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Abstract: Artificial vision can be used in many environments such as indoor,
outdoor, space, and even in underwater contexts. Most of times, vision based
localization requires complex algorithms and hardware resources when related to
general environment features. However, the use of simple landmarks can reduce
dramatically the cost and the complexity of the recognition system. In typical indoor
environments, in particular in offices, ceiling lamps are all of the same type and are
placed in a quite regular way. Moreover, they can be easily seen, as generally no
obstacles can exist between them and the robot vision system. These peculiarities
motivated a study on the possibility of implementing a very low cost localization
procedure using a standard onboard webcam. A Kalman filtering approach has been
used to fuse vision and odometric data for position estimation, and a navigation
architecture, based on a real-time Linux kernel, has been set up to show its reliability
and flexibility.
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1. INTRODUCTION

Vision can be added to a localization system for
mobile robots in order to reduce odometric errors
due to the incremental nature of those sensors.
The use of natural or artificial landmarks allows
both simple resetting of odometric errors, so that
sensors can restart each time with the correct
absolute position information (Adam et al., 1999),
and more complex sensor fusion algorithms that
integrates all available information in a single
estimation process (Panzieri et al., 2000).

Among the others, natural landmarks have the
interesting features that avoid any change in the
work environment. In indoor environments one
can find many different reference points and marks
that can be interpreted as natural landmarks, e.g.
doors, corners, geometry of the floor. In particular
in (Martinez et al., 1992) and (Adam et al., 1999)

some of the ceiling characterizing elements are
suggested as natural landmarks in order to avoid
any occlusion problems.

Unfortunately, visual based control schema re-
quires, generally, very complex algorithm and ded-
icated hardware (Amat et al., 2000). In this pa-
per we have explored the possibility to realize a
localization system for a mobile robot using very
low cost standard hardware, i.e. a PC with a 60$
webcam.

To this end we have mounted the webcam on
the mobile robot focused to the ceiling and used
the lamps as reference points. Moreover, we have
used a suitable topological representation of the
environments, i.e., we represent the environment
by means of a graph where each node is a location
of interest and the arcs capture the connectivity
of the space.



The proposed localization system has been exper-
imentally tested on a mobile robot going through
the passageway of the faculty and using ceiling
lamps as reference landmarks.

From the software implementation point of view,
our interest has been concentrated on GNU/Linux
operating system that, compared with Microsoft
systems, has the great advantage of being com-
pletely OpenSource and based on the Unix sys-
tem. As all Unix systems, Linux scheduler is pre-
emptive only at user-level, that means an high
priority user process can suspend, when ready to
be executed, a lower priority user process but
not a Kernel process. Most recent versions of
Linux kernel, called Real-Time Linux, introduce
the possibility to define high priority processes
in kernel mode that cannot be interrupted from
kernel routines.

2. AN AUGMENTED TOPOLOGICAL MAP
APPROACH

It is well known that an effective environment
representation for a mobile robot must describe all
the essential features necessary for self-localization,
motion planning and navigation. Moreover, the
robot should be able to extract the features di-
rectly from sensory data.

The mapping approaches, i.e., the way the world is
represented, that have been proposed in literature
can be grouped in two main classes (Borenstein et
al., 1996): metric maps and topological maps. In
the metric maps the environment is represented
in terms of geometric relations between the ob-
jects and a fixed reference frame. On the other
hand, in a topological map, only adjacency rela-
tions between objects are represented (Dudeck et
al., 1991), avoiding metric information as far as
possible.

Metric maps and topological maps are two dif-
ferent representations of the same environment:
as a consequence, they exhibit complementary
rather than opposite properties. To exploit the
best of both approaches the authors in (Fabrizi
et al., 2000) have suggested to put additional
metric information in nodes as tags of particular
interest related to the natural landmarks included
in the node itself. This approach has been suc-
cessfully applied for the representation of office-
like environments: this kind of indoor environment
is usually structured with standard elements like
corridors, T-junctions, corners, and end-corridor,
and very often a navigation task can be expressed
as a sequence of places defining a path inside the
environment such as “follow the corridor and turn
right at the first corner”. So one has a graph
representation as high-level view of the environ-
ment (useful for the integration of the system in
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Fig. 1. Topological map

an artificial intelligence framework), and, at the
same time, metric information about length of the
corridor, number of left and right doors, number
of lamps in the ceiling and possibly their relative
distance.

