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Abstract: We design a Lyapunov based boundary feedback controller for achieving
mixing in a 3D pipe flow governed by Navier-Stokes equations. We show that the
control law maximizes a measure of mixing that incorporates stretc hing and folding
of material elements, while at the same time minimi zing the cotirol effort and the
sensing effort. The penalty on sensing results in a static output-feedback control law
(rather than full-state feedback). We also deriwe a lower bound on the gain from
the control effort to the mixing measure. Furthermore, we establish input/output-
to-state-stability properties for the open-loop system. These results show a form of
detectability of mixing in the interior of the pipe from the chosen outputs on the
wall. The effectiveness of the optimal control in achieving mixing enhancement is

demonstrated in numerical simulations.
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1. INTRODUCTION

Rigorous application of control systems theory to
problems in mixing appeared for the first time
in (D’Alessandro et al, 1998; D’Alessandro et
al., 1999), and more recently in (Noadk et al., 2000).
In (Aamo et al., submitted), we applied active feed-
back control in order to enhance existing instability

mechanisms in a 2D model of plane channel flow.

By applying boundary control intelligently in a
feedback loop, mixing was considerably enhanced
with relatively small control effort. Wall-normal
suction and blowing was used for actuation, and the
pressure difference between opposite points on the
wall for sensing. The control law was decentralized
and designed using Lyapunov stability analysis.

In the current work, these efforts are successfully
extended to 3D pipe flow, which, in the uncon-
trolled case, has a parabolic steady state solution
(known as Hagen-Poiseuille flow). With mixing in
mind, we quantify the flow perturbations (away
from the Hagen-Poiseuille flow) in terms of the Ls-
norm of their first order spatial derivatives. This
norm 18 a volume integral over the entire flow do-
main. It explicitly incorporates stretching of mate-
rial elements, and due to the boundedness of the
domain, and the fact that the flow field satisfies
the Navier-Stokes equations, folding is implicit in
the measure. Since stretching and folding are key
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ingredients in mixing, the measure appears to be
strongly related to mixing.

W e design a Lyapunor based control law and show
that it maximizes the measure of mixing described
above, while at the same time minimizing the
control effort and the sensing effort. The penalty on
sensing results in a static output-feedback control
law (rather than full-state feedback). W e also derive
a lower bound on the gain from the control effort
to the mixing measure.

In separate results, we establish input/output-to-
state-stability properties for the open-loop system.
These results show a form of detectability of mixing
in the interior of the pipe from the chosen outputs
on the wall.

The effectiveness of the optimal control in achiev-
ing mixing enhancement is demonstrated in nu-
merical simulations of the full, nonlinear, Navier-
Stokes equations for 3D pipe flow at Reynolds num-
ber 2100. To quantify mixing, massless particles
are placed into the flow, simulating passive tracer
dye. Visualizations compare perturbation energy,
enstrophy, vorticity, and dye distribution for the
uncontrolled and controlled cases.

The feedback system designed in this work stands
a good chance of being realizable, due to its sim-
plicity: sensing and actuation are restricted to the
pipe wall; and the feedback law is decentralized and
static. Furthermore, simulations show that the spa-
tial changes in the control velocity are smooth and
small, promising that a low number of actuators
will suffice in practice.
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Fig. 1. Geometry of the pipe flow.

This paper is organized as follows: in Section 2
we present the governing equations; in Section 3
we introduce our choices of sensing and actuation;
in Section 4 we define two measures of the fluid
flow field which are instrumental to the theoretical
analysis; in Section 5 we provide an energy analysis
resulting in two technical lemmas that are fre-
quently used in the analysis; in Section 6 we present
the main result on control design and optimality;
in Section 7 we discuss detectability of mixing,
and finally; in Section 8 numerical simulations are
presented.

2. NAVIER-STOKES EQUATIONS FOR 3D
PIPE FLOW

The domain for the 3D pipe flow is the cylinder Q =
{(r,8,2) €[0,1) x [0,27) x [0, L)} (see Figure 1),
on which the velocity field (V. Vy, V) is defined. In
the angular (6) direction the boundary conditions
are clearly periodic. In the streamwise (z) direction,
we also use periodic boundary conditions. That 1s,
we cquate the flow quantitics at 6 = 0 and 0 = 27,
and at z = 0 and z = L. In the radial direction
(r) we impose the boundary conditions that the
velocity be finite at » = 0, and at the wall (r = 1)
we will eventually specify the flow velocity as a
boundary control law, but for now we use no-slip.
Under these boundary conditions, one may verify
that the velocity field
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is a steady state solution (the Hagen-Poisuille flow)
of the Navier-Stokes equations. Writing the Navier-

Stokes equations in terms of perturbation variables,
defined as
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3. SENSING AND ACTUATION

As mentioned in the previous section, the boundary
conditions on the wall of the pipe incorporate our
actuation. The fluid velocity at the wall is restricted
to be normal to the wall, that is, we take v,_,
as the control input, and set vg_, = v,_y = 0,
where we have defined, for notational convenience,
the variables on the wall as

