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Abstract: In this article the design framework for an Adaptive Inverse Lattice

Controller(AILC) with learning attributes, applicable to linear Auto Regressive (AR)

systems, is presented. The utilized controller structure relies on the principle of Inverse

Model Control (IMC) and its topology resembles that of a lattice �lter. The adaptation

rules depend on the iden ti�edsystem dynamics through an adaptive lattice �lter.

The identi�cation scheme is extended with a proposed algorithm for the model order

selection. Within the employed IMC{structure, an inverse lattice controller is utilized

in the forward path in cascade with a lowpass detuning �lter. As time progresses, the

lattice �lter estimates more accurately the system dynamics, and the learning scheme

adjusts accordingly the attributes of the detuning �lter. Simulation studies are used

to in vestigate the eÆcacy of the suggested scheme. Copyright c
 2002 IFA C

Keywords: Adaptive Lattice Filtering, Internal Model Control, Learning Control.

1. INTRODUCTION

The adaptive control problem for discrete jump

systems (with multiple models) has received sig-

ni�cant atten tionover the last years (M. Bran-

icky , 1998; Narenda and Balakrishnan, 1997; Sun

and Zheng, 2001). The suggested adaptive con-

trollers account for the switc hing between the

candidate systems and enhance the system's per-

formance while maintaining stabilit y.A typical

adaptive controller is composedof the controller

portion and the identi�er module.

In an IMC structure, there is a natural coupling

betw een the iden ti�cation scheme and the con-

trol part (Morari and Za�riou, 1989; Datta and

L.Xing, 1998). This coupling a�ects the robust-

ness and the overall system performance due to

the system's variations. The IM-controller mini-

mizes a cost which is a weigh tedfunction of the
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system's sensitivity function and its multiplicative

uncertainty. If the performance attributes of the

system's transient response are to be considered

in the controller design process a learning scheme

can be employed. Motivated by the \progressive

learning" control design approach (Anderson and

Kosut, 1991; Lee et al., 1993), the uncertainty

associated with the system dynamics is learned

progressively through an iden ti�cation scheme.

This scheme employs a pre�lter (Y. Zhu and

P. van der Bosch, 2001; Rivera et al., 1992), whose

characteristics depend on the system's frequency

spectrum and the adopted controller's objectives.

F urthermore, the structure of the selected model

in the identi�cation process is that of a lattice

�lter (F riedlander, 1982).

The Adaptive Least Square Lattice Filtering

(ALSL) (Haykin, 2001) is used for the identi-

�cation of the system dynamics. The dynamics

is mapped in to the �lter's structure through the

values of the estimated re
ection coeÆcients. In

addition, the proposed extended ALSL{algorithm
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identi�es the order of the system by monitoring

the magnitude of those coeÆcients and the cu-

mulative error-response. The proposed IMC con-

troller corresponds to the inverse lattice �lter,

whose order varies. The controller is enhanced

with a lowpass detuning �lter with progressively

increasing cuto� frequency, in order to provide

balance between the system's robustness and its

transient response performance.

This paper is structured in the following man-

ner. In the next section, the formulation for the

adaptive robust control design problem is stated.

The proposed design embraces elements from the

IMC{principle and the ALSL �ltering technique.

The enhancements related to the model order

estimation, and the detuning �lter are addressed

in Section 3. The proposed approach is applied in

simulation studies in the following section, while

�nal remarks are o�ered in the last section.

2. ADAPTIVE ROBUST CONTROL DESIGN

PROBLEM STATEMENT

Consider the AR linear discrete-time system with
its dynamics expressed as

y(t) =G(z)u(t) + �(t) = ~G(z)(1 + lm�)u(t) + �(t)

=

�
bdz

�d

1 +
P

m

i=1
aiz

�i

�
(1 + lm�)u(t) + �(t) (1)

where z
�1 corresponds to the delay operator,

u(t); (y(t)) is the input (output) of the system, ~G

is the \nominal" plant description, lm is the mul-

tiplicative uncertainty about the nominal plant,

while the output measurements are corrupted by

additive white noise �(t). The system model is

assumed to be stable and the delay term d is

considered to be known a priori. The objective

is to design an adaptive lattice controller relying

on the IMC-principle to ensure the system's ro-

bust stability (Silva and Datta, 2001) in lieu of

uncertainties in the parameters vector.

