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Abstract:
We describe a linear control-oriented model for fan or compressor blades 
utter
in gas turbine engines. We model the dynamics of blade rows in turbo-machinery
as similar to those of a 
exible disk. Aeromechanical modes form travelling waves
as seen by the rotor. Since we chose the Spatial Fourier CoeÆcients to represent
the state, the state space involves complex variables, which makes the model non-
standard. Modeling for con trol involves translation from rotating to stationary
frame and including actuation and sensor signal models.
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1. INTRODUCTION

Blade failures due to 
ow induced vibrations are
a long standing, endemic problem for the turbo-
machinery industry. Flutter and resonant stress
fundamentally constrain the design and operation
of gas turbine engines. Ensuring aeromechanical
operability often requires compromises in turbo-
machine eÆciency, performance and cost and can
result in development delays and increased main-
tenance costs.

In this paper we describe a control-oriented model
for fan and compressor blade 
utter in gas turbine
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engines. We model the dynamics of blade rows in
turbo-machinery as similar to those of a 
exible
disk. Aeromechanical modes form travelling waves
as seen by the rotor. This means that when viewed
from the rotating frame the peak of de
ection
appears to travel around the disk. The de
ection
of the disk at a given point on the �xed frame
along the circumference of the blade-row can be
decomposed into sinusoids of frequencies separat-
ed by integer multiples of the rotor frequency. At
any �xed point in time, the de
ection of the disk
can also bedecomposed in to sine-waves function
of the angular position around the rotor. There-
fore eac h aeromechanical mode has a characteris-
tic shape and a characteristic frequency. Eac h of
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these modes can lose stability as operating con-
ditions change. The objective of a 
utter control
is to enhance the region of stable operation by
adding damping to the aeromechanical modes.

The derivation of the 
utter control algorithm
is described in (Banaszuk et al., 2002) and the
demonstration of the 
utter control in a transsonic
fan rig operating at 9000 RPM is described in
(Banaszuk et al., 2003).

We will use the following notation. N will denote
the number of blades, n = : : : ;�2;�1; 0; 1; 2; : : :
will denote the index of a 
utter mode. ��n and
!ns will denote the real and imaginary part of
the n-th 
utter mode pole (in the rotating frame).
�n will denote the damping coeÆcient of the n-th

utter mode, �n := �np

�2
n
+!2

ns

. Æn will denote the

logarithmic decrement of the n-th 
utter mode,
Æn := 2� �n

!ns
= 2� �np

1��2
n

. �r will denote angle

in the rotating frame, �s will denote the angle
in the stationary frame. �nr(t; �r) and �ns(t; �s)
will denote blade de
ection angle at time t at
angle �r in the rotating frame and stationary
frame, respectively. !r will denote the circular
rotor frequency. �s0 will denote the angle between
the �xed reference points on the rotor and the

stator at time t = 0. f(�)
n
will denote the n-th

spacial Fourier coeÆcient and (̂�) will denote the
temporal Fourier transform.

2. FLUTTER MODELS

For an integer n (positive, zero, or negative)
we model the n-th 
utter mode, or n-th nodal
diameter 
utter mode, as a travelling wave in
which all blades are oscillating harmonically with
a constant phase angle �n := 2�n

N
relative to each

other (Forsching, 1984).

Let �r denote the angle measured relative to
a �xed point on the rotor in the direction of
the rotation. Assume that we have continuum
of blades and there is no external forcing. We
postulate that the n-th nodal component of the
blade de
ection at angle �r at time t is given by
the formula

�nr(t; �r) = Ane
��nt cos(!nrt� n�r + �nr) (1)

where ��n and !nr are, respectively, the real and
imaginary part of the n-th 
utter mode pole.
Note that !nr is also the (pseudo) frequency of
the n-th 
utter mode in the rotating frame, and
An and �nr are the initial magnitude and phase
angle of the n-th 
utter mode. The damping of
the n-th 
utter mode is usually described by
one of two coeÆcients: the damping coeÆcien-

t �n := �np
�2
n
+!2

ns

or the logarithmic decrement

Æn := 2� �n

!ns
= 2� �np

1��2
n

. Note that:

(1) The m-th blade is moving according to equa-
tion (1) with the corresponding angle �r =