Vp—y (6, 2,1) EXR (1,6,2,1),
vg_y (0,2,1) e (1,0,2,1), and
v,y (0,2,1) 2, (1,0,2,1).
We also impose on the control input that it satisfies
Vp—y (8, 2,0) = —0,_y (0 + 7, 2,1), (6)

which states that if suction is applied at a point
(f,z) on the pipe wall, then an equal amount of
blowmg 1s applied at the opposite point (8 + =, z).
It is clear that condition (6) ensures a zero net
mass flux across the pipe wall, and therefore it is
a natural condition to impose from a mass balance
point of view. The measurement available is the
pressure drop, denoted Ap, from any point (8, z)
on the pipe wall to the opposite point (6 + 7, z).
That is,

Ap(é’,z,t)é (1,6, z,8) —p(L, 6+, z,t). (7)

4. MEASURES OF MIXING

There are two key ingredients to effective mixing.
The fluid flow field must inflict extensive stretching
to material elements, and the stretching should be
accompanied by folding. In this work, we define two
measures of the fluid flow field that are instrumen-
tal to our development below. One is the kinetic
energy of the perturbation, defined as
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and the other is a measure of spatial velocity

gradients, defined as
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The latter measure, (9), appears to be stronger
connected to mixing. While it is clear that stretch-
ing of material elements is explicit in a measure
of spatial gradients of the flow field, folding is
implicit in the measure due to the boundedness
of the flow domain, and the fact that w satisfies
the Navier-Stokes equations. Thus, our objective
becomes that of designing a feedback control law,
in terms of suction and blowing of fluid normally to
the pipe wall, that is optimal with respect to some
meaningful cost functional related to m(w).

5. ENERGY ANALYSIS

Before giving the main result on controller design
and optimality, we state two key lemmas that
are needed frequently in what follows. The first
lemma 1s a Lyapunov type result and it relates
the time derivative of E (w (1)) to m(w (t)). The
second lemma provides a bound on a crossterm
in the streamwise (v,) and radial (v,) velocities,
originating from the nonlinear convective terms
in the Navier-Stokes equations. The proofs of the
results presented in this paper can be found in
(Balogh et al., submitted).

Lemma 1. If vg_y, and v,_, are zero, and v._,
satisfies (6), then
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along solutions of system (2)-(5).
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Lemma 2. If v,_,, is zero, then solutions of system

(2)-(5) satisfy
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for arbitrary positive constants a and b.

The conditions of Lemma 1 and 2 arc assumed to
hold throughout the analysis that follows, that is:
Vo_w = Vs—y = 0, and; v,_,, satisfies (6).

6. OPTIMALITY

The following theorem incorporates the control
design and optimality result.

Theorem 1. The control

Vp_w = —kAp, (12)

with & € (0 Rc) and Re arbitrary, maximizes the
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Moreover, solutions of system (2)—(5) satisfy
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The objective of applying the control input (12) is
to increasc the valuc of m(w). That this objective
is targeted in the cost functional (13), is clear from
inequality (15), which gives an upper bound on
h(w) in terms of m(w). Thus, h(w) cannot be
made large without making m(w) large, so the
cost functional (13) is meaningful with respect to
our objective. The cost functional also puts penalty
on the output. Since the output is fed back to
the control input, the output penalty works in
conjunction with the input penalty to minimize
control effort.

The next theorem writes the result of Theorem 1
on a form that puts emphasis on signal gains.



Theorem 2. For all Re and ¢ > 0, solutions of
system (2)—(5) satisfy

max

Vp_w
E(w(0)) # 0

where
g(w) <eym(w), (17)
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e(t) 2 93E (w(t)).
Furthermore, the maximum is achieved with the

optimal control (12), for which solutions of the
closed—loop system satisfy
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The result (16) was inspired by the work on optimal
destabilization of linear systems reported by Mezié
(2001). In view of (17), by maximizing the ratio
in the curly brackets of (16), we make sure that
the input and output signals are small compared to
the internal states. This 1s equivalent to obtaining
a large closed-loop gain. In addition, the theorem
gives a lower bound on the states in terms of the
control input for system (2)—(5) in closed loop with
(12). Thus, it establishes the fact that the states
cannot be small without the control input being
small, and the control input cannot be made large
without making the states large. As we shall see in
our simulation study, this will lead to good mixing
with low control effort.

7. DETECTABILITY OF MIXING

Achieving optimality with static output feedback
of Ap is remarkable. In this section we explain why
this special output is strongly related to mixing
and allows its enhancement. The next theorem
establishes an open-loop property of system (2)-
(5) that is reminiscent of an integral variant of
input/output-to-state-stability (I0SS) for finite di-
mensional nonlinear systems.

