
tifying vibrating structures, see (Gilpinet al., 1992).
The recent results in the field of applying rational
orthogonal bases in system identification, see (Van
den Hof et al., 1995), (Wahlberg, 1994), (Ninness
and Goodwin, 1995), and (Schipp and Bokor, 1998),
however, offer a new opportunity to revise the classical
methods in order to improve their efficiency both in
their modelling power and computability.

The use of rational orthogonal bases supposes some
a priori knowledge upon the system poles, hence the
classical methods preserve their significance in the
approximate estimation of the poles, which can serve
as starting point for the new ones. Particularly the
subspace methodselaborated in the beginning of the
90’s proved to be efficient for both time and frequency
domain data, see (Overschee and Moor, 1991). The
main drawback of both classical partial fraction iden-

1 This research was supported by the Hungarian National Science
Foundation (OTKA) under the grants T030182 and T032719.

tification and subspace methods, that they do not han-
dle of poles with multiplicity larger than one, or they
assume a priori fixed multiplicities.

In our paper an iterative method to identify models
given in partial fraction form will be presented. This
will utilizes the benefits of the use of bi-orthogonal
rational systems, can handle the multiplicity of the
poles, furthermore produces good convergence and
easy computability.

The following notations will be used:D := {z ∈ C :
|z| < 1} denotes the unit disc,T := {z ∈ C : |z| = 1}
the unite circle; andA is the set of functions analytic
in D and continuous inD∪T. If a ∈ C thena denotes
its complex conjugate.N∗ := {0, 1, 2, . . . }, i.e. it
denotes the set of natural numbersN complemented
with the number 0.

The basic model used in the method is the partial
fraction representation of a system transfer function
f = fâ with poles â := (â1, â2, . . . , ân) ∈ C,
whereâk := 1/ak, ak ∈ D, andak 6= a` if k 6= `
(k, ` = 1, . . . , n). Suppose that the multiplicity of
ak is mk − 1, wheremk ≥ 2,mk ∈ N, and let
m = (m1,m2, . . . , mn) (k = 1, . . . , n). The partial
fraction representation can be written as follow:
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f(z) = fa(z) =
n∑

k=1

mk−2∑

`=0

Ak`z
`

(1− akz)`+1
(1)

The identification problem is formulated as the deter-
mination of the multiplicitiesm, and the correspond-
ing parametersAk`, a in (1) using a set of measured
frequency response sample values off . It is important
to stress, that the multiplicities — as it will be clarified
latter — are considered not to be fixed, but they will
vary in the course of the procedure.

To elaborate the method a discrete scalar product is
introduced, and based upon it a bi-orthogonal rational
system is defined to represent the function (1). An
iterative scheme will be set up, which starting from
an initial pole placement converges into the true poles
including their multiplicities. The method has been
proved to locally converge in second order. The coef-
ficients of the partial fraction can be computed on the
basis of the bi-orthogonal representation. A numerical
method can be constructed, which uses discrete values
of the transfer function, hence it can be applied as
a system identification method based upon frequency
domain data.

The structure of the paper is the following: first a bi-
orthogonal system of rational functions will be con-
structed, to represent the transfer function, on the basis
of a discrete scalar product introduced by the dis-
crete Cauchy formula (presented in Appendix); than
an iteration method will be given with the purpose to
estimate both the pole structure and the exact location
of the poles; and some identification examples will be
presented finally.

2. CONSTRUCTION OF A BI-ORTHOGONAL
SYSTEM DEFINED BY PARTIAL FRACTION

Assume that the system of (1) has poles all with
multiplicity one; in this case it can be represented on
a system of rational functionsϕi as follows

fa(z) =
n∑

k=1

Ak

1− akz
=

∑

`∈N∗
A`ϕ`(z) (2)

where

ϕ`(z) :=
1

1− a`z

In order to construct the representation, a discrete
scalar product

[F, G] := [F, G]N :=
1
N

∑

z∈TN

F (z)G(z) (3)

defined on the discrete groupTN depending onN ∈
N∗ (see Appendix) will be used. This scalar product
can be applied for rational systems analogously to the
ordinary – continuous – scalar product, corresponding
to the discrete Cauchy formula that is introduced in
the Appendix.

