

AN XML-BASED DATA EXCHANGE ARCHITECTURE FOR CACE

T. Varsamidis, R. G. Edwards

School of Informatics
University of Wales, Bangor, UK

Abstract: Control systems design tools that have not been specifically constructed to work
together may not easily exchange data. The purpose of a data exchange mechanism is to
standardise and automate this process for all tools supporting the underlying technology.
This paper proposes a control systems design data exchange architecture based on the
recently developed XML standard, which allows tools to improve their data exchange
capabilities and at the same time benefit from a wide range of data services and data
communication possibilities offered by XML. Copyright © 2002 IFAC

Keywords: computer architectures, computer-aided control systems design, data models,
information integration, object modelling techniques.

1. INTRODUCTION

During the 1990s a number of methods for providing
standardised means for information exchange were
developed in a variety of research-based and
commercial-based areas such as Software
Engineering (Long, and Morris, 1993), the
automotive industry (Wandmacher, 1997), and the
petrochemical industry (POSC, 1995). Similar
approaches have been presented in the area of
Computer-Aided Control Engineering (Grübel 1994;
Varsamidis, et al., 1994a). Proposals for data
exchange standards in all these areas ranged from
simply describing a common data model to be used
by all software tools, to defining a complete set of
data-related specifications including the data model,
the data exchange mechanism, the communication
protocol and the support services mechanisms. It is
now acknowledged that in the case of many software
tools collaborating towards a common design goal,
as is the case of Computer Aided Control Systems
Design, the definition of a coherent data exchange
approach is key towards the successful set up of tools
that can exchange information (Bass, and Kazman,
1999).

2. THE UNIFIED INFORMATION MODEL
CACE ARCHITECTURE

The Unified Information Model (UIM) architecture
defined by Varsamidis, et al., (1994b) satisfies the
requirements for a data exchange mechanism for
CACE through the use of the EXPRESS ISO
standard modelling language (ISO, 1994) as the

medium for describing and propagating CACSD
information. The Unified Information Model is a data
model which gives a hierarchical description of all
data structures encountered in the lifecycle of a
control systems design project, ranging from the low-
level data structures for control system description to
the (abstract) high level of a project-based approach
for a control systems design (fig. 1). The model does
not attempt to redefine the structures of information
that may be applicable to each stage of the design
lifecycle. Instead, it allocates ‘space’ for existing and
proven data structures in a wider view of the whole
set of information used. In other words, the UIM is
an information model that defines the links and
relationships between specific levels of information
in the design lifecycle (for example, it maps
experimental results to certain versions of control
system models which are subsequently linked to
specific sets of model parameter values). The model
itself is a ‘container box’ for existing data structures
that can still be freely used as-is by CACSD tools;
only once inside the UIM they become part of a more
generic description of control systems design
information. The approach is generic enough so as to
allow for different types of data structures to be
handled as separate or complementary types of
information as, for example, in the case of a control
system model which may come in either graphical or
algebraic form. The ability of the UIM model to
handle such diverse forms of data representations is
based on the requirement that the architecture does
not aim at directing the flow of information but
rather assist it.

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain

Fig. 1. Levels of abstraction of control systems
design information.

The UIM was originally implemented in the
modelling language EXPRESS, which in turn makes
use of the neutral, ASCII-based STEP data file
format for the description of control information.
Exchange of CACSD information through this
medium presupposes that the tools involved in the
exchange are aware of the UIM EXPRESS model,
though they may only be making partial use of it.
Because of the standardised neutral format that
EXPRESS offers, it is guaranteed that the software
tools involved in the exchange will be able to parse
the information. Additionally, the global picture of
all information that the UIM offers ensures that this
combination of the information model and the data
exchange mechanism can support any type of tool
operation in the design lifecycle.

For creating a system that automates data exchange,
it is necessary for the system to not only understand
all information to be handled, but to also provide
concrete mechanisms for directing the exchange
process. This means that not only does the software
need to know how to pass the data around when
prompted to do so, but that it can also initiate the
relevant software operations with as little
involvement of the user as possible. In other words,
in the ideal control systems data exchange, one
would want to click on button at the sender tool and
have the data appear in the receiving tool. However,
such a high level of automation requires that the
communicating tools have to incorporate the
appropriate implementation mechanism for this
functionality; if the do so, it is advantageous to use a
standardised system for the purpose.

