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Abstract: This paper explores a new methodology based on quadratic surface
Lyapunov functions to globally analyze oscillations with sliding modes in relay
feedback systems (RFS). The method consists in efficiently construct quadratic
Lyapunov functions on switching surfaces that can be used to show that impact
maps, i.e., maps from one switch to the next, are contracting. This, in turn,
shows that the system is globally stable. Several classes of piecewise linear
systems (PLS) were previously successfully analyzed with this methodology. In this
paper, we consider PLS whose trajectories switch between subsystems of different
dimensions. We present and discuss distinct relaxations leading to sufficient
conditions of different conservatism and computationally complexity. The results
in this paper open the door to the analysis of other, more complex classes of PLS.
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1. INTRODUCTION

Many classes of PLS exhibit oscillations. In fact,
the study and understanding of oscillations are
of great interest in many applications. Hopping
robots (Ringrose, 1997) are examples of such
applications. Another application of oscillations
in PLS are neural oscillators (see (Williamson,
1999) and references therein). These oscillators
are models of two biological neurons in mutual
inhibition which form a resonant circuit. Such
oscillators can be found in numerous applica-
tions in robots when a period motion is de-
sired. Another class of systems that exhibits
limit cycle oscillations are relay feedback sys-
tems (RFS). A vast collection of applications of
relay feedback can be found in the first chapter
of (Tsypkin, 1984). More recent examples in-
clude the delta~sigma modulator (Ardalan and
Paulos, 1987) and the automatic tuning of PID
regulators (Astrém, 1995). For all of these appli-
cations, it is important to show a certain design
control strategy is globally stable in its domain
of operation.

Few rigorous results exist for analyzing oscil-
lations in PLS. Existence and local stability
conditions for limit cycles of PLS can be found
in (Gongalves, 2000). In terms of global stabil-
ity, most available results are for second-order
systems using phase-plane analysis. For RFS,
the problem of global stability of limit cycles has
been studied for many years. (Atherton, 1975),

(Tsypkin, 1984), and (Neimark, 1972) survey a
number of analysis methods. In (Gongalves et
al., 2001) a new methodology was introduced
that efficiently globally analyzed symmetric uni-
modal limit cycles of RFS.

It is with the purpose of better understand oscil-
lations and especially sliding modes in PLS that
here we analyze RFS, for this is one of the sim-
plest classes of PLS. Sliding modes in RFS has
been studied by several researchers (Johansson
et al., 1999; di Bernardo et al., 2000; Utkin,
1995). These references study and character-
ize different types of limit cycles with sliding
modes. (Johansson et al., 1999) gives necessary
and sufficient conditions for the existence of
fast switches and establishes a relation between
such fast switches and sliding modes, showing
that the difference between the number of poles
and the number of zeros of the plant results
in different types of sliding modes. Existence
and local stability of certain classes of limit
cycles with sliding modes are also studied and
discussed in (Johansson et al., 1999).

In (Gongalves et al., 2001), we gave efficient
sufficient conditions for global asymptotic sta-
bility of symmetric unimodal limit cycles. The
method was based in finding a quadratic surface
Lyapunov function for the associated impact
map of a RFS. The search for such function was
efficiently done by solving a set of LMIs. Ex-
amples analyzed included minimum-phase sys-



tems, systems of relative degree larger than one,
and of high dimension, for which no other analy-
sis methodology could be applied. In this paper,
we explore how similar ideas can be applied
to globally asymptotically analyze limit cycles
with sliding modes in RFS. The results here
are applied to symmetric limit cycles with four
switches per cycle with a sliding mode. Stability
conditions for other types of limit cycles can be
obtained in a similar way.

Note that when a trajectory evolves in the
switching surface, such trajectory is induced
by an LTI system of dimension lower than the
original dimension of the system. This means
that global analysis of RFS involves analyzing
linear subsystems of different dimensions. Thus,
this research opens the door to analysis of other,
more complex classes of PLS.