In our case, the extraction of some of the features
mentioned before from a webcam image may be
a very time-consuming task. The computational
burden can be dramatically reduced if the ex-
traction procedure is focused on particular land-
marks as the lamps in the ceiling which can be
easily extracted (Martinez et al., 1992; Adam et
al., 1999). Indeed, they are well visible, easy to
identify inside the image, generally all of the same
type and placed in a quite regular pattern.

Limiting vision system to identify only the lamps
in the ceiling imposes to the graph the inclusion
in the topological nodes of a labeled sequence of
landmark tags associated to the lamps. Nodes are
used to decide the correct navigational behavior
(follow corridor, turn right at corner) and eventu-
ally to perform an approximate localization; tags
are employed to refine the localization process.

An example of the adopted representation is
shown in Fig. 1 where the planned path from Start
to Goal assumes that the robot goes out of the
end-corridor, follows a corridor, turns right at the
corner and find the Goal in the next corridor. Once
finished this high-level motion, the target location
(a door) can be reached with a fine motion.

On the way, the robot can always refine its local-
ization using landmarks (lamps) that are associ-
ated to each topological node but only a low preci-
sion is required. Note that its odometry should be
able to correctly label each lamp and to handle
abnormal situation (e.g., when a lamp is out of
order). Near the target the estimated position
must be refined to correctly approach the target.
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Fig. 2. Robotic system

It is important to stress that during the motion,
the localization system use odometric information
for a rough prediction of the landmark positions.

3. VISION BASED LOCALIZATION
3.1 Image acquisition

Accurate calibration of cameras is a crucial step
for applications that involve quantitative mea-
surements, such as the geometrical and the di-
mensional ones (Weng et al., 1992). Webcam lens
aberrations must be evaluated and corrected. Us-
ing a low cost, wide angle camera this procedure
become even more important. In this work we
only consider camera distortion, which is related
to the position of image points in the image plane,
but not directly to the image quality, because we
only use geometrical information in our localiza-
tion system (see below). Moreover, we consider as
accurately known the position of the camera in the
robot frame. Calibration matrices are calculated
and used as in (Panzieri et.al, 2001) where more
details can be found.

3.2 Lamps recognition

After the calibration step the algorithm proceeds
analyzing the image. Remember that typical im-
age processing algorithms use complex strategies
to reduce the computational burden and good
public domain implementation are quite common
on the world-wide web.

First, a graph search of all connected components
is performed comparing, for each pixel, the lumi-
nance information with a threshold: if the pixel
luminance exceeds the threshold then is consid-
ered, otherwise is neglected.

After this scanning, more than one connected
component are usually retrieved. Sometimes re-
flections can produce small connected components
that can be discriminated evaluating their area.
Our lamps produce an image that is around 6000
pixels; we suppose to have lamps only if the area
is greater then 3500 pixels. From the area we also
know how much of the lamp is in the viewing

Major Axis

Area=6483
rea Lamp 1

Minor Axis

352x288

Fig. 3. Major and minor axes, center of mass and
labeling

352x288
Area=4025

New Axes

inside outside

Fig. 4. Completing partial view

window and how much is left out. After that, to
better the quality of the image the morphological
operators of erosion and dilation are applied to
reduce fringes caused by small reflection along
borders of the lamp. This effect is more evident
when lamps are far from the center of the image
and the light reaches the camera after reflecting
on the common metallic grids that are always set
over the luminescent elements.

At this point we deduce the robot position and
orientation using the lamps configuration in the
image plane. To do this we compute the center of
gravity (CoG) and the orientation of each lamp
(see Fig. 3).

With this procedure, the system is able to recog-
nize when a new lamp appears in the image and
when the lamp disappear from it. Using the odom-
etry (on a short range) a new incoming lamp is
labeled and its CoG and orientation is calculated.
To correctly use these measures the system needs
a good estimate of those quantities and this is not
possible when only a partial view is available.