2�m
N

+
�1, where �1 is the position of the �rst blade
relative to the �xed reference point on the rotor,
m = 1; 2; : : : ; N .
(2) For a �xed time t and n 6= 0 the blade
de
ection �nr(t; �r) considered as a function of
the angle �r has a sinusoidal shape with jnj nodes.
For n = 0 and a �xed time t the de
ection is the
same for each blade.
(3) For �n = 0 and n 6= 0 the blade de
ection
�nr(t; �r) is a wave with a �xed sinusoidal shape
travelling around the annulus. The speed and the
direction of rotation can be obtained by consider-
ing movement in time of the angle corresponding
to one of the peaks of the wave. For instance,
the �rst peak is obtained by solving the equation
!nrt� n�r + �nr =

�

2
for �r. We have

�r =
1

n
(!nrt+ �nr �

�

2
): (2)

Therefore, the speed of the wave is !nr

jnj
and the

direction is positive (the same as the direction
of rotation of the rotor) for n > 0 and negative
(the opposite to the rotor's rotation direction) for
n < 0. We call the 
utter modes travelling in the
same direction as the rotor the forward travelling
modes and the ones travelling in the direction
opposite to the rotor's direction the backward

travelling modes.
(4) For a �xed angle �r, the blade de
ection
�nr(t; �r) considered as a function of time rep-
resents a response of a damped oscillator, i.e., a
second order system with poles ��n + i!nr and
��n � i!nr.
Note that each particular blade oscillates with
frequency !nr, which is n times bigger than the
frequency of the corresponding travelling wave.

Now we express the motion of a blade due to a
particular 
utter mode as measured at an arbi-
trary angle on the stator.

Let !r denote the circular rotor frequency. Fix a
reference point on the stator. The angles in the
stationary frame will be measured relative to this
point with positive direction corresponding to the
rotor's rotation direction. Let �s0 denote the angle
at which the reference point on the stator is seen
from the reference point on the rotor at time t = 0.
Then, for an arbitrary time t, a �xed angle �s on
the stator is related to the corresponding point on
the rotor �r (measured in the rotating frame) by
the formula �r = �s + �s0 � !rt. Therefore, the
de
ection of the blade passing a �xed angle �s on
the stator at time t is given by the formula

�ns(t; �s) = �nr(t; �s + �s0 � !rt) =

Ane
��nt cos((!nr + n!r)t� n�s + �ns)

(3)

where �ns := �nr�n�s0 is the initial phase of the
n-th mode in the stationary frame.



Note that for �n = 0 and n 6= 0 the blade
de
ection �ns(t; �s) in the stationary frame is
a wave with a �xed sinusoidal shape travelling
around the rotor. In particular, a single blade
vibration frequency in the stationary frame is
!ns := !nr + n!r.

The velocity of the rotation of the wave can be
obtained in a similar manner as in the rotating
frame case. In particular, the velocity of the wave
corresponding n-th 
utter mode in the stationary
frame is !r+

!nr

n
. Let us recall that the latter is the

velocity at which a �xed point on the graph of the
blade de
ection as a function of angle (say, a peak)
is travelling around the annulus at the stationary
frame. This velocity should not be confused with
an individual blade velocity due to n-th 
utter
modes, i.e., !ns, which is n times bigger.

In the sequel we are going to use the stationary
frame only. Therefore, we will often skip the sub-
script s and use � to denote the angles measured
in the stationary frame.

Since at a �xed time the 
utter modes and
the corresponding forcing functions have a �xed
sinusoidal shape, they can be represented vi-
a their spatial Fourier coeÆcients (SFCs). One
complex Fourier coeÆcient can be used to de-
scribe a single sinusoidal travelling wave. A
general travelling wave with n-th nodal spa-
tial shape and a temporal frequency !0 has
the form fn(t; �) := Fn(t) cos(!0t � n� + �) =
Fn(t) cos(!0t+�) cos(n�)+Fn(t) sin(!0t+�) sin(n�).
The corresponding SFC is, for n 6= 0, equal toefn(t) := 1

�

R 2�
0

fn(t; �)e
jn�d�. One has efn(t) =

1
�

R 2�
0

Fn(t)
1
2
(ej(!0t�n�+�)+e�j(!0t�n�+�))ejn�d� =

1
2�
Fn(t)

R 2�
0

(ej(!0t+�) + e�j(!0t�2n�+�))d�
= Fn(t)(cos(!0t+ �) + j sin(!0t+ �)). For n = 0,

one has ef0(t) := 1
2�

R 2�
0

f0(t; �)d�. Thus, ef0(t) =
1
2�

R 2�
0

F0(t) cos(!0t+�)d� = F0(t) cos(!0t+�) =
f0(t; �), for all �.