EXPRESS data files (known as STEP files) can
describe information but cannot make the data’s
presence known to other software, which is why the
UIM approach couples EXPRESS with the message
passing mechanism of CORBA (OMG, 1995).
CORBA is a standardised architecture for the
communication of software; it enables software
processes (for example, the “Send Data” option
found in a tool) to send messages to other software
processes for inquiring about their capabilities, or for
updating their status or remotely invoking them (as
the case would be with a possible “Receive Data
from External Tool” function). CORBA forms the
communication link and software tools can then
connect to each other; STEP file information is
streamed onto the communication channel and with
the knowledge of the UIM information arrangements

Fig. 2. Using the Unified Information Model,
EXPRESS, STEP and CORBA to exchange data
between a CACSD tool and a database.

the tools selectively send or receive what is of
interest to them. This final addition of CORBA to the
UIM architecture completely automates the data
exchange process and allows for an open approach to
software communication, where a variety of tools can
offer or receive not only data, but also other services
to or form other CACSD tools. The outline UIM-
based data exchange architecture for CACSD can be
seen in fig.2.

3. APPLYING A UIM-BASED DATA
EXCHANGE THROUGH XML

The recent advent of web-oriented computing has
lead to the emergence of new requirements for the
communication of information. This is due to the
vast potential range of receivers for each piece of
information and the fact that these receivers may not
all be interested in the same aspects of certain
information, or may have a different interpretation of
it. The situation can be seen as an extended version
of the CACSD tools communication problem
described above, i.e. tools may need the same
information for different purposes, or may represent
the same information in different ways.

A key technology in the attempt of making
information spread through the web in a standardised
format is that of the eXtended Markup Language,
XML (W3C, 2000). XML is an ASCII-based tagged
data description format. Any piece of data that is to
be treated as an element of a certain data type is
tagged with the appropriate set of tag identifiers. For
example, some amount of money could be described
as XML data in the form of

<pocketMoney>
 <dollarsInNotes>55</dollarsInNotes>
 <dollarsinCoins>1.75</dollarsInCoins>
</pocketMoney>

Software receiving this data set may then read the
tags and decide whether the data is of use to it or not,
and if it is, how to handle it, e.g. for the example
given here, sum up the amount and present it to the
user in some other currency. For each of the tages to
be understood, it must have already been defined in
an appropriate XML schema, which is a document
enlisting the set of tags to be used for all relevant
data, along with the rules of constructing the

project management

control data objects

fundamental data types

model generalisation

system structuring

information. It is easy to see that, given the proper
set of tags defined, one may represent all target-
specific information in a way that is software
independent. This concept very well matches the
aims of CACSD tool data exchange using current
technology in the same way that similar approaches
have been outlined from very early on in CACSD
(Rimvall, 1986) with the technology of the day.

However, the scope and potential of XML is much
wider than simply describing data. A number of
XML-related technologies are now emerging, and we
are currently shifting the original UIM
implementation to accommodate these new
paradigms. Our aim is to use these technologies to
build a software system for CACSD that satisfies the
data exchange requirements for

a. tool independent description of information
b. coverage of all control systems design

lifecycle information
c. layered definition of control systems

structures, models and submodels
d. automated control of the data exchange
e. well defined ways of transforming the

information to match the specific CACSD
tool data representation

With XML covering the requirement for (a), the
following sections present a set of complementary
recent standards and recommendations that address
the remaining of the requirements while taking
advantage of the latest web-enabled technologies.

3.1 Coverage of all control systems design lifecycle

information

The control systems design process involves a
number of steps that differ in the type of information
they require and produce. For example, a simulation
stage may result in a set of matrices representing
graph data, while running a set of experiments may
require information on the version of the models
used, a graphical representation of their structure and
the value of certain parameters.

In order to be able to produce XML documents
describing such a variety of control systems design
information, it is therefore necessary to make use of
a rich set of appropriate data tags. A complete set of
such definitions for the meaning of control
engineering information can be given in the form of
what is known as an XML schema (W3C, 2001b).
The CACSD XML schema then acts as the
information context for any related XML data. Any
tool wanting to send or receive data can do so by
accessing the CACSD schema and format or
interpret the data accordingly. This is a standard way
for software tools for understanding information, as
witnessed in the case of web browsers which can
display previously unknown types of information
read in XML documents. The potential of the
mechanism is such that standards bodies such as
OASIS (2001) are currently shaping

recommendations for schemas for a large number of
application areas such as. Therefore, the CACSD
XML schema approach offers the opportunity for the
definition of standardised CACSD data structures for
use with the new medium of XML, which is flexible,
extensible, widely used and well supported.

3.2 Layered definition of control systems structures

As fig. 1 shows, CACSD information is not ‘flat’. It
may be classified from fine-grain (as in the case of
fundamental control data types) or have a high
degree of abstraction, e.g. the information related to a
CACSD project. Furthermore, specific CACSD data
structures in this hierarchy may also be aggregations
of other data structures: a control systems model may
have a mathematical representation while at the same
time it consists of other simpler control system
models connected to each other.

A requirement for the CACSD data exchange is that
the exchange medium can capture the breadth of
these representations. XML is well suited to this task
as it can describe data of arbitrary complexity in
hierarchical fashion. The following simple example
shows one possible way that the structure of a matrix
can be declared in an XML schema.