Due to the limited view of the camera some
problems may occur when only a partial view of
a lamp is available. This forced us to develop a
recovery algorithm able to complete the missing
area and correctly estimate CoG and orientation.
In Fig. 4 the result of this procedure, based on
the knowledge of the reconstructing shape, is
shown. The procedure is performed only when
the visible area is greater then 4000 pixels. The



algorithm uses edges found in the area and tries
to interpolate them with a least square method.
The reliability of such process is not extremely
high but the information retrieved is a valued one
in any case.

4. KALMAN BASED DATA FUSION

At the end of the image processing phase, esti-
mated position and orientation values are avail-
able. This process can be repeated with a rate
that in general depends on the frames acquisition
hardware and on the complexity of algorithms
performed. With a low cost hardware this is lim-
ited to few images per second and in the experi-
ments that we present this rate is only 10 frames
per second. On the contrary the algorithm that
controls the motion of the robot is performed with
a higher rate and needs an estimate of the full
state (position, orientation, and their derivatives)
at each sampling time; even if no lamps are in
the view of the webcam. Then, the estimate must
be obtained merging odometry, always available,
with vision data. This can be done by means of
an Extended Kalman Filter. The only drawback is
that a delay exists between the frame acquisition
instant and the time in which geometrical data be-
comes available to the filter. The solution adopted,
like in (Panzieri et al., 2000), was to preserve in a
buffer some past state values and odometric data
and, each time a new frame (relative to time tz)
is processed, go back with the filtering algorithm
to ¢ = ty, include the geometrical data in its
evaluation, and then propagate to the actual in-
stant the state estimate using the odometric data
previously stored.

4.1 State prediction

In designing the Kalman Filter, the following
points must be taken into account:

e the measures provided by the webcam are
noisy, but do not grow with the traveled path;

e the vision system accuracy is correlated to
the robot velocity;

e a delay of about 0.1 sec arises for computa-
tions and communications.

The prediction equation are simply obtained by
the unicycle kinematic model. Define the vector
state as the robot configuration, Xy = (x, Y, dr)
and the input Uy = (ASk,ARy) as the vehicle
displacement and rotation along the trajectory in
the k-sampling interval. The inertial prediction is
then:

Xk+1/k = f(Xy, Up) =

ARy,
2

AR
:lj]g + ASk sin (¢k + Tk) (1)
(lgk + ARy,

T + ASg cos (¢k +

The model inputs are computed using encoder
data as follows. The robot displacement is mea-
sured from right end left encoder readings that
give respctively the values AST and AS} as

T 1
as = ASErASL

The platform rotation is estimated as

_ AST—AS]

A
Sk 2a

3)

where a is the semiaxis length.

The covariance matrix associated with the predic-
tion error is written as

T
Pk =I5 (Xegin>Ur) - P JF (Xpgaji > Ur)
+Q(Ur) (4)

where J§,.(-) is the Jacobian matrix of f(-) with

the respect to X’k, Py, is the covariance matrix at
time istant ¢ and Q(Uy) is given by

QW) = JA(U)-C-JE(U)™  (5)

The (5) show that Q(U},) is the projection of the
noise affecting the inputs on the state.

4.2 Observation prediction

The observation prediction is given by the vector
Zv1 = Xpya/k (6)

The innovation term and the associated covari-
ance, being Zp1 the measured output from the
webcam, are computed as

Vit = Zisr — Zig (7)
~ A T
Skt1 = I (Xga/k) Posaye (T (Xpy1/e)) + RiB)

where J,’:“(-) is the Jacobian matrix of h(-) re-
spect to X k+1/k- The first term used to compute
Sk+1 represents the uncertainty on the observa-
tion due to the uncertainty on the inertial pre-
diction. The second term is the observation noise
covariance matrix.

Actually the webcam neasures are available at
a slower rate and some delay. This problem has
been worked around as follows: when the webcam
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Fig. 5. Navigation architecture

information are not available, the Kalman filter is
not executed and the position estimation is given
by the odometric prediction. As the estimations
proceed, all the input and state values are stored
together with a time stamp. When the webcam
measures became available the nearest time stamp
is searched for and the above equations are ap-
plied. In this way the past state is corrected. From
that instant on, the EKF is executed again using
the stored measures and the new state estima-
tions.