2. PRELIMINARIES

2.1 P tions
Consider a SISO LTI system satisfying the
following linear dynamic equations

{;&:Am+Bu 1)

where £ € R” in feedback with a relay (see
figure 1)

y=Czx

{=1} if y(t) >0

u(t) € { [-1,]] if y(t) =0 )
{1} ify(t) <0
LTI
u y

Fig. 1. Relay Feedback System

In the state space, the switchingwsrficeS of
the RFS is the surface of dimension —1 where
y = 0. More precisely,
S={zeR": Cz=0}

Consider the following subset of S.

Sy ={zxe€S: CAz > CB}
This set is important since it characterizes those
points in S that result in trajectories of the
RFS that move to the region where u = 1 (see
figure 2). Similarly, define S_ = —S.

Depending on the open loop system, a RFS may
or may not have sliding modes. As explained
in (Johansson et al., 1999), if CA* B < 0, where
k € {0,1,...,n — 1} is the smallest number
such that CA¥B # 0, then there are no sliding

modes. This case was considered in (Gongalves
et al., 2001) and its results are reviewed in
the next section. The main topic of this paper,
that we will consider later on, is the case of
sliding modes. Also, if A is invertible, assume
CA~'B < 0 or otherwise the system cannot
have global limit cycles (see (Gongalves, 2000)
for details).

An interesting property of RFS is their sym-
metry around the origin. This property tells us
that, in terms of stability analysis, symmetric
limit cycles only need to be studied on half of
their periods.

2.2 ysnatic UmidnlLimi t @les
Only for this section, assume CA*B < 0, where
k € {0,1,..,n — 1} is the smallest number
such that CA*B # 0. The simplest class of
limit cycles of RFS are symmtic niminl
limit gcles . A limit cycle is symmtic if for
every © € - it is also true that —z € 7~
and it is wrmdnl if it only switches twice per
cycle. Let §) be a nontrivial periodic solution
of (1)-(2) with period 2 *, and let v be the
limit cycle defined by tlfe)image set of Let
z* € S be the intersection point of v with S.
Conditions for existence and local stability of
symmetric unimodal limit cycles can be found
in (Astrom, 1995).
Define the imEst theamap from St to
itself. A notion that will be useful is the notion
of expected switching times. Let z(0) = z* +
A € S, . Definigas the set of 41D8imes
such that y(¢;) = 0 and y(t) >0 on [0, ¢;]. Define
also the set of expectedvs tchingimes as
T={t|teta, A€ S, —z*} 3)
The next proposition says that most impact
maps induced by an LTIdbw between two hy-
perplanes can be represented as linear transfor-
mations analytically parameterized by a scalar
function of the state. For simplification, we as-
sume A is invertible. The more general case can
be found in (Gongalves, 2000).

Propp tion 2.1. Let z*(t) = e (z* — A7'B)+
A71B. Assulne Cz*(t)| > K||z*(t) + z*||, for

somd{antl all € T. Define
_ (z*(t) +2*)C\ 4
H(t) = (I @ e

for al € T (fort = t*, H(t) is defined by the
limit 4s— ¢ *). Then, forany € S; —z* and
A; € TQ) there exists a € T such that

Ay = H(t)A (4)
Sucht € ta is the switching time associated
withA 1-



The impadfsmmapnap from Sy to Sy
and, for each point in S, there is at least
one associated switchiug inteeesting

property of this map is that the set of points
in S} with the same switching time ¢ forms a
convex subset of a linear manifold of dimension
n—2. Let S; be that set, i.e., let S; be the set of
points z* + A € S, that hate a switching
time, i.e.,t € ta. In other words, a trajectory
starting at xy € S; satisfies both y(t) > 0 on
[0,%], and y(t) = 0. It is now possible to check
quadratic stability of impact maps by solving a
set of LMIs.

Promp tion 2.2. Consider the RFS (1)-(2). As-
sume there exists a symmetric unimodal limit
cycle v with period 2 *. If

P—H'()PHt)>0 on S, —z* (5)

for some P > 0 and for all expected switching
times ¢t € T, whé® > 0 &sfands for

z' Dz > 0 for all nonzero z € X, then the limit
cycle is globally asymptotically stable.