We shall construct discrete bi-orthogonal systems de-
pending on the parameters

(a1, a2, . . . , an) ∈ Dn,

whereai 6= aj , if i 6= j. Namely for z ∈ C and
` = 1, 2, . . . , n set

ϕ`(z) :=
1

1− a`z
, Φ`(z) :=

1− aN
`

ω`(a`)
ω`(z). (4)

where

ω`(z) =
n∏

j=1,j 6=`

(z − aj).

If N ≥ n then the systems (4) are bi-orthogonal with
respect the scalar product[·, ·]N , i.e. for any couple
k, ` ∈ {1, 2, . . . , n} we have

[Φk, ϕ`]N = δ`
k, (5)

whereδ`
k is the Kronecker symbol.

Indeed, by (22) of Theorem 2 (in Appendix) for1 ≤ k,
` ≤ n

[Φk, ϕ`] =
1
N

∑

ζ∈TN

Φk(ζ)
1− a`ζ

=
1
N

∑

ζ∈TN

Φk(ζ)
ζ

ζ − a`

=
1

2π i

∫

TN

Φk(ζ)
ζ − a`

dζ =
Φk(a`)
1− aN

`

= δ`
k

hence (5) is proved.

Following from the bi-orthogonality ofϕ` and Φ`,
the coefficientsA` in the representation (2) can be
computed by the scalar product

A` = [f, Φ`]N .

Generalizing this construction to the case of poles with
multiplicity larger than one

fa(z) =
n∑

k=1

mk−2∑

`=0

Ak`z
`

(1− akz)`+1
=

∑

(k,`)∈Jn

Ak`ϕk`(z)

(6)
where

a = (a1, a2, . . . , an) ∈ Dn (ai 6= aj if i 6= j),

and consider the rational functions

ϕk`(z) :=
z`

(1− akz)`+1
(7)

(z ∈ C, k = 1, 2, . . . , n, ` = 0, 1, . . . , mk − 1),

wherem1,m2, . . . ,mn ∈ N∗,m = (m1, m2, . . . , mn),
m := m1 + . . . + mn, and

Jn = {(i, j) : j ∈ N, 0 ≤ j < mi, i = 1, . . . , n}.
(8)

Obviously the numberŝak := 1/ak are the poles of
ϕk` with the multiplicity ` + 1.

We show that there exists a collection of polynomials

Φk` = Φm
k,`(·,a) ∈ Pm−1 ((k, `) ∈ Jm)

such that the systems

(ϕi, i ∈ Jm), (Φi, i ∈ Jm)



are bi-orthogonal with respect the scalar product
[·, ·]N , if N ≥ m, i.e.

[Φk`, ϕrs]N = δkrδ`s ((k, `), (r, s) ∈ Jm),

hence the coefficientsAk` in the representation (6) can
be expressed by the scalar product

Ak` = [f, Φk`]N .

Moreover the polynomialsΦk` can be written in the
form

Φk` = ωkPk` ((k, `) ∈ Jm), (9)

where

Pk` ∈ Pmk−1,

ωk(z) := ωk(z,a) :=
n∏

i=1,i 6=k

(z − ai)mi

(k = 1, 2, . . . , n, z ∈ C).

The polynomialsPk` can be expressed by the partial
sums of the Taylor-series expansion

Pk(z) := Pk(z,a) :=
1− zN

ωk(z,a)
=

∞∑

j=0

pkj(z − ak)j

(10)

(|z − ak| < rk, z ∈ D,

rk := min{|aj − ak| : j = 1, 2, . . . , n, j 6= k}),
namely

Pk`(z) = (z − ak)`
mk−`−1∑

j=0

pkj(z − ak)j (11)

(z ∈ C, (k, `) ∈ Jm)

and by (10)

pkj =
P

(j)
k (ak,a)

j!
:=

1
j!

dj

dzj
Pk(z, a)

∣∣∣∣
z=ak

.