4.3 Ezxtended Kalman Filter

The Extended Kalman Filter is used to correct
the inertial configuration estimate on the basis of
the validated observations. Particularly, the final
configuration estimate is obtained as

Xip1 = Xk+1/k + Kp1[Zks1 — Zipa] (9)
where Ky is the Kalman gain matrix
~ T
K1 = P (T (Xigase)) Sia- (10)

The covariance associated with the final configu-
ration estimate Xj41 is given by

Piy1 = Pry1sk — Kpyr S Ky (11)

5. NAVIGATION ARCHITECTURE

The architecture that realize the navigation sys-
tem (see Fig.5) can be divided into several mod-
ules:

Mission manager uses the topological map to
plan the high level motion, as we explained in
section 2;

Navigation scheduler manages the comunications
between the robot, the vision system, and the
mission manager. It maps the mission into low
level tasks, that the robot can execute;
Webcam grabber implements the lamps recogni-
tion algorithm;

User interface handles the messages between the
user and the kernel space, through a character
device;

Kalman module realizes the EKF: when the
grabber start the image acquisition, it receives
a command and starting to store odmetric data.
At the end of the grabbing procedure it receives
the image data and returns the new position
estimation;

Low level controller is the low level motion con-
trol system. It is a real time thread, executed
periodically, every 5 ms. It uses processor for
about 60 us, so it leave the CPU free for non real
time application for a significant slot of time;

Hadware interface is driver of the motion control
board.

As the figure 5 shown, some modules run on
the onboard PC of the robot, while other are
executed on different computers. The connection
between navigation scheduler, webcam grabber
and mission manager are realized using TCP /IP
socket. In this way the three modules can be
distributed on a local network.

6. EXPERIMENTAL RESULTS

The proposed algorithm has been tested using the
mobile robot super M.A.R.I.O., a Philips Vesta
Pro Scan and a Notebook (AMD Athlon 1GHz).
The mobile platform is a unicycle robot built in
our Department having a front castor and two
fixed wheels on the same axle actuated by two
independent motors. The robot sensory system is
composed by two incremental encoders mounted
on the two motors and connected to the on board
robot mini-computer where runs the low-level
control algorithm and the navigation scheduler.
The webcam grabber and the mission planner run
on the Notebook, connected to the on-board PC
through a ethernet link. The webcam is mounted
on the robot focused to the ceiling (see Fig. 2).
The distance between the vision system and the
landmarks (rectangular lamps) is about 2.50m, so
each pixel is about 5mm at the 356 x 288 resolution
and about 10mm at the 176 x 144 resolution.

In Fig. 6 a path traveled by the mobile platform
is shown. Four lamps are met before turning left
into a door. In this experiment the feedback has
been closed around the odometry and the initial
position has been set. A left-turn has been pro-
grammed in front of the door and the path labeled
as odometry is the precise odometric result of
the control algorithm executed. The path labeled
as Kalman is the trajectory computed by the
Kalman Filter and the one that has been actually
followed by the robot. About 300 frames have
been captured (one for each second), and 50% of
them have given no information because black.
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In Fig. 7 the norm of the state covariance has
been reported showing how, during the odometric
navigation (no lamps in view), it slowly increases
meaning that uncertainty on robot position and
orientation becomes greater. Once a lamp is again
in the field of the webcam, uncertainty is brought
back to a value that depends on the visual sensor
precision.

7. CONCLUSIONS

In this paper we have presented works on the use
of artificial vision in a navigation architecure for a
mobile robot using real-time architecture for low
level control. The proposed approach, well suited
for office-like environments, uses an inexpensive
web-cam with standard hardware. This imposes
that the extraction feature algorithm must be
very light. The localization of the robot inside
the environments is performed on the base of an
augmented topological map.

Clearly, in order to correctly execute the motion
plan, the robot must self-localize on the map, that
is, the robot has to recognize in which node it is.
For that which concerns the work presented in this
paper we have assumed that the robot starts from
an home position. Future works will be devoted

to use vision system to localize autonomously the
robot on the base of a set of images.
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