With this result, a large number of examples
with a unique locally stable symmetric uni-
modal limit cycle was successfully globally an-
alyzed (Gongalves et al., 2001). In fact, it is
still an open problem whether there exists an
example with a globally stable symmetric uni-
modal limit cycle that could not be successfully
analyzed with this methodology. Examples ana-
lyzed include minimum-phase systems, systems
of relative degree larger than one, and of high
dimension.

3. SLIDING MODES IN RFS

3.1 #kmi naes

In this section, we assume that CB > 0. This
means a RFS will have sliding modes. The
system dynamics are given by £ = Ax — B
when Cz > 0 and by 2 = Az + B when
Cz < 0. When the trajectory is in the switching
surface, i.e. Cx = 0, several cases may occur.

If CAzx > CB, u = —1, if CAz < —CB,
=1, and if —-CB < CAz < CB a trajectory
cannot move to the region where u = —1 or

u = 1 since the vector field on both sides of the
switching surface points toward the switching
surface (see figure 2). In these situations, the
trajectory evolves along the switching surface
with a control law |u| < 1 satisfying Cz(t) = 0.
Taking the derivative, yields Cz = 0 and, after
solving for u, we get u = —CAk (CB). Thus,
the system dynamics in this region are given

by & = PAx where P = I — BG (CB). These
system dynamics are valid as long as —CB <
CAzx(t) < CB, or equivalently, that |u(t)] < 1.
When u =t 1, the trajectory is in the region of
the switching surface where CAx = ¢B

Let S; and S_ be subsets of S as defined before.
Define also
So={z€eS: —CB< CAz < CB}
as the region in S of sliding modes,
So+ ={z€S: CAz =CB}
and, finally, So+ = —Sp—.

X = Ax—B CAx=CB CAXx=—CB
[
f\l 0 Y/\ Lot
1 . ‘ [} | _
T A ¢ }‘\ ‘? ¢ | Y Cx=0
b \
. b V
X = Ax+B

Fig. 2kctor fields of the RFS on both sides of
S, defining the subsets of S

Assume the system has a limit cycle with a
sliding mode. Let §) be a nontrivial periodic
solution of (1)-(2) with petiod 2(  +t35), and let
v be the limit cycle defined by the image set of
&) (see fighr€onditions for the existence

and local stability of symmetric limit cycles
with a sliding mode can be found in (Johansson
et al., 1999; di Bernardo et al., 2000).

N

X =Ax—B

Cx=0

X = Ax+B

Fig. 3. Limit cycle with a sliding mode

From now on, we assume the existence of a
limit cycle with a sliding mode. Such limit cycle
intersects Spy and S transversely at z§ € Sot
and zi € Sy, respectively (seed fiBhee
switching time from z§ to 27 is t] and from a7
to —zg is ¢3. Assume also that all trajectories
starting at S switch (this condition can be
easily verified (Gongalves, 2000)) or otherwise
the limit cycle cannot be globally stable.

In this paper, we are interested in systems
with a unique locally stable limit cycle with
sliding modes. For such systems, the idea is to
construct quadratic Lyapunov functions on the
switching surface S to prove that all possible
maps from one switch to the next are globally
stable. This, in turn, shows that the limit cycle



is globally asymptotically stable. This is the
topic of the next two sections.

3.2 &lal St

Global analysis of limit cycles with sliding
modes is more complicated than the simplest
form of symmetric unimodal limit cycles studied
in (Gongalves, 2000) and recalled in section 2.2.
The fact that there are more than two switches
per cycle requires the analysis of at least two
impact maps, when comparing with only one for
unimodal limit cycles. Also, a trajectory in slid-
ing mode is induced by a system with dimension
lower than the dimension of the original system.
Thus, we will have to deal with the interaction
of systems of different dimensions.

lity

In this section, we explain the simplest condi-
tion to analyze RFS with sliding modes. This
is based on showing that two impact maps are
globally stable by constructing two quadratic
Lyapunov functions on the switching surface of
the system. In the next section, a different re-
laxation is given based on more than two impact
maps. This alternative approach exploits the
fact that the sliding mode has lower dimension
and, in some cases, leads to more attractive
computational solutions.