To reconstruct a wave from its SFC one can use
the inverse spatial Fourier tranform

fn(t; �) = Re( efn(t)�ejn�) = Re( efn(t)e�jn�); (4)

where (�)� stands for the complex conjugation.

Observe that for n 6= 0:

(1) The magnitude and phase of the complex
number representing the spatial Fourier coeÆcient
of the wave fn(t; �) are the same as magnitude and
phase of the wave.

(2) The real and imaginary part of the spatial
Fourier coeÆcient of the wave fn(t; �) are the
Fourier series coeÆcients of fn(t; �), i.e., the co-
eÆcients of fn(t; �) represented as a linear combi-
nation of cos(n�) and sin(n�), respectively.

Assume that the magnitude and phase of the wave
fn(t; �) are constant in time with Fn(t) := Fn,

for some n 6= 0. Then fn(t; �), and hence efn(t),
is a periodic function of t and one can de�ne
the temporal Fourier transform of the spatial

Fourier coeÆcient of the wave fn(t; �) êfn(j!) :=R1
�1

efn(t)e�j!tdt := R1
�1

Fn(t)e
j(!0t+�)e�j!tdt :=

Fn(t)e
j�Æ(!�!0), where Æ(�) stands for the delta

operator. Thus, the travelling waves with the
temporal frequency !0 can be recognized in the
(temporal) frequency domain as \spikes" at one
single frequency !0. Spikes at positive frequencies
represent the forward travelling waves, whereas
the spikes at negative frequencies represent the
backward travelling waves.

The case n = 0 is di�erent. As we have
noticed before, the spatial Fourier coeÆcien-
t ef0(t) of the function f0(t; �) coincides with
the function f0(t; �) itself. Its temporal Fouri-

er transform is êf0(j!) :=
R1
�1

ef0(t)e�j!tdt =R1
�1

F0(t)
1
2
(ej(!0t+�) + e�j(!0t+�))e�j!tdt

= Fn(t)

2
(ej�Æ(! � !0) + e�j�Æ(! + !0)). One ob-

serves that the temporal Fourier transform of the
spatial Fourier coeÆcient of the function f0(t; �)
has two \spikes": one at !0 and the other at �!0.

While the 
utter modes for n 6= 0 are represented
by travelling waves, they can be excited by forcing
inputs that are either travelling waves of the form
fn(t; �) := Fn cos(!0t�n�+�) or by the standing
waves of the form

fn(t; �) := Fn cos(!0t+ �) cos(n�): (5)

This is due to the fact that a standing wave can be
represented as linear combination of two travelling
waves: Fn cos(!0t + �) cos(n�) = 1

2
Fn(cos(!0t �

n� + �) + cos(!0t+ n� + �)).

The temporal Fourier transform of the stand-

ing wave (5) is êf
n
(j!) :=

R1
�1

efn(t)e�j!tdt =R1
�1

Fn(t)
1
2
(ej(!nt+�) + e�j(!nt+�))e�j!tdt

= Fn(t)

2
(ej�Æ(! � !n) + e�j�Æ(! + !n)). Note

that the latter formula is valid for all integers n,
including n = 0.

3. FLUTTER MODELS WITH CONTROL

We assume that we have continuum of actuators
around the stator that in
uence 
utter modes.
We will control the n-th 
utter mode with a
control function u(t; �) that, as a function of angle,
has the same shape as the n-th 
utter mode
wave. The control magnitude and phase will be
chosen appropriately as functions of the measured
(or reconstructed using an observer) magnitude
and phase of the n-th 
utter mode. the angle in
the stationary frame, previously denoted by �s.)



Similarly, for the identi�cation purposes, one can
force the n-th 
utter mode with a using a wave of
the with a constant magnitude and phase. More
precisely, assume that the control input forcing
function for the n-th mode is a travelling wave

having some temporal frequency !0 and having
the same shape as the n-th 
utter mode:

un(t; �) = Un cos(!0t+ �nu � n�) =
Un cos(!0t+ �nu) cos(n�)+
Un sin(!0t+ �nu) sin(n�);

(6)

for some constant Un and �nu. The SFC of
this forcing function is eun(t) = Une

j(!0t+�nu).
The corresponding temporal Fourier transform isêun(j!) = Une

j�nuÆ(! � !0).