<complexType name="matrix">
 <sequence>
 <element name="rows"
 type="xsd:integer"/>
 <element name="columns"
 type="xsd:integer"/>
 <element name="data"
 type="xsd:float"
 maxOccurs="unbounded"/>
 </sequence>
</complexType>

Based on the above XML schema, one may define
the following XML description of a matrix with its
data.

<matrix>
 <rows>2</rows>
 <columns>1</columns>
 <data>12.34E-5</data>
 <data>0</data>
</matrix>

The XML schema example states that a matrix type
contains other elements inside it, some of which may
be present more than once (maxOccurs for data is
"unbounded"). Further refinement may be applied
by controlling these elements. For example, a rule
may be set that the number of data be equal to
rows * columns . The existing types can then be
used as elements of more complicated ones. Such
definitions can be used to build data structures to any
desired level of complexity.

The previous implementation of control data
structures in the UIM-based data exchange used

EXPRESS for the description of data. Recent reports
on the comparison of EXPRESS with XML suggest
that the latter can accommodate the structures of the
former (Barkmeyer, and Lubell, 2001). This ensures
the smooth transition of the architecture into the new
data definition paradigm and, in general, promises
backward compatibility with systems based on the
EXPRESS standard.

3.3 Automated control of the data exchange process

Once the definition of a common data model for the
exchange of control systems information is in place,
additional XML-related technologies can improve
this data transfer. As discussed with the case of
CORBA for the UIM data exchange architecture, it is
desirable for the system to automate the process of
requesting, retrieving and sending data to other tools,
so as to minimise user involvement. Instead of
having to save the data of a source tool using a
specific set of options, then convert it and finally
load it to the target tool, it is better to make tools
exchange data ‘transparently’ – that is, become
aware of where the data needs to go and then
themselves arrange for the exchange configuration
details. XML-related mechanisms providing such
functionality include the XML Metadata Interchange
specification, XMI (OMG, 1999), and the Simple
Object Access Protocol, SOAP (W3C, 2001a). With
these mechanisms, automated exchange is not
restricted to pairs of tools, but rather any compliant
tool can ‘talk’ to any other tool in the design suite.
The use of such a specification in the control systems
design environment is a realistic approach that
improves the quality of services of the tools by
offering a number of advantages with respect to the
exchange of information. In the case of XMI
(Iyengar, 1999):

• is a neutral, platform-independent open
interchange format for data in distributed
environments

• works with the internet and builds on
existing industry standards

• is easy to implement in current software
tools

• breaks the wall between incompatible tools,
repositories and applications

• it is stream-based, i.e. the data to be handled
can be stored in a traditional file system or
streamed across the Internet

Although the details of these mechanisms are beyond
the scope of this paper, it is important to note that
they can be readily used where necessary for
enhancing the operation of the CACSD tools through
the automation of the exchange process.

3.4 Well-defined ways for transforming information

Given the range of data that is used in the CACSD
design lifecycle, it is expected that not all tools
exchanging data will be able to understand the data

format coming from other tools, even if it refers to
the same information. Our research in the case of the
UIM-based data exchange mechanism has shown that
it is common for control tools to want to follow the
path of: requesting data from a source tool; convert it
to the appropriate format; perform some operations
on it; convert the results back to the source tool
format; return the results to the source (Varsamidis,
et al., 1997). What this means is that tools may be
referencing the same data structures, but this does not
guarantee that they will also view them in the same
way.

Another potential problem is that sometimes a tool
may selectively pick some data from a larger dataset
and ignore its context information. For example, if
the designer extracts a control systems model from a
database, changes it, and then sends it back to the
database, it may be desired for the database links to
the old model to be redirected to the new version of
it. But this can only be done if the model that was
extracted from the database has not lost its ‘identity
mark’, which may have been treated as context
information and thus disregarded by the extraction
process. Because of such problems, it is necessary to
ensure that data does not lose its original identity,
context or relation to other data structures during the
communication of tools. In other words, the
transformation of information must always be
complete and verifiable.

Although it is possible to devise ad-hoc ways for
performing such transformation tasks, XML provides
the XML Stylesheet Language Transformation
recommendation, XSLT (W3C, 1999), whose
purpose is to allow only valid ways of moving XML
data from some source information pool to a target
one. It is obviously the responsibility of the designer
to decide what constitutes a valid transformation.
With such XSLT-based rules in place, any data
exchange is guaranteed to be correct in terms of
structure, i.e. with no incomplete, unreferenced or
non-valid data descriptions.

As with some of the previous mechanisms discussed,
the purpose of XSLT may not directly relate to the
design process for control systems; however, it is a
key tool for ensuring the validity of the information
to be exchanged. This technology can then enhance
the quality of the design process and relieve the user
from the burden of having to verify the correctness of
the exchange process. In this respect, XSLT is yet
another way of improving data management in a
control systems design environment.