We prove

Theorem 1.Let a = (a1, . . . , an) ∈ Dn, whereai 6=
aj , if 1 ≤ i, j ≤ n and i 6= j and fix the vector
m = (m1, . . . , mn) with mj ∈ N∗ and the natural
numberN ≥ m1 + . . . + mn. Then there exists an
unique system of polynomialsΦk` ∈ Pm−1 ((k, `) ∈
Jm) such that the systemsϕk` andΦk` ((k, `) ∈ Jm)
are bi-orthogonal with respect the scalar product (3).
Moreover the polynomialsΦk` can be written in the
form (9) and the coefficients ofPk` are defined by (10)
and (11).

Proof: By (22) of Theorem 2(in Appendix)

[Φk`, ϕrs]N =
1
N

∑

ζ∈TN

Φk`(ζ)ζ
s

(1− ar ζ̄)s+1
=

=
1
N

∑

ζ∈TN

Φk`(ζ)ζ
(ζ − ar)s+1

=
1

2π i

∫

TN

Φk`(ζ)
(ζ − ar)s+1

dζ =

=
1
s!

ds

dzs

Φk`(z)
1− zN

∣∣∣∣
z=ar

and consequently the systems in question are bi-
orthogonal if and only if

1
s!

ds

dzs

Φk`(z)
1− zN

∣∣∣∣
z=ar

= δr
kδs

` (12)

for any couple(k, `), (r, s) ∈ Jm. Thus theΦk`

((k, `) ∈ Jm) polynomials are the fundamental poly-
nomials of the weighted Hermite interpolation prob-
lem

(ρNΦ)(j)(ai) = bij ((i, j) ∈ Jm),

whereρN (z) := (1 − zN )−1 (z ∈ C) is the weight
function andbij are given numbers. From (12) it
follows thatΦk` is of the form

Φk`(z) = Pk`(z)
n∏

j=1,j 6=k

(z − aj)mj = Pk`(z)ωk(z)

(z ∈ C), and by (12)

(ρNωkPk`)(j)(ak) = δ`
jj! (` ≤ j < mk). (13)

This is equivalent to

j∑

i=0

(
j

i

)
(ρNωk)(j−i)(ak)P (i)

k` (ak) = δ`
jj!

(` ≤ j < mk). ThusP
(i)
k` (ak) = 0, if i < ` and

j∑

i=`

(ρNωk)(j−i)(ak)
(j − i)!

P
(i)
k` (ak)

i!
= δ`

j (` ≤ j < mk).

(14)
We consider the infinite system of linear equations
with respect topk0, pk1, . . . , pki, . . .:

j∑

i=0

(ρNωk)(j−i)(ak)
(j − i)!

pki = δj
0 (j ∈ N). (15)

The coefficient ofpkj in j-th equation is(ρNωk)(ak) 6=
0, consequently this system has a unique solution.
Comparing this with (13) and (14) we get

P
(i)
k` (ak)

i!
= pk(`−i) (i ≥ `).

It is clear that the Taylor-coefficients of the function

Pk(z) :=
1− zN

ωk(z)
=

∞∑

j=0

pkj(z−ak)j ((|z−ak| < rk))

satisfy (15) and Theorem 1 is proved.