We also assume that the steady-state n-th 
utter
mode component of the blade de
ection response
to the n-th nodal forcing of the form (6) is a
travelling wave with the same spatial shape and
temporal frequency, possibly shifted in phase by
some angle �n relative to the forcing function:

�n(t; �) = An cos(!0t� n� + �n) =
An cos(!0t+ �n) cos(n�)+
An sin(!0t+ �n) sin(n�)

(7)

for some constant An and �n that, for �xed Un
and �nu, are functions of !0.

The SFC of the n-th component of the blade
de
ection is e�n(t) = Ane

j(!0t+�n). The tempo-
ral Fourier transform of the SFC of the n-th
component of the blade de
ection is ê�n(j!) =
Ane

j�nÆ(!�!0). We assume that we measure the
blade displacement at �nite number of locations
on the stator. (This is going to be accomplished
with eddy current sensors.) At a �xed angle �y the
measured blade dispalcement is going to be

yn�y(t) := �n(t; �y) =
An cos(!0t� n�y + �n)
= An cos(!0t+ �n) cos(n�y)+
An sin(!0t+ �n) sin(n�y):

(8)

The temporal Fourier transform of the output
function is ŷn(j!) = An

2
(ej(�n�n�y)Æ(! � !0) +

e�j(�n�n�y)Æ(! + !0)).

Now we present dynamic system models for the
evolution of the n-th 
utter mode subject to
control. The description adapts an approach to
model rotating stall from (Paduano, 1992).

One can obtain a low order model describing the
dynamics of the n-th 
utter suitable for control
purposes in the following three steps.

1. Conduct an experiment to obtain the transfer
function between the n-th SFC of the forcing
function given by (6) and the corresponding n-
th SFC of the blade de
ection function given by
(7).

2. Fit a low-order transfer function to the one
obtained experimentally.

3. Obtain a state-space realization of the low-order
transfer function obtained in step 2.

We assume that the uncontrolled n-th 
utter
mode behaves like a lightly damped harmonic
oscillator with individual blades moving in the
stationary frame according to the formula (3).
Thus, we expect the mode to have a signi�cant
response to forcing only at a narrow band of
frequencies of interest around the mode's natural
frequency !ns := !nr + n!r. The control goal
is to add damping to the mode by a feedback
control only at this narrow band of frequencies.
Therefore, it is suÆcient to have an approximate
low order model describing the dynamics of the n-
th mode at this narrow frequency range. Even if
the frequency response of the n-th 
utter mode
were that of a low pass, rather than a band
pass �lter and the actuator dynamics cannot be
neglected over a wide band of frequencies, so
that a narrow band frequency model will not
be accurate at low frequencies, the inaccuracy of
the model will not signi�cantly impact control
performance. The controllers will have a band pass
characteristic, so that the unmodelled dynamics
at both low and high frequencies will not be
destabilized.

The transfer function between the n-th SFC's of
the forcing function and the corresponding blade
de
ection response is de�ned by

Gn(j!) :=
ê�n(j!)êun(j!) = An

Un
ej(�n��nu): (9)

Both An and �n are, in general, functions of the
frequency !.

To obtain the transfer functionGn(j!) from a sine
sweep experiment, one has to access the functione�n(t). To obtain an approximation to e�n(t) one
would have to simultaneously measure the blade
displacement �n(t; �) at some �nite number of
angles around the annulus and use a discrete
approximation of the integral de�ning the spatial
Fourier transform. A reasonable approximation
would require at least 2n + 1 blade displacement
sensors around the annulus.

However, even with one sensor one can measure
the transfer function Gn(j!) because of the fol-
lowing simple observation. Assume that we have
a blade displacement sensor at some angle �y
at the stationary frame. The measured output
function yn�y (t) := �n(t; �y) is given by the e-
quation 8. Assume also that we measure the val-
ue of the actuation function un(t; �) at a �xed
angle �u. Let un�u(t) := un(t; �u). Note that
yn�y(t) = An cos(!0t � n�y + �n) and un�u(t) =
Un cos(!0t+ �nu � n�u) have relative phase shift
of �n � �nu � n(�y � �u). Hence, the measured
transfer function between them during a sine



sweep experiment is Gn�u�y
(j!) :=

ŷn�y (j!)