In this work, an identi�cation scheme is coupled

to a robust internal model controller, as shown

in Figure 1. The Internal Model Controller q(ej!)

is generated by a cascade composition of: 1) an

adaptive lattice controller ~q(ej!), and 2) a low-

pass �lter F(ej!) which detunes the controller

characteristics at high frequencies in order to ex-

tend the system's robustness. The identi�cation

module relies on Recursive Least Squares Lattice

(RLSL) �ltering and estimates the plant dynamics

by computing the corresponding re
ection coef-

�cients. The RLSL algorithm is extended with

the proper criteria in order to identify the sys-

tem order by monitoring: a) the magnitudes of

the re
ection coeÆcients, and b) the cumulative

mean square error between the system and model

response.
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Fig. 1. Adaptive Inverse Lattice Control Structure

2.1 H2{Optimal Internal Model Controller Design

For robust performance, the control objective is

to minimize the in�nity norm of the system's

weighted sensitivity function �(= 1�Gq)

k wp� k1= sup
!

jwp�(|!)j

for all plants G =
n
G : j(G� ~G) ~G�1j � lm

o
:

The jwpj
�1 represents an upper bound on the

sensitivity function, since j�(|!)j � jwp(|!)j
�1 8!

if and only if sup
!
(j~�lmj+ jwp~�j) � 1 ; where

~� (= 1�~� = ~Gq) is the complementary sensitivity

function for the nominal system ~G. The optimal

controller design problem is formulated as

q=arg

�
min
q

sup
!

(jwp~�j+ j~�lmj)

�
; (2)

where q is the IMC feedback controller as shown

in Figure 1. The philosophy behind the IMC{

design consists of two steps, and although the

resulting controller has no inherent optimality

characteristics, it provides a good engineering

approximation to the optimal solution of (2). The

�rst step amounts to designing a controller ~q for

good nominal performance so that

~q=arg

�
min
~q
k wp~� k2

�
: (3)

In this case, the optimal sensitivity becomes ��
4

=

1� ~G~q, and the optimal complementary sensitiv-

ity function ��
4

= ~G~q. Furthermore for the case,

where the weight wp re
ects the particular input

(wp = r(s)), the cost function (3) to be minimized

is the l2 norm of the error k wp~� k2=k er k2 ; and

the resulting controller is H2{optimal. The second

step addresses the robust stability and perfor-

mance issue. At high frequencies, when the multi-

plicative uncertainty lm exceeds unity, �� has to be

rolled o�. To achieve this action, ~q is augmented

(cascaded) by a low{pass �lter F , as q
4

= ~qF .

The order of F is such that q is proper, and its

roll{o� frequency is selected so that the robust

stability constraint k ~�lm k1=k ~Gqlm k1< 1 is

satis�ed. The purpose of the �lter F is to detune

the controller, since it sacri�ces performance for

robustness. This is justi�ed since the sensitivity



~� = 1� ~Gq = 1� ~G~qF (performance measure) is

increased, while ~� = ~G~qF (robustness measure)

decreases. Because of the ~G{system's inherent

minimum phase characteristics, the optimal so-

lution to the minimization of the cost in (3) is

independent of the weight and equal to ~q = ~G�1 .

Since the nominal system ~G is unknown, the

estimated transfer function Ĝ will be used in

the controller design process. Subsequently, the

multiplicative error is em = ( ~G � Ĝ)Ĝ�1, and

the corresponding sensitivity function ~� = (1 �
�̂)(1+ em�̂)

�1, where �̂ = ~GĜ�1. From Parseval's

theorem the l2 error{norm can be mapped into the

frequency domain, where for the frequency range

where jem�̂j � 1 the control objective is bounded

by

k er k2 �

2
4 1
�

�Z
0

j1� �̂j2jrj2d!

3
5

1

2

+

2
4 1
�

1Z
0

j1� �̂j2jem�̂j
2jrj2d!

3
5

1

2

: (4)

The e�ect of the identi�ed transfer function to the

cost objective is at the second term of (4), which

includes the contribution of the multiplicative

error. Therefore, Ĝ should be selected so as to

minimize the control relevant identi�cation cost:

Ĝ = argmin
Ĝ

2
4 1

�

�Z
0

j1� �̂j2j( ~G� Ĝ)Ĝ�1�̂j2jrj2d!

3
5

1

2

: (5)

2.2 Data Pre�ltering

The system model, to be identi�ed, is assumed to

have the following linear regression structure

ŷ(tj�) = Ĝ(z; �)u(t) + xw(t) ; (6)

where � is the system parameter vector (i.e., the
lattice �lter's re
ection coeÆcients), and xw cor-
responds to white noise. Let the �ltered prediction
error sequence be �ltered through a stable linear
�lter L(z):

�F (t; �) = L(z)�(t; �) = L(z) [y(t) � ŷ(tj�)] : (7)

The utilized L{�lter can be used to enhance or

suppress certain properties of the model, since it

acts as a frequency weighting factor. The purpose

of the identi�er is to provide a parameter vector{�

that minimizes the following norm

� = arg

(
min
�

1

N

NX
i=1

[�F (t; �)]
2

)
; (8)

where �u(!) is the spectrum of the control input.