The simplest way of analyzing limit cycles with
sliding modes using impact maps is by consid-
ering two impact maps (see figure 4). The first
impact map leaves the switching surface at some
point z§ + A9 € S;U Sp4+ and, induced by
& = Az — B, maps to some point z} +A; € SoU
So— US_. IfA; € S_ — x} then, due to the
symmetry of the system, we can consider a new
trajectory starting at —x} — Ay € Sy using
impact map 1 once again. On the other hand, if
Ay € Sp — z7, then we have a sliding mode.
This leads to impact map 2 which is a map
from z7 + Ay € Sy to —zj + Ay € Sp— induced
by & = PAx. For analysis purposes, and again
by the symmetry property, next we apply again
impact map 1 at x5 — As € So.

Cx=0

Fig. 4. Analysis using two impact maps

Define the sets of expectedvs tchingitnes Tq
andT » as the sets of all possible switching times
associated with each respective impact map, as

in3). Define also Sy, C Sy and Sy, C Sy as
in section 2.2. Note that both S, and Sy, are
subsets of linear manifolds of dimension n — 2.

Define two quadratic forms on S,
Vi(A) = AIPIA, A€ S+U S(]+ - JIS

Va(A) = A'PA, A€ Sy -zt

where Py, P, > 0. Global stability of the system
follows if
‘/Q(Al) < Vi(AO), VAg € S+U SO+ - .’L'S

Vi(Az) < Va(Ay1), YAy € Sy—z

Let z(t) be the solution of & = Az — B with
initial condition z§ for all 2, and =z} (¢) the
solution of & = PAx with initial condition z7}
for alt B. From (Gon, calves, 2000), each
impact map can be decomposed in a linear
transformation analytically parameterized by
the associated switching time. Define

_ (z5(t) —27)C\ 4y
a 0= (I‘ RZH0) ) !
an
B (z5(t) + z§)CA
. Ha(t) = (I T CB+ CA(;{(t)) et
en,

A = Hl(tl)A()
Ay = Hy(t2)Aq

for all Ag € S+ US()+ - .’L's andA | € Sy — .’L'T
with respective switching times 1 € 71, t2 € Ta.
We have then the following result.

Theem 3.1. Consider the RFS (1)-(2) with
CB > 0 and assume there exists a symmetric
limit cycle v with a sliding mode and a period
2@ 1 +13). The limit cycle is globally asymptot-
ically stable if there exist P, P, > 0 such that

{Rl(tl) =P - H{(tl)Png(tl) >0 on St1 — .’ES
Rg(tg) =P — Hé(tQ)PlHQ(tQ) >0 on St2 — .’E;

for all expected switching times ¢ty € 71 and
to € 7-2

(Gongalves, 2000) includes a long discussion on
how to flao & set of LMIs. One of the
most basic relaxations is to allow both R; and
R» to be positive definite over all the switching
surface, i.e.,

{ Ri(t1) >0 on S —z )

Ry(t1) >0  on S — 27

for all expected switching times t; € 7; and
ty € To.

For ea¢h 1, ty these conditions are LMIs for
which we can solve for Py, P, > 0 using ef-
ficient available software. Note that each con-
dition in (7) depends only on a single scalar

(6)



parameter, i.e., R1 depends only on ¢; and not
on to, and, similarly, Ro depends only on ts.
Computationally, this means that when we grid
each set of expected switching times, this will
only affect one condition in (7).

To reduce conservatism, extra conditions can be
added to (7) using the so-called S-procedure.
How this is done is explained in (Gongalves,
2000). The cost of loss of conservatism in this
case is the increase in computations. Another
alternative to reduce the conservatism of (7)
is to use extra impact maps and Lyapunov
functions to take advantage that zf € So4 and
the fact that the set Sp4 is of dimemsion — 2.
This is considered in the next section.