ûn�u (j!)
=

An

Un
ej(�n��nu�n(�y��u)) = e�jn(�y��u)Gn(j!). There-

fore, Gn(j!) can be obtained from Gn(j!) =
ejn(�y��u)Gn�u�y

(j!).

One can observe that, except for the case n = 0,
any description of transfer functions Gn(j!) as a
rational function of j! valid in a wide frequency
band must have complex rather than real coef-
�cients. To see that, note that a transfer func-
tion G(j!) with real coeÆcients has the property
G(�j!) = G(j!)�, i.e., it has a Nyquist diagram
symmeric with respect to the real axis. We know
from experiments that the response of the n-th

utter mode to the forward or backward travelling
forcing wave with the same temporal frequency
is not symmetric. Thus, for n 6= 0, one has
Gn(�j!) 6= Gn(j!)

�. However, we do expect the
reponse to be symmetric for n = 0, so that we have
G0(j!) = G0(�j!)�. Therefore, we expect the
transfer function G0(j!) considered as a rational
function of j! to have real coeÆcients. Because of
this di�erence between the cases n 6= 0 and n = 0,
we are going to derive the corresponding models
separately.

A low order, narrow band model for the transfer
function Gn(j!) between the n-th SFC of the forc-
ing function given by (6) and the corresponding
output function given by (8) for n 6= 0 is a �rst

order transfer function with complex coeÆcients

Gn(j!) =
bnR + jbnI

�n + j(! � !ns)
: (10)

A complex-valued state-space realization of this
transfer function is

_e�n(t) = (��n + j!ns)e�n(t) + (bnR + jbnI)eun(t):
(11)

Note that both e�n(t) and eun(t) are complex valued
functions of time. Observe also that the unforced
response of (11) is e�n(t) = e(��n+j!ns)te�n(0),
which agrees with postulated unforced evolution
of the n-th 
utter mode given by (3).

Let us emphasize again that the simple trans-
fer function model (10) and its state-space re-
alization (11) are valid only for a narrow range
of frequencies around the 
utter frequency !ns.
The actuator characteristic over that frequency
range is simply represented by the magnitude and
phase of the n-th mode of the actuator disk at
the 
utter frequency and incorporated into the
complex number bnR + jbnI . This approximation
is reasonable, as long as the actuator frequency
response does not change signi�cantly over the
frequency interval of interest and a feedback con-
troller characteristic will be that of a suÆciently
narrow band-pass �lter. If this is not the case, the
actuator dynamics should be incorporated in the
model.

An equivalent description to (10) is possible with
a real-valued model of real dimension two. In the
sequel the subscripts (�)R and (�)I will denote the
real and imaginary part of a complex number. One
can easily check (Paduano, 1992) that the real and
imaginary part of the SFC's of blade displacement
and forcing function satisfy the following set of
two di�erential equations�

_e�nR(t)
_e�nI(t)

�
=

�
��n �!ns
!ns ��n

� � e�nR(t)e�nI (t)
�
+�

bnR �bnI
bnI bnR

�� eunR(t)eunI(t)
�
:

(12)

The corresponding transfer function desription is" ê�nR(j!)ê�nI(j!)
#
=

�
Gnr(j!) �Gni(j!)
Gni(j!) Gnr(j!)

� " êunR(j!)êunI (j!)
#
:

(13)

One can verify that

Gnr(j!) =
bnR(j! + �n)� bnI!ns

(j! + �n)2 + !2
ns

(14)

Gni(j!) =
�bnI(j! + �n)� bnR!ns

(j! + �n)2 + !2
ns

(15)

and

Gn(j!) = Gnr(j!) + jGni(j!): (16)

Assume that a blade displacement sensor is lo-
cated at some angle � at the stationary frame.
The measured output function yn�(t) := �n(t; �)
can be expressed in terms of the real and imag-
inary parts of the SFC of �n(t; �) via the in-
verse spatial Fourier transform (4) as yn�(t) =
Re(e�n(t)e�jn�) = Re(e�nR(t)+je�nI (t))(cos(n�)�
j sin(n�)) = cos(n�)e�nR(t) + sin(n�)e�nI (t). Let
xn(t) :=

� e�nR(t)e�nI (t)
�
; vn(t) :=

� eunR(t)eunI(t)
�
; (17)

An :=

�
��n �!ns
!ns ��n

�
; Bn :=

�
bnR �bnI
bnI bnR

�
;

Cn� := [cos(n�) sin(n�)]:

(18)

The state and the output equation for the n-th
nodal 
utter mode can be concisely written as

_xn(t) = Anxn(t) +Bnvn(t)
yn�(t) = Cn�xn(t):

(19)

If there is only one sensor at some �xed angle �,
we will skip the subscript � in the description of
yn�(t) and Cn�.