Comparing this term to the integrand quantity

in (5) infers the optimal pre�lter L as

L(z) =
(1� �̂(z)) Ĝ

�1(z)�̂(z) [r(z)]

F�1 (�u(!))
;

where F�1 corresponds to the inverse discrete

Fourier transform. The computation of the op-

timal pre�lter demands the knowledge of �u(!)

and �̂(z), which is rather diÆcult to be obtained

a priori. In this research e�ort, the selection of

the pre�lter is based primarily to a�ect the con-

vergence of the estimated transfer function to the

actual one in the frequency domain. If L(z�1) is

selected as a lowpass �lter, then the parameter

vector{� is computed in order to match the low-

frequency spectrum of ~G (from equation (8)).

In our case, the cuto� of the lowpass �lter is

increased progressively as the estimator matches

more closely the spectrum of the true system at

the low{frequency end. In order to ascertain the

eÆciency of the suggested scheme in lieu of limited

subsystem variations, the pre�lter is selected to be

identical to that of the detuning �lter.

2.3 System Identi�cation via ALSL-Theory

Upon computation of the L(z) pre�lter, the input

and output data streams are �ltered prior to their

processing by the adopted identi�cation scheme.

The identi�er, shown in Figure 2, rather than esti-

mating the tapped weights in the direct transver-

sal form of (1), computes in a recursive manner

the �f;m{forward and �b;m{backward re
ection

coeÆcients characterizing the system's behavior.

�

�

��

�
�

�

z
-1

f (n)1

b (n)1

�

�

�	

�
�

	

z
-1

f (n)2

b (n)2

�

�

�m

�
�

m

z
-1

f (n)m

b (n)m

�

�

�na

�
�

na

z
-1

f (n)ma

b (n)na

y(n)

Fig. 2. Lattice Filter Structure

Under the assumption of an na{order model, its

re
ection coeÆcients are computed recursively

based on the ALSL{algorithm (Haykin, 2001)

(summarized in Table 1) using the a posteriori

estimation errors.

The link between the direct and lattice form

parameterizations can be found from the following

relationships shown in Table 2 (for the AR{part

with characteristic polynomial 1 + D(z) = 1 +
Dna

(z)

zna
)

3. LEARNING ENHANCEMENTS TO THE

ADAPTIVE IMC{DESIGN

The learning scheme, employed in this scheme,

amounts to the selection of: a) the model order

by taking advantage of the orthogonalizing data

property, of the lattice �lter, and b) the lowpass

detuning �lter by progressively increasing its cut-

o� based on the accuracy of the identi�ed model.



Table 1. ALSL{Algorithm

Initialization phase

�m�1(0) = 0 ; Fm�1(0) = Æ

Bm�1(0) = Æ ; 
0(0) = 1

�f;m(0) = 0 ; �b;m(0) = 0

At each instant n�1 compute:

�0(n) = �0(n) = y(n)

F0(n) = B0(n) = �F0(n� 1) + jy(n)j2


0(n� 1) = 1

Recursive Computation Phase

For time n = 1; 2; : : : and order m=1,2,: : : ; na
Fm�1(n) = �Fm�1;n�1 + 
m�1(n� 1)j�m�1(n)j

2

Bm�1(n� 1) = �Bm�1(n� 2)

+
m�1(n� 1)j�m�1(n� 1)j2

�m(n) = �m�1(n) + �
�

f;m
(n� 1)�m�1(n� 1)

�m(n) = �m�1(n� 1) + �
�

b;m
(n� 1)�m�1(n)

�f;m(n) = �f;m(n� 1)�

m�1(n� 1)�m�1(n� 1)

Bm�1(n� 1)
�
�

m(n)

�b;m(n) = �b;m(n� 1)�

m�1(n� 1)�m�1(n)

Fm�1(n)
�
�

m
(n)


m(n� 1) = 
m�1(m� 1)�


2

m�1
(n� 1)j�m�1(n� 1)j2

Bm�1(n� 1)

Table 2. Lattice to AR{Realization

D1(z) = �f;1

Recursive Computation { For AR-order m = 2; : : : ; na.

Let Dm(z) = d0 + d1z + : : :+ dmz
m.

