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Abstract: The pole placement (PP) technique for design of a linear state feedback control 
system requires specification of all the closed-loop pole locations even though only a few 
poles dominate the system’s transient response characteristics. The linear quadratic 
regulator (LQR) method, on the other hand, optimizes the system transient response and 
does not directly impose the location of the dominant poles. This paper presents a new 
optimal linear quadratic pole placement (LQPP) technique that simultaneously assigns 
some poles to exact desired dominant locations (partial pole placement) and adjusts the 
rest of the poles to optimize an LQ performance index (parametric optimization). As a 
result, a designer can fashion his control design to benefit from the PP and LQ 
techniques. The paper only addresses the LQPP technique for a single-input full-state 
feedback control system. Copyright © 2002 IFAC 
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1. INTRODUCTION 
 
An intricate task in designing a linear quadratic 
regulator (LQR) is selection of suitable weighting 
matrices for its performance measure. An LQR 
design may be considered satisfactory when 
computer simulation of the closed-loop control 
system response meets a certain transient 
requirement. A pole-placement (PP) design 
technique, on the other hand, directly defines the 
transient stability for the system by specifying its 
closed-loop pole locations.  Although only a few 
closed-loop poles often dominates the transient 
response characteristic, the PP technique calls for 
specification of all the system poles. The intricate 
task here is where to place the less dominating poles. 
Poles placed at inappropriate locations can result in 
high feedback gains. 

Intriguing relationships between the LQ weight 
selection and pole location have prompted extensive 
studies in the literature. Several authors have 
investigated methods for designing a LQR feedback 
control so that the eigenvalues of the closed-loop 
system lie within a certain region of the numerical 
complex plane.  Their methods ensure the closed-
loop poles lie in the vicinity of a newly shifted left 
half-plane (Amin, 1985; Alexandridis, et al., 1987; 
Sugimoto, et al., 1989;  Eastman, et al., 1984), inside a 
disk/region (Kawasaki, et al., 1983; Furuta, et al., 1987; 
Moheimani, et al., 1996; Wittenmark, et al., 1987), or 
inside a vertical strip Shieh, et al., 1986; Koshkouei, et 
al., 1999).These modified LQ methods, some of which 
are successive algorithms, shift all the poles into a 
given region; the placement of the poles therefore are 
usually regionally restrictive and inexact in location.  
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Others have investigated an inverse problem 
approach to the PP and LQ design (Fujii, et al., 1984; 
Fujii, 1987; Sugimoto, 1998). These include using 
asymptotic properties of the LQR to assign poles, and   
factorization and transformation to assign n-m of the 
closed-loop poles where n and m being the number of 
system states and inputs. The asymptotic and n-m 
requirements make the design somewhat restrictive.   
 
This article presents a new optimal linear quadratic 
pole placement (LQPP) technique for a single-input 
state feedback control system that simultaneously 
assign some closed-loop poles to exact desired 
dominant locations (partial pole placement) and 
adjust the rest of the poles to optimize an LQ 
performance index (parametric optimization). The 
partial pole placement assigns n1 ( < n ) poles, and 
the parametric optimization uses the remaining n2 ( = 
n - n1 ) poles to optimize a static output feedback 
optimal control problem (Levine, et al., 1970; Cheok, et 
al., 1988; Cheok, et al., 1985; Cheok et al., 1986a, b). An 
illustration is provided as a motivation, followed by a 
formalization of the LQPP technique. 
 
 

2. ILLUSTRATION 
 

Consider a state-variable representation of a dc motor 
positioning system given by 
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where  1 2 30.82900,  0.56400,  10.960a a a , 

4 1 129.280,  499.98 and 9.9910a b g . 1x  and 

2x are the position and speed of output shaft, 3x is the 
motor current, u is the voltage input to the motor 
driver circuit and w is an external disturbance torque. 
The poles of the system are at 0, -1.0480e+000 and -
2.9061e+001 (eigenvalues of A).  The pair [A, B] is 
completely controllable. Assume that all the states 
are accessible for measurement.   The goal is to 
design a simple linear state-feedback servo-
positioning controller of the form  

ru K rK x  
for the above system. K is a 1 3  state feedback gain 
matrix, Kr is a scalar feedforward gain and r a scalar 
reference input. In this example, Kr can be set to the 
first element of K, i.e., Kr = K(1).  Three control 
designs are compared below; the third technique 
being the new method proposed in this paper. 
 