To evaluate the numberspkj we introduce the function

Sk(z) :=
P ′k(z)
Pk(z)

=
N−1∑

j=0

1
z − εj

N

−
n∑

j=1,j 6=k

1
z − aj

,

(|z − ak| < rk), whereεj
N = exp(2π ij/N). Hence

by

P
(`+1)
k (ak) =

∑̀

j=0

(
`

j

)
P

(j)
k (ak)S(`−j)

k (ak) (` ∈ N)



we get the following recursion:

pk(`+1) =
1

` + 1

∑̀

j=0

pkjsk(`−j) (` ∈ N), (16)

where

ski :=
S

(i)
k (ak)

i!
= (17)

=
N−1∑

j=0

(−1)i

(ak − εj
N )i+1

−
n∑

j=1,j 6=k

(−1)i

(ak − aj)i+1
,

(i ∈ N). On the basis (16) and (17) the coefficients
pkj can be computed.

3. ITERATION ON POLE STRUCTURE

In this section an iteration method will be constructed
to compute the poles – including their multiplicities –
of a rational function by applying the partial fraction
model introduced by (6). This algorithm is locally
convergent in second order and uses the values of
the rational function only in the points ofTN , i.e.
uniformly spaced sample values of the frequency re-
sponse of the underlying system.

To compute the vectora = (a1, . . . , an) ∈ Dn we use
the system

Φm
k`(·,a) ((k, `) ∈ Jm).

LetN ≥ m := m1+m2+. . .+mn. Then by Theorem
1 the systems

Φm
k`(·,a), ϕk`(·,a) ((k, `) ∈ Jm),

depending ona ∈ Dn, are bi-orthogonal with respect
to the scalar product (3). Denote

φk(·,a) := Φm
k(mk−1)(·,a)

φ−k (·,a) := Φm
k(mk−2)(·,a)

(18)

and introduce

Fk(a) := [φk(·,a), fa]N , F−k (a) := [φ−k (·,a), fa]N
(k = 1, . . . , n), the conjugate coefficients of the bi-
orthogonal expansion of the the functions (18). This
expansion will be infinite, unless it is applied on the
exact pole locations. In that case the expansion will
containmk − 1 nonzero terms, hence

Fk(a) = 0, F−k (a) = λk = Ak(mk−2) (6= 0)

for (k = 1, . . . , n).

An iteration process can be given by introducing the
functions

Gk(a) :=ak +
1

mk − 1
Fk(a)
F−k (a)

(k = 1, . . . , n),

G :=(G1, . . . , Gn). (19)

The iteration process is given by

aν+1 := G(aν) (ν ∈ N,a0 ∈ Dn). (20)

It can be proved that the iteration procedure (20) is
locally convergent in second order, i.e. there exists

an r > 0, K > 0 such that if for the initial value
‖a0 − a‖ < r, then

‖aν+1 − a‖ ≤ K‖aν − a‖2 (ν ∈ N). (21)

The proof is based upon the characteristics of the
first and second order partial derivatives of function
(19). Namely it can be proved, that the Jacoby matrix
∂`Gk(a) of the function is zero, moreover the second
partial derivatives∂srGk(a) (s 6= r) are equal to 0,
and∂ssGk(a), ∂kkGk(a) are finite; that implies (21).

The realization of the iteration process requires an
initial pole locationa0, which is advantageous to be
near enough to the true location. An efficient method
to find an approximate pole location can be e.g. the
subspace method (Overschee and Moor, 1994).

The input data required by the method – due to the
discrete scalar product that has applied – are discrete
points of the frequency response of system to be
identified. These type of data can easily be acquired
by FFT procedures from time-domain data, or – if it
is possible to realize – by direct frequency response
measurements.

4. EXAMPLES

A simulation example is presented: an iteration on a
single pole has been performed for multiple cases –
pure and noisy function with several initial conditions.
A simulated spectral function based upon a real pole
with a = 0.9 and multiplicity 2 has been generated.
Number of sample point has been selected as128. For
the noisy cases the function has been modified with
additive normally distributed pseudo-random signal.
Noise variance0.01 – 0.1 relative to the function gain
has been used.

The method has been realized as aMATLABr pro-
cedure. The termination of the iteration has been per-
formed by the maximal absolute value of the differ-
ence of the subsequent pole values, as an error bound
value108 has been used. The iteration count has been
limited to300.