D
�

m
(z) = d

�

m�1
z
m�1 + : : :+ d

�

0

Dm(z) = z

�
Dm�1(z) + �

�

f;m
D
�

m(z)
�
+ �f;m

3.1 Lattice Model Order Selection

The primary advantage of using a lattice �l-

ter in the identi�cation part is the trivial mon-

itoring of the model's stability. The identi�ed

model is termed unstable, when the magnitude

of the re
ection coeÆcients exceeds unity, or

when j�f;mj > 1. Other characteristics of a lat-

tice �lter include the reduced computational load

for its implementation and its numerical robust-

ness (Friedlander, 1982). The philosophy behind

the \utilization" of additional cascade stages in

the lattice �lter structure is related to the orthog-

onalizing property of each stage. The mismatch

between the system and the model response, mea-

sured by the forward and backward prediction er-

rors (fi(n); bi(n); i = 1; 2; : : : parameters, shown

in Figure 2) is smaller as the order increases.

Every additional stage attempts to \whiten" the

prediction error signals by orthogonalizing the

�ltered data; the perfect �lter with order na has

a prediction error equal to the corrupting noise

(fna(t) = �(t)). Based on this observation, several

\rules" can be implemented to adjust the model's

order.

3.2 Lattice Filter Model Order Decrease

If the �lter's order exceeds that of the identi�ed

system, or na � m, then �f;i = 0; i = m + 1; : : :

Under the assumption of a current model order

na, a learning rule of the following form can be

used to reduce the model order

[Rule A] Ifmaxi2[t�N1;t] j�f;na(i)j � �(' 0+), then

na  na � 1.

This rule amounts to ignoring all stages following

the one with a small re
ection coeÆcient over a

sliding time window. The window span, N1, is an

ad{hoc selected parameter; large values indicate

a willingness to await longer (slower convergence)

prior to reducing the order, while at the same

time ensuring that the reduction on the re
ection

coeÆcients is not to ill{conditioned data. For all

practical purposes, it is not appropriate to let

the model's order switch frequently. Furthermore,

suÆcient time must be provided for the re
ection

coeÆcients' convergence prior to testing the previ-

ous rule. Assume the time stamp tna , as the event

on which the model order changed to na. Then,

the �rst rule is not allowed to be executed prior

to elapsing N2 samples after tna , or

[Rule B] The proposition for [Rule A] cannot be

tested prior to t � tna +N2.

In a similar manner, not only the magnitude of

the re
ection coeÆcient of the last stage must be

small for reducing the model's order, but also its

time-gradient (over a sliding window of length N3

must be within small bounds for proper settling

in its steady-state value. Therefore, the model

order cannot be reduced unless the following rule

is satis�ed

[Rule C] If
P

t

i=t�N3
j�f;na(i)� �f;na(i� 1)j �

N3�constantC the model order cannot be reduced.

Overall, the aforementioned rules (A,B, and C)

must be satis�ed for reducing the model order

from na to na � 1.

3.3 Lattice Filter Model Order Increase

Unlike classical estimation techniques (Haykin,

2001) which tend to overparametrize the model for

capturing the dynamics of the unknown system,

lattice �lters can start with a small order (i.e.,

na = 1). After the lattice �lter has been trained

and its re
ection coeÆcients have converged, the

cumulative RMS{error (over a sliding window

with length N4) between its response ŷna and the

system response is computed. Depending on the

magnitude of this quantity, the order can increase

or remain at its current value. This is mirrored in

the following rule

[Rule D] If
P

t

i=t�N4
[y(i)� ŷna(i)]

2
� N4 �

constantD the model order must be increased, or

na  na + 1.

Similar reasoning to stating Rule B necessitate the

need to remain at a constant model order for a



period of time N5 prior to any possible increase,

or

[Rule E] The proposition for [Rule D] cannot be

tested prior to t � tna +N5.

Similarly, the time gradient signature of the last

re
ection coeÆcient must be tested prior to aug-

menting the model order, or

[Rule F] If
P

t

i=t�N6
j�f;na(i)� �f;na(i� 1)j �

N6 � constantF the model order cannot be in-

creased.

It is noteworthy, to state that the aforementioned

six rules must be tested continuously (sample-by-

sample basis) for proper adjustment of the sys-

tem order. Therefore, at the expense of estimat-

ing the model order, the computational burden

of the system identi�cation routine is increased.

Furthermore, several parameters N1; : : : ; N6 need

to be selected on an ad-hoc basis; in a typical

con�guration N2 = N5 and N3 = N6.