Theorem 3. If Re € (0, 4), then solutions of system
(2)—(5) satisly

e / m(w (1)) dr < 28E (w (0))
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for all ¢ > 0 and for arbitrary values of the control
Vp—w, With
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The significance of inequality (19) is that it pro-
vides a notion of detectability of internal states
from the output Ap. In particular, if m(w) is large,
Ap must be large as well, or if Ap 1s small, so is
m(w). This is reminiscent of an integral variant
of the I0SS property for finite-dimensional nonlin-
ear systems, as defined by Krichman et al. (2001)
(and motivated by earlier results in (Sontag and
Wang, 1997; Sontag, 1998)). In the case of (19) we
have an integral-to-integral property (iilOSS) with
m(w) as a measure of the states, so the “energy” of
the states is bounded above by the “energy” of the
input and output signals. With F (w) as a measure
of the states, we can also find a uniform upper
bound (as opposed to an “energy” upper bound)
in terms of the input and output signals. That is,
system (2)—(5) has the IOSS property, as stated
formally in the next theorem.

Theorem 4. For Re € (0,4), solutions of system
(2)—(5) satisfy
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for all ¢ > 0 and for arbitrary values of the control
Up_y, With
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In Theorem 4, the notation supy, ,; denotes the es-
sential supremum taken over the finite time interval
[0,¢]. The detectability properties stated in Theo-
rems 3 and 4 indicate that our choice of sensing,
Ap, is appropriate.



8. NUMERICAL SIMULATIONS

8.1 The Computational scheme

The simulations are performed using a flow solver 2
that is based on a second—order staggered grid dis-
cretization, second—order time advancement, and a
Poisson equation lor pressure, based on a scheme
designed by Akselvoll and Moin (1996). The length
of the cylinder 1s .. = 37 and the radius is R = 1.
The grid is structured, single-block with cylindrical
coordinates. It is uniform and periodic in z and ¢
with Fourier-modes 64 and 128 respectively, and
linearly spaced with ratio 8 : 1 in the radial direc-
tion in order to achieve high resolution at the wall.
The adaptive time step was in the range of 0.06-
0.08 with constant CFL number 0.5 and constant
1 volume flux per unit span. The Reynolds number
we used was Re = 2100 which 1s slightly higher
than the limiting number Re = 2000 for nonlinear
stability. We ran both the controlled and the uncon-
trolled case for about 110 time units starting from
a statistically stcady state flow ficld with control
gain & = 0.1 in the controlled case. The initial flow
field was obtained from a random perturbation of
the parabolic profile over a large time interval using
the uncontrolled case.

8.2 Measuring mizing

Figure 2 shows that our control results in an ap-
proximately 50% increase in the perturbation en-
ergy and 92% almost instantaneous increase in the
enstrophy. While comparison based on perturba-
tion energy is important as it is the part of the
cost functional (13), enstrophy provides us with a
measurement that is more closely related to mixing.

The method we use to quantify and visualize mix-
ing is the tracking of dye in the flow. We consider
the problem of mixing of a single fluid (or similar
fluids) governed by the stretching and folding of
matcrial clements. We introduce passive tracer dye
along the center of the pipe represented by a set
of 100 particles (Figure 3). We trace the posi-
tion of these particles using a particle-line method
(Krasnopolskaya et al., 1999; Ten et al., 1998).
The distance between neighboring particles is kept
under 0.1 by introducing new particles to halve the
distance if necessary to obtain a connected dye sur-
face at all time. As shown in Figure 4, the number of
particles, that is, the length of the dye, increases in
the controlled case at a much higher rate than in the
uncontrolled case. Adding particles is not feasible
computationally for an cxtended period of time.
We stopped adding particles when their number
reached two million (! = 4 in the controlled case
and ¢ = 8 in the uncontrolled case), but we contin-
ued tracing them. Figure b shows the distribution
of particles inside the pipe. In the controlled case
we obtain more uniform particle distribution even
for smaller time.

8.3 Actuator distribution and bandwidth

Figure 6 shows the instantaneous pressure field in
a cross section of the pipe along with the boundary

2 We thank Charles Pierce for providing the code for the
uncontrolled case.
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Fig. 4. Length of dye as a function of time.

velocity that is magnified 500 times for visualiza-
tion. The control “blows in” when wall pressure is
high and “sucks oul” when wall pressure is low.
Spatial changes in the control velocity are smooth
and small, promising that low number of actuators
will suffice in practice. In order to investigate the
density and bandwidth ol sensors and actuators
needed we calculate the power spectral densities
of the control. The spectral plots are shown in
Figure 7. Figure 7(a) shows that only about 10-15
actuators/sensors are needed along the pipe length.
Similarly, in the angular direction (see Figure 7(b))
we need at most 15-20 actuators/sensors. That re-
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Fig. 6. Instantaneous pressure field with controlled
velocity (magnified) in a cross section of the

pipe.

sults in approximately 200 micro—actuators/sensors
for the whole pipe surface. The time—frequency
analysis (Figure 7(c)) shows a bandwidth required
for sensing/actuation of only 1.5Hz.
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