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Abstract: Autonomous guidance of the mining vehicle is based on the path tracking
algorithm that use pre-calculated desired paths. These paths are often calculated
without taking into account the nonholonomic nature of the vehicle motion. As a
result the calculated path might be not feasible and the path tracking controller
will be required to correct the situation, deteriorating at the same time the overall
performance of the guiding algorithm. In this paper we describe path-planning
algorithms for articulated and skid steering vehicles used in mining applications.
We propose numerically stable procedure for computing off-line the skidding and
articulation angles. The results of these computations complement the conventional
path-planing procedures and improve significantly the path-tracking precision,
and overall guidance performance. Copyright c

�
2002 IFAC
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1. INTRODUCTION

The hazardous environment of a mine demands an increas-
ing degree of autonomy of the mobile mining equipment
in order to keep the human presence on the site mini-
mal. This research targets autonomous guidance of slow
moving heavy underground and surface mining machines
as Laud-Haul-Dumping machines (LHD) and blast-hole
drills.

An underground LHD, equipped with a bucket, has to
move back and forth along the narrow drifts between load-
ing and dumping sites where it stops for executing load-
ing/dumping ore. A surface drill, equipped with a very tall
drilling rig and two actuated tracks, has to move slowly be-
tween predefined locations where it stops for drilling holes
that are subsequently filled with explosives.

Developing autonomously guided LHD’s and drills will
allow the remote supervised control of the machine and
might evolve to the multi-unit supervision by a single re-
mote operator, resulting in higher efficiency, and greater
safety.

Some degree of autonomy is achieved in the control of
underground machines. Much more has to be done in sur-
face machine automation. However, in both cases there
are still many challenges in transferring the advanced re-
sults obtained from planning and control of autonomous
robots to industrial implementations. Some recent steps
towards converting real mining machines to autonomous
units with on-board navigation and path following capa-
bilities are described in (DeSantis, 1997; Polotski et al.,
2000) for underground mining and (Peck and Hendrics,
1997; Ahmadi et al., 2000) for open pit mining.

The vehicle guidance problem is conventionally devised
into the path-planningand path-tracking phase. First phase
is mostly addressed on theoretical level. second phase is
widely analyzed from practical point of view, however the
path to be followed is most often taken in a simplified form
as a set of the straight segments and circular arcs. This
approach being acceptable from the geometrical point of
view neglects the computation of some parameters useful
for control algorithms, thus letting to the path tracking con-
trollers to correct the situation.

This work demonstrates how the off-line computation of
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additional parameters such as articulation angle for articu-
lated vehicles and skidding angle for skid-steering vehicles
may improve the overall performance of the vehicle guid-
ance without increasing the complexity and the cost of the
system. The paper is organized as follows. Section 2 and
3 are devoted to articulated vehicles. A path-tracking con-
trol for articulated vehicles has been the subject of numer-
ous works (DeSantis, 1997; l. Bushnell et al., 1994; Polot-
ski, 2000) We analyze here the path planning computa-
tions that must precede the path-tracking, but have not re-
ceived substantial attention of the researchers. We calcu-
late the articulation angle and demonstrate that for back-
ward maneuver our algorithm gives the correct result de-
spite the numerical instability that deteriorate conventional
computations. In section 4 and 5 we study skid steering
vehicles. A path-tracking controller for this type of vehi-
cles has been recently proposed in (Ahmadi et al., 2000).
We extend the planning procedure and obtain, more accu-
rately, the vehicle heading. Taking into account the shape
of the path and the required vehicle speed, we calculate the
corresponding lateral slippage, and deduce the slip-angle
and vehicle heading for subsequent use in path-tracking
controller.

2. MODELING OF AN ARTICULATED VEHICLE

A two-part four-wheel vehicle articulated in the middle is
under consideration. The steering action is performed by
changing articulation angle.
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Figure 1: Scheme of articulated vehicle

Let � and � be the middle points of two axles with the
junction point � (see Figure 1). Let ��� , ��� , and ��	 be
the velocities of points ��
��
�� respectively. The sign of��� is positive if ������� ��� and negative otherwise. Let
denote by � the articulation angle between ��� and ���
(positive for anti-clockwise case). Let us mark a point �
as ”front point“. Let ��
���
�� be Cartesian its coordinates
and heading angle of ��� with respect to the world coor-
dinates, and let denote by � the angle of velocity vector ��	
at point � with the front part ��� of the vehicle. We will
consider this angle as the generalized control input.