4. CONCLUDING REMARKS

We have presented the concept of data description
with XML and how this can be used to enhance any
task involving data in the computer-aided design of
control systems. Along with XML, a number of
supporting technologies have been introduced, to
demonstrate the strength of the standard and the
potential benefits of using these technologies in
CACSD.

Our implementation of the XML-based data
exchange architecture extends the scope of the
Unified Information Model approach and aims to
updating the system to the latest technology.
Implementation has only started very recently and is
work in progress. However, the concepts involved in
the design do offer a solid ground for pursuing the
development of mechanisms that can have significant
impact in the use of control systems design tools.

XML is a recently developed, platform-independent
technology that has been adopted very quickly by
software tools in a diverse range of application areas.
This is due to its expressive power for modelling
information and the support services it offers for
data, including exchange, storage, distribution, and
transformation. These services closely match the
need for software quality and ease of use in the
control systems design process. We are proposing an
architecture for incorporating all these standard
mechanisms in a system that can support all
compliant control system design tools throughout the
CACSD design lifecycle. The resulting mechanism
does not restrict the functionality of any of the tools
while at the same time it enhances their abilities with
the provision of functions that aim directly at
improving the quality of the design process for the
control engineer.

REFERENCES

Barkmeyer, E.J, and J. Lubell (2001). XML

Representation of EXPRESS Models and Data.
XML Technologies and Software Engineering
(XSE2001). Toronto, Canada.

Bass, L., and R. Kazman (1999). Architecture-Based
Development. Technical Report CMU/SEI-99-
TR-007, ESC-TR-99-007. Carnegie Mellon
Univerisity, PA, USA.

Grübel, G. (1994). The ANDECS-CACE Framework
R_SYST for Integrated Analysis and Design of
Controlled Systems. Proc. of the IEEE/IFAC
Joint Symposium on Computer-Aided Control
Systems Design, CACSD ’94. Tucson, AZ, USA.

Iyengar, S. (1999). Overview of XMI. XMI
Technology Briefing Presentations.

 http://cgi.omg.org/news/pr99/completeXMI.ppt,
Object Management Group.

ISO (1994). Industrial Automation Systems and
Integration Standard 10303: Product data
representation and exchange - Part 11:
Description methods: The EXPRESS language
reference manual. International Standards
Organization.

Long, F., and E. Morris (1993). An overview of
PCTE: A Basis for a Portable Common Tool
Environment. Technical Report CMU/SEI-93-
TR-1, ESC-TR-93-175. Carnegie Mellon
University, PA, USA.

OMG (1995). The Common Object Request Broker
Architecture and Specification, revision 2.0.
Object Management Group, Inc., Framingham,
MA., USA.

OMG (1999). XML Metadata Interchange.
http://www.omg.org/technology/xml/, Object
Management Group, Inc., Framingham, MA.,
USA

POSC (1995). Software Integration Platform
Specification, Epicentre Data Model, Version
2.0. Petrotechnical Open Software Consortium,
Houston, TX, USA.

Rimvall, C.M. (1986). Man-Machine Interfaces and
Implementational Issues in Computer-Aided
Control System Design. Diss. ETH No. 8200,
Swiss Federal Institute of Technology.

Varsamidis, T., S. Hope and C.P. Jobling (1994a).
Information Management for Control System
Designers. IEE Int. Conf. Control'94. Coventry,
UK.

Varsamidis, T., S. Hope, and C.P. Jobling (1994b). A
Unified Information Model for Computer-Aided
Control Engineering. Proc. of the IEEE/IFAC
Joint Symposium on Computer-Aided Control
System Design, CACSD'94, Tucson, AZ, USA.

Varsamidis, T., C.P. Jobling and S. Hope (1997).
Towards a Repository Service for Computer-
Aided Control Engineering. 7th IFAC
Symposium on Computer-Aided Control
Engineering, CACSD'97. Gent, Belgium.

W3C (1999). XSL Transformations (XSLT) Version
1.0. http://www.w3.org/TR/xslt-19991116,
World-Wide Web Consortium.

W3C (2000). Extensible Markup Language (XML)
version 1.0 (Second Edition)

. http://www.w3.org/TR/2000/REC-xml-
20001006, World-Wide Web Consortium.

W3C (2001a). Simple Object Access Protocol,
version 1.1. http://www.w3.org/TR/SOAP/,
World-Wide Web Consortium.

W3C (2001b). XML Schema.
 http://www.w3.org/XML/Schema, World-Wide

Web Consortium.
Wandmacher, R. R. (1997). How SC4 Meets the

Business Need. IEE Meeting on ISO 10303 –
Standard for the Exchange of Product Data.
London, UK, March 1997.