Pole Placement (PP) Design.  Specifying the desired 
closed-loop system poles as, say,[ 10 10j , -100], 
we determine the gain K using a standard pole 
placement technique [See Matlab Control Toolbox].  
Linear Quadratic (LQ) Design.  If we choose to 
minimize a quadratic performance index 

0
J dtx' Q x + u' R u  with Q = diag([10000  

Deq  Ra]) and R = 1, we determine the optimal gain K 
using the standard LQR technique [Matlab].  
Linear Quadratic Pole Placement (LQPP) Design.  
In the third case, we propose to specify two poles, 
say, -10 j10, as the desired dominant closed-loop 
system poles (partial pole placement) and use the 
third excess pole to optimize the same quadratic 
performance index J (parametric optimization). 
Using the LQPP technique described in Section 3 and 
a Matlab program, we determine the gain K.   
 
Results: Table 1 shows the eigenvalues of the 
closed-loop system matrix [A-BK], and the feedback 
gain K for each of the designs. It also compares the 

performance index 
0

J dtx' Q x + u' R u  

computed from the transient responses shown in 
Figure 1, for the three cases with the initial condition 
set to (0) [ 1 0 0 ] 'x  and ( ) 0 and ( ) = 0r t w t .  
 
Comparison of Closed-Loop Poles: In the PP 
design, 10 10j  are selected to be the dominant 
closed-loop poles and –100 is a selected non-
dominant pole whose contribution quickly vanishes 
as the system response approaches steady state. In the 
LQ design, -6.1767 j6.1484 become the dominant 
poles and -371.27 is a non-dominant pole as 
consequence of the optimization. For the LQPP case, 
-10 10 are retained as the assigned dominant poles; 
the third pole, –27.264, is the optimizing pole which 
also turns out to be relatively non-dominant.  
Comparison of Feedback Gains.  The LQPP gains 
are generally smaller among the designs. This can be 
expected since the LQPP is an optimal version of PP 
and so employs smaller gains to avoid excessive 
overshoots and undershoots. Comparison of LQPP 
and PP gains to LQR gain is less obvious since the 
LQR does not take desired poles into account. It turns 
out that the LQR requires larger gains as it attempts 
to optimize the performance. 
Comparison of Transient Responses: The response 
of LQPP is very similar to that of PP as expected 
because of the partial pole placement by LQPP 
guarantees that the desired dominant poles are the 
same as those of PP.  The response of LQ is optimal 
but is different from that of LQPP and PP. 



  

   

Comparison of Performance Index: The index J for 
LQ is the smallest as expected since it is the optimal 
result. The J for LQPP is the next smallest as it 
minimizes the index under partial pole placement 
constraint. And J for PP is the largest of the three as it 
does not consider any optimization 
 
The example highlights the features and potential 
benefits of the simultaneous LQPP design. It gives a 
designer more authority to fashion the outcome of the 
control design. 
 
 

3. FORMALIZATION OF LQPP TECHNIQUE  
 
3.1 Statement of LQPP Problem  
 
Consider a single-input linear dynamic system 
 0(0)ux Ax B x x  

where nx  is the state vector and 1 u  is the 
scalar input. Assume that the pair [A, B] is 
controllable, and the initial condition has a zero 
mean, i.e., 0[ ] 0E x  and a covariance 0X =  

'
0 0E x x . The objective of the LQPP is to find a 

optimal linear state feedback control, u K x , 
such that it simultaneously places n1 of the closed-
loop system poles at desired location 
{

11 , , n } and use the unspecified remaining 

n2 poles { 1 1, ,n n } to minimize the expected 
(mean) quadratic performance index  

0
  J E u u dtx'Qx 'R . 

That is 

1 1 1 1

specified desired poles arguments to minimize  

, , , , ,n n n

J

A - BK  

 
3.2 Summary of LQPP Solution  
 
The optimal LQPP gain is given by 
 1

1K d a p L T  
where each of the terms are described below.  
 
Partial Pole Placement: a  is the system 
characteristic vector defined by 
  1 n

1  na aa   
1

n 1
n n

na aI A   
T-1 is the top-companion controllable canonical form 
transformation matrix ( cx = T x ) computed from 

1 1 1     or      c cT W W T W W  
1   nW B AB A B  

1

-1 -1

  

1
1 0 0 0

,   0 1 0

0 0 1 0 0

n
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c c
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d id the desired characteristics vector given by 
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1 1
1 1
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n nd d   

and the matrix L (a Toeplitz matrix) is 

2

0
×

0

1 0
 0 0     

0 1

n n
p

L
p

 

 
Parametric Optimization: 21×

1
np is an optimal 

gain that satisfies the extremum condition given by 
the following coupled algebraic Lyapunov equations: 

11
1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 0

0 ( ) ( )
0 ( ) ( )

' ' '

' '

p R B V M C C M C

A B p C ' V V A B p C Q C p R p C
A B p C M M A B p C ' X

where -1
1A A B d a T  and 1

1  = C LT .  
 