For low speed vehicles like those usually met in mining ap-
plications the kinematics level of description seems to be
appropriate. The kinematic equations have the following

form ( ��� and ��� are denoted by ��� and � � respectively):! �!�"�# ���%$'&)(*� (1)! �!�"+# ���%(-, ./� (2)! �!�"0#21 ���43657.��89�:� (3)! �!�";# ���=< 1 (-, ./�� � > 3657./��< ?�:� > $'&)(@�� � A
(4)

The term ”generalized input“ means that this model
may describe both actuated articulation and tractor-trailer
scheme. If only one part of the vehicle is steered the model
describes the motion of a car with trailer (both forward and
backward cases). One can see that equations (1)–(3) de-
scribe the unicycle motion and equation (4) corresponds to
the ”internal degree of freedom“. Another approach based
on the new reference point serving as linearizing or flatten-
ing point is discussed in (Polotski, 2000)

3. ARTICULATION PLANNING

A smooth trajectory of the point � directly specifies the
trajectory of the point � as another point of the same rigid
body (tricycles ��� ). We will first study the behavior of
the tricycle ��� with respect to the first one. Let us denote
the generalized input 3657.� by B and introduce the length
s(t) along the path of point � and an angular variable C #D < " A 89� � . We have

! C # ! D 89� � #FE ��� E !�" 89� �
Changing the variable in (4) from

"
to C and using notationG # <:� � 1 �:� A 8�<�H7�:� A we obtain

! �! C # sign <���� A < 1 (-, .� > BI<:C A <:$'&)(J� > ? > H G A-A
(5)

This equation has the type studied in (Kamke, 19833) (Eq.
1.79). and is equivalent to the Riccati equation. Changing
variable from � to K # 3657.I<:�L87H A

we get

! K! C # sign <���� A < 1 K > BI<:C A < ? > G A 1 BI<:C A G)M � A
(6)

The factor sign <��N� A
is positive for forward motion and

negative otherwise. The right-hand side of ( 5),change the
sign with this factor becoming the stable for forward mo-
tion and unstable otherwise Let us first discuss the case G #O

that corresponds to the symmetrical machine �P� # � � .
Riccati equation 5 is reduced in this case to the linear one:! K! C # sign <���� A < 1 K > BI<:C A-A

(7)

This equation has unique exponentially stable “attractive”
solution for forward motion and an unstable one otherwise.
For backward motion, the growing solutions (see Figure
2, right bottom plot) escape from one “repulsive” solution
and converge to the singular solution � #RQ of ( 5). These
solutions do not correspond to any feasible motion of the
vehicle.
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Figure 2: Backward motion

The case B # const corresponds to a desired path of cir-
cular shape or straight lines and was analyzed in (l. Bush-
nell et al., 1994). The Riccati equation has constant coeffi-
cients and can be analytically solved using reduction to the
linear system. For industrial application both assumptions
of small G and slowly varying B usually hold.

For G # O
and B # const two stationary solutions are�TS � # HU57V6$W3657.X< B A 
Y�TS� #RQ . Using small parameter ap-

proximation, two solutions engendered by � S � and � S � can
be found as follows

� S � # HU57V6$W3657.X< BI< ? > G ? > H'B �H A-A 

� S � # HU57V6$W3657.X< HB G 1 G BI< ? > B � AH A

In the general case Riccati equation could be reduced to the
second order system of linear differential equations. Es-
sential property consists in the existence of two solutions,
one of which is always stable, but another one unstable.

Unstable solutions can be made stable by reversing the
time and the direction of motion (sign <���� A

). Thus equa-
tions (1)–(4) can be used to obtain the desired articulation
angle along the backward maneuver. Using (1) and (2)
to compute � , the generalized input can be subsequently
determined from (3), and then (4) is used for stable com-
putations of an articulation angle � . Figure 2 illustrates
the backward maneuver of following a path consisting of
successively executed turns and straight line parts (left top
plot). This is an example of essentially non-stationary
path. Direct calculations of the articulation angle give an
”unnatural“ stable solution closed to Q for slightly asym-
metrical machine (right bottom plot). If this solution is
used for control, the vehicle will fold up instead of follow-
ing the required path. The time inversion allows to obtain
the correct result via numerically stable calculations (left
bottom plot).