Observe that all the quantities in the equation
(19) are real. One can identify the parameters
in the model using travelling wave excitation, as
described in the previous section. Alternatively,
one can exploit the skew-symmetric structure of
the matrices An and Bn and use only one of the
inputs of vn(t) for excitation. This amounts to



forcing the system with a standing wave, rather
than travelling wave pattern.

Now we propose a real-valued model for control of
the 0-th nodal 
utter of dimension two. Assume
that a blade displacement sensor is located at
some angle � at the stationary frame. The mea-
sured output function is y0�(t) := �0(t; �) = e�0(t).
Let

G0(j!) :=
ê�0(j!)êu0(j!) = �̂0(j!)

û0(j!)
=

A0

U0

ej(�0��0u):

(20)

A simplest model for G0(j!) with real coe�cients
that exhibits a behavior of a lightly damped
oscillator is

G0(j!) =
b1(j!) + b0

(j! + �0)2 + !20
; (21)

for some real b1, b0, �0, and !0. The corresponding
state-space description (in the observer canonical
form) is

_x0(t) = A0x0(t) +B0v0(t)
y0�(t) = C0�x0(t);

(22)

where

v0(t) := u0(t); (23)

A0 :=

�
��0 1
�!20 0

�
; B0 :=

�
b1
b0

�
; C0� := [1 0]: (24)

Let consider a �nite number kf of 
utter modes
with nodal numbers n1, n2, : : : , nkf . Assume
that as the measurement outputs we use m blade
displacement sensors located at the angles �1, �2,
: : : , �m, respectively. We assume that the blade
displacement y� measured at some angle � at the
stationary frame is the sum of the diplacements
due to particular 
utter modes:

y�(t) =

kfX
k=1

�nk(t; �): (25)

We can write down the following state-space mod-
el describing the dynamics of the kf most active

utter modes:

_x(t) = Ax(t) +Bv(t)
y(t) = Cx(t);

(26)

where x(t) := [xn1(t) : : : xnk
f

(t)]T ,

v(t) := [un1(t) : : : unk
f

(t)]T , y(t) := [y�1(t) : : : y�m(t)]
T ,

A and B are block diagonal matrices containing
Anj

and Bnj
blocks, respectively, and C is a

matrix composed of Cn� blocks.

The dimension of the output variable y(t) is equal
to m, which is the number of blade displacement
sensors (e.g., eddy current sensors) used for mea-
surement.

One may be tempted to place many sensors to
make the C matrix invertible and use a full-state

static feedback to arbitrarily place the damping
of the 
utter modes. This strategy might be suc-
cesfull for 
utter modes with the nodal number
nk 6= 0 if the variations of the actuator dynamics
with frequency can be neglected. However, note
that C is never invertible if one includes the 0-th
nodal 
utter dynamics, as C0� = [1 0] for all �,
and hence C has a column of zeros. Moreover, a
strong output noise component, which includes all
unmodelled sources of blade displacement, such
as periodic forcing due to rotor and blades as-
symetry, neglected 
utter modes, rotating stall
dynamics, an inlet distorsion, etc., would make
reconstructing the state of the 
utter modes by
inverting the C matrix problematic.

To circumvent the problems with direct inversion
of the C matrix and the output noise, and at the
same time reduce the number of blade displace-
ment sensors, we are going to reconstruct the state
of the system using an observer. As we will see,
in principle, just one blade displacement sensor is
suÆcient for this purpose.

CONCLUSION

We described a linear control-oriented model for
fan or compressor blades 
utter in gas turbine
engines. The details of observer-based control al-
gorithm design are described in (Banaszuk et

al., 2002) and the demonstration of the 
utter
control in a transsonic fan rig operating at 9000
RPM is described in (Banaszuk et al., 2003).
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