3.3 Derivation of LQPP Technique 
 

1p  represents the unspecified system characteristics:  
2

2

1×
1 1      n

ne ep    

  2 2
1 2

-1
1 1

n n
n n ne e   

1p  is not known at this time and will be used to 
minimize the quadratic performance index J. 
Transformation of the closed-loop system matrix A-
BK to its canonical controllable form yields 

1 0

1 0

c

c c c

a K

A BK A B K  

1where c c cnk kK KT . The characteristic 
polynomial of the canonical controllable form closed-
loop system matrix can be equated to the combined 



  

   

characteristics of the specified and unspecified pole 
locations of the system as follows: 

1 1 2 2
1 2

1
1 1 n

1 1
1 1

( ) ( )

     

n n
c c c c n c

n n n n
n n

a k a k

d d e e

A B K

Evaluating the above polynomial products in terms of 
vector algebra yields (Chen 1984) 

2

0

0

0 (n +1)×(n+1)

1
1 + 0 = 1    

1
c

p
a K p

p

which reduces to 

2

2

0

0 1 1 1

0 n ×n

1

1
c n

p
a K p 0 p d p L

p

Therefore, 1cK d a p L  and hence  
1 1

1cK K T d a p L T  

At this stage, 1, , &d a L T  have been defined. The 
next step is to determine 1p . It turns out that 1p  can 
be posed as a constant gain output feedback optimal 
control problem [Athens, Cheok].  Substituting 
u Kx  into ux = Ax + B  results in 

1

-1 1
1

1A C

x A B d a T x B p LT x  

which can then be expressed as an output feedback 
control problem: 
        1 1 1 1 1 1 1,      ,      u ux A x B y C x p y  
Since the closed-loop system trajectory for the 
system is given by 1 1 1( )

0( ) tt e A Bp Cx x , the integral 
quadratic performance index can be reduced to an 
algebraic index 

00
J E dt tracex'Qx u'Ru VX  

'
1 1 1 1 1 1( ) ( )

1 1 1 1
0

t te e dtA Bp C A Bp C' 'V Q C p Rp C  

V is the solution of the algebraic Lyapunov equation 

1 1 1 1 1 1 1 1 1 1 0 ' ' 'A Bp C V V A Bp C Q C p Rp C
which is the constraint that the performance index J 
is subject to.  To alleviate the constraint, we 
introduce a Lagrange multiplier matrix M with a 
trace operation to define an equivalent unconstrained 
algebraic performance index:  J = 0  tr VX + 

1 1 1 1 1 1 1 1tr ' 'M A Bp C V V A Bp C Q p Rp

Proceeding to minimize J with respect to 1p , M and 
V yields the extremum condition. In other words, the 

optimal gain 1p  must satisfy the coupled algebraic 
Lyapunov type equations.  

 
3.4 Computation of optimal gain 1p  
 
Because of the complexity, it is not possible to find a 
closed form solution to the coupled algebraic 
Lyapunov equations.. Various iterative numerical 
techniques (Levine, et al., 1970; Cheok, et al., 1988; 
Cheok, et al., 1985; Cheok et al., 1986a; Cheok, et al., 
1986b) have been successfully employed to find a 
convergent solution for 1p .  
 
 

4. CONCLUSION 
 
The simultaneous LQPP design yields a system 
performance that is a compromise between the 
strictly PP and LQ designs. The example shows how 
it potential benefits from PP and LQ and yet employs 
generally smaller feedback gains. The LQPP design 
procedure is straightforward although it requires 
solving a set of nonlinear coupled algebraic 
Lyapunov equations. The idea of simultaneously 
partial pole assignment for dominant response 
behavior and optimizing a performance index makes 
sense and good design. Extension of the results to 
multi-input systems is currently being investigated.  
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Figure 1. Transient responses for the PP, LQ and LQPP design 
 

Table 1. Results of PP, LQ and LQPP designs 

 Closed-loop poles Feedback gain K Performance index J 

PP -10.000 j10.000, -100.00 [  70.922     7.4292   0.17988] 2.3705e+006 

LQ -6.1767 j6.1484, -371.27 [100.000   15.3962   0.70704] 1.7064e+006 

LQPP -10.000 j10.000, -27.264 [  19.336     2.4844   3.43108] 1.9564e+006 
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