Aa the first example the iteration using the noiseless
function is presented: the procedure has been started
from different pole values, asa(0) = 0.5, 0.6, 0.8,
0.95, 0.99; the iteration proved to be robustly con-
vergent for all ones. Figure 1 presents the worst case
a(0) = 0.5. The series of subsequent pole values on
the upper diagram), as well as the error values on the
lower one. In the case of overestimating the pole mul-
tiplicity, the convergence go wrong. The iteration error
sequence of this case is presented on Figure 2: pole
multiplicity has been selected to be3. The iteration
has been stopped on300 cycles.

In the presence of noise, the procedure keeps the
convergence capabilities until some level of variance
(typically 0.25 relative to the function gain), however
the limit differs from the expected pole values, i.e.
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Fig. 1. Iteration on single pole: the pure case
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Fig. 2. Iteration with overestimated multiplicity

the method produces a random bias error. The results
of two experiments are presented in Figures 3 and
5 that has been generated under noise level0.1, and
initial pole locationa = 0.85. The Figures 4 and 4
present the Nyquist diagram and the amplitude spec-
trum belonging to the pure, noisy, and the estimated
functions for the two realizations respectively. Both
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Fig. 3. Iteration on single pole: noise - realization 1.
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Fig. 4. Spectral functions: realization 1.

realizations show good convergence properties, how-
ever the resulted pole values are0.8113−0.0636i and
0.8781−0.0625i respectively, instead of the expected
value0.9. The noise level applied in the experiments
can be considered to be quite large compared to the
level commonly achieved in the practice.
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Fig. 5. Iteration on single pole: noise - realization 2.
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5. CONCLUSION

A discrete bi-orthogonal system has been constructed
for estimating the poles – of multiplicity greater even
than one – in partial fraction representation of transfer
functions. Using frequency domain data, an iteration
method has been given and convergence in second
order has been proved. The method can be used to
estimate the system poles with the purpose of iden-
tification and control design.

6. REFERENCES

Garnett, J. B. (1981).Bounded Analytic Functions.
Academic Press. New York, London, Toronto,
Sydney, San Francisco.

Gilpin, K., M. Athans and J. Bokor (1992). Multi-
variable Identification of the MIT Interferometer
Testbed. In:Proc. of the American Control Con-
ference. Chicago, Illinois, USA. pp. 1263–1267.

Henrici, P. (1987).Applied and Computational Com-
plex Analysis. John Wiley & Sons. New York,
London, Sidney, Toronto.

Keviczky, L., J. Bokor and S. Veres (1987). Strong
Consistency of ML Estimators Using Partial
Fraction and Elementary Subsystem Representa-
tion of Multivariable Systems.IEEE Trans. on
Automatic ControlAC-32, 867–876.

Ninness, B. and G. Goodwin (1995). Estimation of
Model Quality.Automatica31, 1771–1797.

Overschee, P. Van and B. De Moor (1991). Subspace
Algorithms for the Stochastic Identification Prob-
lem. In: 30th IEEE Conf. on Decision and Con-
trol. Brighton, UK. pp. 1321–1326.

Overschee, P. Van and B. De Moor (1994). N4SID:
Subspace Algorithms for the Identification
of Combined Deterministic-Stochastic Systems.
Automatica30, 75–93.



Schipp, F. and J. Bokor (1998). Identification in La-
guerre and Kautz Bases.Automatica34, 463–
468.

Van den Hof, P. M. J., P. S. C. Heuberger and
J. Bokor (1995). System Identification with Gen-
eralized Orthonormal Basis Functions.Automat-
ica 31, 1821–1834.

Wahlberg, B. (1994). System Identification Using
Kautz models.IEEE Trans. on Automatic Con-
trol AC-39, 1276–1282.