3.4 Detuning Filter Design

Assume, that the identi�er provides a model Ĝ�

of order � for the system dynamics. The order

� can vary as stated in the previous paragraphs,

thus a�ecting the H2{controller's attributes, since

~q = Ĝ
�1 =

D�(z)

bdz
�d . Furthermore, the `detuning

lowpass �lter' F (e|!) is modi�ed according to the

�{order of the identi�ed system. The F (z){�lter

design philosophy is to devise a scheme which pro-

gressively increases the bandwidth of the closed{

loop system. Provided with an identi�ed transfer

function, the learning mechanism increases pro-

gressively the cuto� of �lter F . Although this

action increases the bandwidth of the closed loop

system, it compromises the robust stability of

the system. The robust stability of the system is

satis�ed if

j�̂lmj = jĜ(e
|!)~q(e|!)F (e|!)lmj < 1

Therefore, the cuto� of this �lter is progressively

increased until the previous robust stability index

has approached one. This progression results in

a �lter F
� with the largest bandwidth. If the

bandwidth of the closed{loop system is satisfac-

tory, then this learning process terminates. Let the

identi�ed transfer function computed for a certain

number � of re
ection coeÆcients be denoted as

Ĝ�. The proposed learning mechanism can be

interpreted as:

[Rule G] For the identi�ed system Ĝ�, design a

sequence of controllers q� = ~q�F� that progressively

increase the bandwidth of the closed{loop system.

In order to simplify the computational complexity

of the algorithm, this �lter is typically selected as

a �rst order lowpass discrete �lter

F�(z) =

�
1� e

��
�
z

z � e��
;

where �� corresponds to the cuto� frequency.

The tuning algorithm starts with a small �� 2
[0; 0:5), which is progressively increased �� =

�� + ���. The correction factor ���(� 0) is

adjusted based on the continuous monitoring of

the squared tracking error over an M{sample

sliding window
P

t

t
0

=t�M

h
r(t

0

)� y(t
0

)
i2
. If this

error exceeds a certain number this can be an

indication of marginal stability and the cuto�

frequency is not increased.

4. SIMULATION STUDIES

The proposed adaptive IM-Controller is applied in

simulation studies for controlling a system with a

nominal transfer function ~G(z) whose poles are

located at 0:9956 � 5Æ and 0:9976 � 45Æ. The

output measurements are corrupted with a white

noise signal �(t) such that the SNR is 80 db.

4.1 Open{Loop Lattice Filter Model Identi�cation

For purposes of investigating the eÆciency of

the lattice �lter in the identi�cation process, the

open{loop system is excited with a white noise

input sequence. The ad{hoc selected parameters

are Nj = 2; j = 1; 2; 4; 5 and Ni = 100; i = 3; 6.

The identi�ed model order, na, as time progresses

appears in Figure 3, while the convergence char-

acteristics of the re
ection coeÆcients is depicted

in Figure 4.
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Fig. 3. Time history of identi�ed model{order

Due to the inherent orthogonality of the lattice

�lters, when an order increase at stage na occurs,

the previously de�ned re
ection coeÆcients corre-

sponding at the earlier stages �f;i; i = 1; : : : ; na�
1 remain constant. As expected, the �rst four

lattice �lter coeÆcients converge to their nominal

values ��nom = [�0:9890; 0:8150;�0:8878; 0:9841]
T
,

while the �fth one settles to zero. It should be

stated that during the instances where the model

order changes the magnitude of the new re
ection

coeÆcient exceeds temporarily one, and typically

converges within 5% of its nominal value in the

subsequent 200 samples.



Fig. 4. ALSL-�lter re
ection coeÆcient conver-

gence

4.2 Closed{Loop AILC

The overall suggested concept's eÆciency is in-

vestigated in a closed{loop con�guration, where

the response of the system with the adaptive IM-

Controller is shown in Figure 5. The variation of

the model order appears in Figure 6. In compar-

ison with the open{loop case, the model order

raises signi�cantly (nmax
a

= 7 for closed{loop ver-

sus nmax
a

= 5 for open{loop case) prior to settling

down to its nominal value. This is attributed to

the non utilization of an optimal pre�lter and

possible lack of persistently exciting signals.
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Fig. 5. System Response w./ AILController

Fig. 6. Time history of model order change w./

AIMC

5. CONCLUSIONS

An adaptive IMC scheme was presented in this

article. The unknown AR{system dynamics are

identi�ed through a lattice �lter which estimates

the process' re
ection coeÆcients. The order of

the system is inferred by monitoring the magni-

tude of the estimated coeÆcients and the cumu-

lative error response. The IMController is the in-

verse of the estimated transfer function in cascade

with a detuning �lter. Simulation studies are used

to illustrate the eÆciency of the proposed scheme.
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