4. REDUCING CONSERVATISM

There are several ways to reduce the conser-
vatism of conditions (7). One is the inclusion of
extra conditions in (7) using the S-procedure.
The S-procedure, however, is known to be con-
servative whenever the number of constraints
is higher than 1. Also, every new constraint
increases the computationally complexity. It is
then important to have alternatives to reduce
complexity.

One of such alternatives is to use an extra
Lyapunov functidnoemdmpact maps.

If the limit cycle is transversal at every switch,
then, after some switches, trajectories close to
limit cycle will only switch at Sy and Sp_.
Thus, it makes sense to define an impact map
from Sy to Sp and define a Lyapunov function
in a subset of Sp;. Note that such Lyapunov
function is defined in a set of dimension —
2. The addition of this impact map requires
the addition of two more. So, lets define the 5
impact maps (see figure 5).

Starting with impact maps 1 and 2, they map
points from S, to itself and from S, to So,
respectively, and are defined as follows. Let z* €
S such that the solution z*(¢t) of £ = Az — B
does not intersect S for all . We divide
points in Sy in two regions: the region such
that the switch will occur at S_ (domain of
impact map 1) and the region such that the
switch will occur at Sy (domain of impact map
2). Therefore, impact map 1 takes points z* +
Ay € S; and, induced by & = Az — B, switches
at S_ at —x* + A;. Due to the symmetry of the
system, this can be mapped back to S; at z* —
A;. Impact map 2 takes points * + Ag € S+
and, again, induced by & = Ax — B switches

at Sp at 7 + Ay. Impact Inapmilar to
impact map 2 from section3 2. Impact maps 4
and 5 are defined as impact maps 1 and 2 with
the difference that their domains are subsets of
So+ instead of Sy.

Define the sets of expectedvs tchingitnes 7T;
1 =1,...5, as the sets of all possible switching
times associated with each respective impact
map, as explained in section 2.2. Define also S,
1 =1,...,5 as in sections 2.2 and 2. Next, we
define three quadratic Lyapunov functions in S

V+(A) = AIP+A =+ 2Alg+ =+ oy, A € S+ — HI*
Vo(A)=A'PyA, A€ Sy—a
VO+(A) = AIP(H_A, A€ S(H_ — $S

where P, , Fy, Po+ > 0. Global stability of the
system follows if

Vi(=A1) <Vi(Ao), VAg€S; —z~
Vo(Ar) <Vi(Ag), VAp€e S, —z*
%+(A2) < Vo(Al), VA; € So — .Z'I

Vi(=Ar) <Vor(Ao),
Vo(A1) < Vog (Do),

VAg € S(H- - CL‘S
VAO S S0+ — Z‘S

FEach impact map can be written as a linear
transformation analytically parameterized by
the associated switching time, as before. We
then get H;(t), i = 1,...5. Define also
CieAit
() = ——*

’UJ,( ) d; — C,Zz* (t)
where CZ = C, Az = A, d, = 0, 1= 1,2,4,5,
Cs= CA, , A3 = PA, d3 = —CB, and
2i(t) = z5(t) = 2*(t), z3(t) = z5(¢) = x5(t),
23 (t) = 3 (t). We have then the following result.

Theem.4 1. Consider the RFS (1)-(2) with
CB > 0 and assume there exists a symmetric
limit cycle v with a sliding mode and a period
2¢ 1 +t3). The limit cycle is globally asymptot-
ically stable if there exist Py, Py, Pot > 0, 9+,
and a4 such that

Ri(t)

P, — H P, H,
+2(I + Hy)giwi >0
P, — HyPyHj 4 29w
+wharws >0
Py — HyPy Hs > 0 on S, — o}
Poy — HyP,Hy +2H}g, w4
—wyarws >0

Poy — HLPyHs > 0

on Sy, —z*

def
Ry(t2) =
on S, —z*

Rs(ts) %

Ri(t) %

on Sy, —

def

R5 (t5) = on St5 - .'173



Fig. 5. Analysis with 5 impact maps

for all expected switching times t; € T; i =
1,...,5 (not that the apguwrmetsrel
moved in some expressions for simplification).