APPENDIX

The discrete Cauchy formula. In section 2 the dis-
crete analogue of the Cauchy integral formula was
needed. Remember, that ifF ∈ A then for anya ∈ D
andn ∈ N (see e.g. (Garnett, 1981))

1
2π i

∫

T

F (ζ)
(ζ − a)n+1

dζ =
F (n)(a)

n!
.

ReplacingT by the discrete group

TN := {e2π ik/N : k = 0, 1, . . . , N − 1} (N ∈ N∗)
and the integral by the sum

1
2π i

∫

TN

F (ζ) dζ :=
1
N

∑

ζ∈TN

F (ζ)ζ

we get a similar formula for polynomials. For function
F ∈ A obviously

lim
N→∞

1
2π i

∫

TN

F (ζ) dζ =
1

2π i

∫

T
F (ζ) dζ.

DenotePn the set of complex polynomials of degree
n. Then the following analogue of the Cauchy integral
formula holds.

Theorem 2.Letn ∈ N, N ∈ N∗ be fixed numbers and
denoteP ∈ PN+n−1 a polynomial.

i) Then for anya ∈ D we have

1
2π i

∫

TN

P (ζ)
(ζ − a)n+1

dζ =
1
n!

dn

dzn

P (z)
1− zN

∣∣∣∣
z=a

.

(22)

ii) Furthermore ifa0, a1, . . . , an are distinct points in
D, then

1
2π i

∫

TN

P (ζ)
(ζ − a0) . . . (ζ − an)

dζ =
n∑

j=0

1
ωj(aj)

P (aj)
1− aN

j

,

(23)
where

ωj(z) :=
n∏

`=0,` 6=j

(z − a`) (z ∈ C, j = 1, 2, . . . , n)

are the fundamental polynomials of Lagrange interpo-
lation.

Proof: First we prove (22) forn = 0. To this end
write P ∈ PN−1 in the form

P (z) =
N−1∑

j=0

cjz
j (z ∈ C).

Observe that forζ ∈ TN we haveζN = 1 and
consequently

ζ

ζ − a
=

1
1− aζ̄

=
1

1− aN

1− (aζ̄)N

1− aζ̄
=

=
1

1− aN

N−1∑

j=0

aj ζ̄j (ζ ∈ TN ).

Using the orthogonality of the discrete trigonometric
system we get

1
2π i

∫

TN

P (ζ)
ζ − a

dζ =
1
N

∑

ζ∈TN

P (ζ)
ζ

ζ − a
=

=
1

1− aN

N−1∑

j=0

cja
j =

P (a)
1− aN

and forn = 0 (22) is proved.

To show (23) writeP ∈ Pn+N−1 in the form

P (z) = Q(z)(z − a0) . . . (z − an) + R(z),

where R ∈ Pn, Q ∈ PN−2. Applying Lagrange
interpolation formula toR we get

P (z)
(z − a0) . . . (z − an)

= Q(z) +
R(z)

(z − a0) . . . (z − an)
=

= Q(z) +
n∑

j=0

R(aj)
z − aj

= Q(z) +
n∑

j=0

P (aj)
z − aj

.

SinceQ ∈ PN−2, the orthogonality of the discrete
trigonometric system implies

∫

TN

Q(ζ) dζ = 0,

and applying (22) in the casen = 0 we get (23).

Observe that the right hand side in (23) can be ex-
pressed by the divided differences of the function

G(z) :=
P (z)

1− zN
(z ∈ D).

Namely (23) is equivalent to

1
2π i

∫

TN

P (ζ)
(ζ − a0) . . . (ζ − an)

dζ = G(an, . . . , a1, a0).

(24)
(Compare eg. (Henrici, 1987), pp. 247.)

Since for anyG ∈ A

G(an, . . . , a1, a0) → G(n)(a)
n!

as aj → a,

j = 0, 1, . . . , n, therefore (22) follows from (24).

Taking the limit in (22) asN → ∞ we obtain the
continuous variant of the formula.