The results discussed above are closely related to the be-
havior of a trailers convoy pulled by a car. (l. Bushnell et
al., 1994). The description of the motion as using the Ric-
cati equation generalizes those of (l. Bushnell et al., 1994)

where only circular and straight line trajectories where
considered. On the other hand, our results are motivated
by the ”controlled joint“ scheme, in such a case the ”unsta-
ble behavior“ has to be taken into account, the articulation
angle along the path (including backward maneuvers) has
to be calculated and subsequently used by an appropriate
path tracking controller.

4. MODELING OF A TRACKED VEHICLE

A vehicle model with three degrees of freedom is adopted
(Ahmadi et al., 2000). The vehicle is supposed to undergo
a motion in the horizontal plane, that is usually the case
for a drilling rig in open pit mines–the targeted application
of our research The traction and longitudinal resistance
forces, as well as the distributed lateral friction forces are
included in modeling. Most of existing models have some
intrinsic limitations, e.g., only forward maneuvers are con-
sidered or only circular and straight line paths are allowed,
etc. A more complete model, capable of simulating a large
variety of maneuvers of the vehicle is presented here.

The following assumptions and notations are used: the
weight of the vehicle is equally divided on both tracks; ( � ,� , � ) represent the coordinates of the center of gravity
(point � ) in the fixed frame and the vehicle heading. A
second coordinate system ��Z\[ is attached to the vehicle
with its ��Z -axis coinciding to forward looking longitudi-
nal axe of the vehicle, and ��[ -axis being left orthogonal
to ��Z . The desired path � is defined by the smooth curve
( �]< D A �^< D A

) in global coordinates with the radii of curva-
ture _�< D A

at each point; the vehicle moves with the veloc-
ity `� . Figure 3 illustrates the force distribution: acb , _db ,aTe , _fe are the traction and resistance forces exerted to the
vehicle through the left and right tracks respectively.
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Figure 3: Tracked vehicle’s force model.

We denote by g the signed desired velocity of the vehicle
(positive if the forward motion is required and negative for
a backward motion), and by C an angle between the direc-
tion of motion gJ`� and ��Z . It should be emphasized that
the direction of backward motion is opposite to the `� , and
due to the vehicle skidding, its direction is not tangent to
the path. As a result, the angular speed h� is not equal to



the rotation rate of the velocity vector i #�E g E 89_ . For
the same reason, the instantaneous center of rotation does
not coincide with the center of the path curvature and the
corresponding radii are different. In this modeling, the lo-
cation of the vanishing point j of the lateral speed defined
by

�kj #%l! # h[\8�h� #21 gm(-, .@Cc8nh�d
 (8)

is very important and will be used later.
Basic equations of motion in Z – [ coordinates, (see (Shiller
et al., 1994; Ahmadi et al., 2000)), are as follows:oqpZ # <:aIb > aTe 1 _db 1 _fe AoRp[ #sr�t !

(9)u p� # <:aIb 1 _fe A-v 1 <:aTw 1 _fw A-v 1 H t < � �r 1 ! � A 

where o is the mass of the vehicle, a and

!
are introduced

below.

Under assumption of the uniform distribution of the weight
along the track, the shear force density t is proportional to
the pressure per unit of the track length x # o^y 87H7� :

t/#Rz x #Rz o{y 8�<�H7� A
To compute the lateral forces, we introduce the saturation
function |c}J~�<�ZI
-ZI��
-Z�� A # o/� ZX��ZX�m
 oU�P� ��ZI
-Z������ and
denote: ! # |c}J~�< l! 
 1 �P87H�
��P87H A

(10)

Then we obtain using Figure 3:

aIb �6� #qr D���y�� <�gci A t !
(11)

The traction forces aTb and aTe are related to the left and
right track slips � b and � e via the commonly used exponen-
tial expression (Bekker, 1969)

aI��e # aT�@�W� � ? 1��E � EI� ? 10� ��� w�� �6�9�\�k� sign < � A 
 (12)

where � #�� 89� , aT�@�W� # |�� , | - is the track area, and �
and � are the soil parameters (Bekker, 1969).