Note that each condition R;(t;) depends only
on one paraidles means that the com-

plexity of adding extra impact maps does not
grow exponentially. Note also that the P, and
Py are n — 1 x n — 1 symmetric matrices, but
Py is only an n — 2 x n — 2 symmetric matrix.

A relaxation of the conditions in theorem 4.1,
similar to what was done in the previous section
wheff)) (was relaxed to ( 7), can also be done
here. We then obtained a set of LMIs that can
be solved efficiently.

5. CONCLUSIONS

In (Gongalves et al., 2001) we analyzed sym-
metric unimodal limit cycles of RFS. In this
paper we proposed to better understand RFS
by studying oscillations with sliding modes in
RFS. We presented several relaxations to ob-
tain conditions in the form of LMIs that, when
satisfied, guarantee the global asymptotic sta-
bility of limit cycles with sliding modes in RFS.
The main idea was to show that impact maps
associated with RFS are contracting in some
sense. This is possible since such maps, although
nonlinear, multivalued, and not continuous, can
be represented as linear transformations analyt-
ically parametrized by the respective switching
time. Quadratic surface Lyapunov functions can
this way be constructed by simply solving a set
of LMIs.

The results in this paper open the door to
the analysis of more complex classes of hy-
brid systems. In particular, hybrid systems with
“jumps” in the state, allowing a hybrid system
not only to have a non-continuous vector field,
but also allow switches between subsystems of
different dimensions.

REFERENCES

Ardalan, S. H and J. J. Paulos (1987). An anal-
ysis of nonlinear behavior in delta-sigma

modulatof&EFE Tansamdns  on i
cuits angignd , 33-43.

Astrom, Karl J. (1995). Oscillations in systems
with relay feedback. The IMA diimes n
Mathenats amid  ts Applcatons Addve
Cotol , Filtering and S gnalrétss  ng
74, 1-25.

Atherton, D. P. (1975). Nonlinea @itol En-
gineei ng. Van Nostrand.

di Bernardo, Mario, Karl Johansson and
Francesco Vasca (2000). Self-oscillations
and sliding in relay feedback systems:
Symm etry and bifurcations. ntandbnal
JoumabfB  furatons andsCha

Gongalves, Jorge M. (2000). Constructive
Global Analysis of Hybrid Systems. PhD
thesis. Massachusetts Institute of Technol-
ogy. Cambridge, MA.

Gongalves, Jorge M., Alexandre Megretski and
Munther A. Dahleh (2001). Global stabil-

ity of relay feedback/#i$fems. Tans
actons on # omat 6Gltol 46 (4), 550
562.

Johansson, Karl H., Anders Rantzer and Karl J.
Astrom (1999). Fast switches in relay feed-
back systems. Ad omita

Neimark, I. ( 1972). M ethals of Bi ntwse
Mapping in the Thery of Nond nea 6
cillaions. NAUKA. (In Russian).

Ringrose, Robert P. (1997). Self-Stabilizing
Running. PhD thesis. Massachusetts Insti-
tute of Technology. Cambridge, MA.

Tsypki&Z ( 1984). Relayant ol gstens
Cambridge University Press, Cambridge,
UK.

Utkidadim I. ( 1995). Stdi ng Modesi n @
trol Gikmaaton . Springer-Verlag, W.
Varigonda, Subbarao and Tryphon Georgiou
(2001). Dynamics of relay relaxation os-

cillatorsIEEE  Tunsawinse A omit
Caoitol46 (1), 65-77.

Williamson, Matthew M. (1999). Robot Arm
Control Exploiting Natural Dynamics. PhD
thesis. Massachusetts Institute of Technol-
ogy. Cambridge, MA.