The left and right track slips are defined as� b # ��bP8�<���iTb A ��b # hZ 1 v h� 1 ��iTb� e # �\e 8�<���i�e AW¡ �\e # hZ > v h� 1 ��i�e
where � and iTb¢
�i�e are the radius and the angular velocities
of the sprockets, and �\b and �\e are the slip velocities for
each track.

Detailed description of the modeling in (Ahmadi et al.,
2000) and is not included for the sake of brevity. We focus
here on the computational aspects of the orientation plan-
ning for tracked vehicles.

5. NONHOLONOMIC PLANNING FOR
TRACKED VEHICLES

Trajectory planning for conventional vehicles consists of
two separate procedures, namely: velocity planning (or
scheduling) and path planning. Due to the inevitable slip-
page of tracks and the dependence of traction forces on
track slippage, those two problems cannot be solved sep-
arately. The scheduling problem and the shape definition
have to be solved first. Then the orientation of the vehicle
along the path can be calculated. The path ( �]< D A 
��^< D A

)
is supposed to be known as well as the linear speeds gN< D A
along the path as it is described above. For a targeted ap-
plication this is a natural assumption as a drill rig is usually
required to move along the prescribed path at the constant
speed between two pre-specified locations and its acceler-
ation/deceleration can be easily accounted for.
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Figure 4: Structure of solutions

In order to take the slippage into account, let us evaluate
the balance of forces in the lateral direction ��[ . From (1)-
(4) we obtain:

D���y�� <�gLi A H z y� |c}J~�< 1 g D��P� Ch� 
 1 �P87H�
��P87H A ## gLiq$'&)(�C > hg^(-, .@C (13)

Using the relationship between hC , h� , and i :

hC > h� # iJ
 (14)

and introducing the “natural frequency” £ :

£ #F¤ H z y 89��
 (15)

the equation (13) can be rewritten in terms of C for
“before-saturation” case ( l! # !

) as

hC # i > £ � D���y�� i�g^(-, .JCiLg^$'&)(�C > hg^(-, .JC (16)

To illustrate the use of this equation, one can calculate the
stationary solution of (16) for the case when hg # O

. ForhC # O
we get £ � 3657.JC #21 i E i E , hence

Cc¥ #21 � " �)� < i E i E 87£ � AW¦
(17)



This is a purely analytical result that cannot be obtained
as a numerical solution of (16)due to numerical instability.
Namely, equation(9) has a closed form solution of the form" #�§ < 3657.JC A 
 where (18)

§ <:¨ A # £ � E i EiL© > £f© < i E i E£ � 57V6$W3657.@¨ >«ª . £ � ¨ > i E i E£ � ¬ ¨ � > ?
The global structure of solutions in the < " 
fC A

-plane is il-
lustrated in Figure 4.
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Figure 5: Time-varying balanced solution

The stationary solution (10) is a unique (up to the peri-
odicity over C ) solution that can be extended to the un-
bounded time domain, we will call it “balanced solution”.
All other solutions as illustrated in figure (3) diverge from
the balanced solution and escape to infinity (in hC ) in finite
time. Therefore any direct numerical solution of (9) di-
verges from the balanced solution (10) and cannot be used
to compute the balanced solution.

For the time invariant case, this numerical instability
seems not to be very important since the balanced solution
is known. For the time-varying case, an analytical solution
may not exist, which makes impossible the direct com-
putation of the “balanced” type solutions in the presence
of such instabilities. By thoroughly analyzing the time-
varying “before-saturation” case, we have demonstrated
that the solutions of (16) still has the similar structure. We
have shown that under some technical assumptions there
exist a unique balanced-type solution. It is repulsive in the
direct time, but it is attractive in the inverse time and can
be obtained by backward integration from almost any ter-
minal conditions.

Namely, if we fix the terminal time ~ and introduce � #~ 1 "
, and consider two solutions, C � <�� A

and C � <�� A
start-

ing from C �S , C �S at � # O
, their difference ¨ # C � <�� A 1C � <�� A

decays monotonically to zero with an explicit up-
per bound. The demonstration is rather involved and is not
presented here.

Due to that monotonicity, all solutions converge to a
unique limiting solution - balanced solution, which is de-
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Figure 6: Circular path execution

noted below by C ¥ <�� A
. Once this solution is computed, we

inverse the time again
" # ~ 1 � and use C ¥ < " A as the

desired value of the “skidding angle” along the path. Fig-
ure 5 illustrates the results of the proposed computational
method when i and g vary in time (

O ¦ ?  D � ® �X�@¯ 1 id< " A ¯O ¦ H  D � ® �X� ¡  o 8 D � ® ¯ g ¯ ?  o 8 D � ® ). All solutions con-
verge very fast to the balanced solution C ¥ < " A , which can
not be found nor analytically neither by the direct numeri-
cal integration.

In the above discussion we have limited ourselves by the
non-saturated case l! # !

. To include the saturation ef-
fects, E g^(-, .JCc°i 1 hC E ¯ �H (19)

has to be verified for the balanced solution.

E.g. for the following parameters � #  o 
-g #?�O o 8 D 
�_ #�1 7O o 
 z2# O ¦ ?�±
, the balanced solution isC ¥ # O ¦ ?

and it does not satisfy to (12). As a result, the
stationary turn with these parameters will not occur. If the
the value of z increases up to 0.5, we get C ¥ # O ¦ O H , satis-
fying to (12). In general, the following condition guaran-
tees that the balanced solution C ¥ is acceptable.

E i E ² H E gm(-, .JC ¥ E� (20)

Under an assumption that �P8�<�H E _ E A is small (the length
of the track with respect to the diameter of turn) we may
rewrite (13) as z y _ ² g � (21)

We have found this condition very important for planning
the maneuver of tracked vehicles, i.e., when turning at a
given radius _ , higher speeds are allowed on a terrain with
higher coefficient of the lateral resistance. For the given
speed there is a lower bound for the allowable radius given
a particular value of z . And vice versa, there is a lower
bound for z if the maneuver with a particular _ is required.



A. Articulated vehicle: mini-LHD

B. Tracked vehicle: MR5

Figure 7: Experimental vehicles

Figure 6 illustrates the execution of a turn at _ #³1 7O o
with required speed g # ?�O o 8 D � ® on a terrain with z{#O ¦ ?�±

(”-” corresponds to an‘ anti-clockwise turn). Condi-
tion (21) is not met, hence, for the execution of this maneu-
ver the desired speed was reduced to 9.4 m/sec that corre-
sponds to the boundary of (21). Then the control inputs
corresponding to this motion are calculated and the open
loop run is executed. The system follows exactly the re-
quired circular path (Figure 6). If g # ?�O o 8 D � ® is con-
served and corresponding C # C ¥� is used, the smaller cir-
cle ( _ #qr)´ o is realized. If the condition (21) is not taken
into account at all and C # C ¥� is used, the spiral-shape tra-
jectory with fast growing C is observed (figure 6).

6. IMPLEMENTATION ISSUES

The described approach to the articulated and skid-steering
vehicle guidance has been implemented on the laboratory
size platforms mini-LHD and MR5 illustrated in figures 7
(A) and 7 (B) respectively. On-board control algorithms
for path-following utilize feed-forward terms based on off-
line computations of articulation and heading described
above. Ongoing projects address outdoor testing in more
realistic environments and implementation on real mining
equipment.

7. CONCLUSIONS

An enhanced path-planning methodology for articulated

and skid-steering vehicles is described in this paper. Ad-
ditional parameters specifying vehicle heading, namely
articulation and skidding angles are computed along the
planning phase. and used for constructing feed-forward
terms along the execution phase. Proposed methodology is
of particular importance for the paths with a varying cur-
vature and backward maneuvers. Using computations in
backward time, our proposed procedure overcomes the nu-
merical instability reported in (l. Bushnell et al., 1994) for
articulated vehicles and in (Shiller et al., 1994) for skid
steering vehicles.

By incorporating our enhanced planning procedure into
the control loop we make the orientation error decay-
ing faster and also improve the overall controller perfor-
mance. This procedure constitutes the low cost improve-
ments since no additional sensing capabilities or more ac-
tuators are needed but only some additional off-line pro-
cessing and complementary feed-forward terms in con-
trollers.
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