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Abstract: A methodology for pipeline integrity monitoring systems using a mixture of 
clustering and classification tools for fault detection is presented here. The approach is 
used to classify more readily faults or changes in the context of on-line leak detection 
with initially off-line training. The methodology is applied to a small-scale pipeline 
monitoring case where portability, robustness and reliability are amongst the most 
important criteria. The results are encouraging as relatively low levels of false alarms and 
increased fault detection are obtained.  Copyright © 2002 IFAC 
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1. INTRODUCTION 
 
This paper introduces a methodology enabling fault 
detection for on-line applications using clustering and 
classification techniques. The concern is supervision 
with fault-diagnosis as described by Patton et al, 1989 
and Isermann, 1997. Supervision is based on 
measured variables for which features are calculated, 
symptoms are generated via change detection, a fault 
diagnosis is performed and decisions for 
counteractions are made.  
 
This system is essentially a man-machine interface; 
the operator takes corrective actions as advised by his 
or her own internal procedures. The data provided are 
time series of a physical system collected at regular 
intervals. The various data sets used are those of non-
linear, time-varying processes. The aim of the 
resulting application is to automate the fault detection 
process using more intuitive and non-statistical 
techniques to resolve labour intensive issues linked to 
the development of any bespoke data processing 
system. The aim is the design of a generic classifier 
for the system through clustering. 
 

The outline of the rest of the paper is as follows: 
section 2 highlights the basis of the methodology 
requirements within the application are outlined, 
section 3 gives details of how the methodology is 
built and section 4 shows an industrial application on 
a small scale water network. 
 
 

2. DESIGN CRITERIA 
 

The user should notice no difference whilst running 
the added software. The requirements for designing 
this module are solely stemming from the developer 
who requires a system that will reduce development 
time and eventually remove the need for pre-
processing. This also implies that the inherent 
qualities of statistical systems - amongst which 
robustness - will need to be reproduced within the 
new module. Given that the system will work on less 
than predictable applications, where multi phase flow, 
changes in batches, changes in setpoints or in external 
conditions affecting the readings are commonplace, 
this will lead to a strict list of requirements. 
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2.1 Requirements 
 
The design of a classifier involves two stages: the 
construction of the membership function and the 
definition of decision rules (Denœux, 1997). However 
as this application is developed in view of integration, 
it needs to be flexible and straightforward. The 
following criteria were selected as most desirable: 
 
Portability: As the application is to be used for all 
types of fluids in all types of environments with 
varying properties and operating conditions, it is best 
when fewer arbitrary boundaries are used. Hence no 
thresholds other than irrefutable ones - such as 
positive and negative - for known behaviour can be 
used. 

 
Ease of use aims at addressing the need for minimum 
developer interaction and inputs in bespoke 
applications. It is to be developed for different 
applications with the same processing basis; it cannot 
have boundaries or thresholds besides greater or less 
than zero in many instances. 

 
Reliability: Similar measurements and conditions 
made repeatedly under identical circumstances are 
expected to yield concordant results. This particular 
property is required for the diagnostic and in a way 
linked to robustness described below. 

 
Robustness is the essential design criterion translating 
the need to withstand all types of changes in the data 
and minimise false alarm levels. Techniques that have 
the ability to tolerate noise and outliers in the data are 
in high demand in industrial applications with 
variable inputs. As quoted in Davé (1997) a robust 
procedure can be characterised by the following: 

- Have a reasonably good efficiency (accuracy) for 
the assumed model 
- Small deviations from the model assumptions 
should impair the performance only by a small 
amount 
- Larger deviations from the model assumptions 
should not cause a catastrophe. 

 
For engineering applications, only the second 
requirement needs to be looked at. Besides noise and 
outliers, the notion of getting the right number of 
clusters, indicating the right partition for the space, is 
closely linked to robustness. Some techniques 
currently available to solve this issue have their share 
of limitations and the overall solution remains elusive 
(Davé, 1997). 
 
The classical approach based on variations of k-
means is not robust. The alternative formulations 
based on noise clustering or possibilistic clustering 
are robust in that they are based on robust statistics 
(Davé, 1997). In this application, the Gustafson-
Kessel, a member of the fuzzy k-means family, is 
used. A major drawback of this algorithm family is 
the partition initialisation (Babuška, 1998) leading to 

reduced robustness of systems using them without 
adjustment. 
As mentioned earlier, robustness is one of the 
essential criteria of the methodology. Robustness is 
generally defined as a statistical characteristic. Davé 
(1997) argues that to fit robustness into engineering 
applications is only realistic where cases considered 
are those that may really occur within real life 
experiments. Extreme cases may not be encountered 
and within the clustering as a starting point of the 
methodology accounting for them may be totally 
irrelevant.  
 
Intuitive diagnostic ability: The diagnostic resulting 
from the application of the methodology must be very 
analogous to any expert diagnostic whilst being 
obtained by fuzzy clustering. 
 
 
2.2 Tools  
 
Besides the use of fuzzy techniques, fault detection 
can be obtained by gathering more information 
through mathematical models  (Isermann, 1997). One 
of the drawbacks of such techniques is the 
prerequisite knowledge of the physical system. As 
several models might be necessary, the use of such 
techniques may be best avoided, as they will meet 
earlier criterion of portability. 
 
The tools available are essentially the k-means and 
fuzzy k-means family of clustering algorithms. The 
application demands unsupervised clustering 
considering that the data is unknown until it arrives. 
 
Training data can be obtained with the high likelihood 
that no large faults will be available, reducing the 
field of the classifier training. Failing this the data 
will have to be simulated or adapted from pipelines 
similar in configuration. This is for safety reasons.  
 
The properties of the algorithms exploited here are 
the search for spherical clusters by FKM and the 
sensitivity of density and shape of GK. Other features 
also prove interesting. In their initial form, both FKM 
and GK look for clusters of equal volume.  
 
For FKM, this will mean that for each neighbouring 
cluster the eigenvalues of its covariance matrix will 
be expected to be similar. For the GK algorithm, this 
may not be so, as the density - through the covariance 
- is taken into account and may alter the eigenvalues 
of each cluster covariance matrix. To illustrate the 
differences between the algorithms details of the 
FKM algorithm are given below and differences with 
the GK algorithm are highlighted. 
 
FKM and GK algorithms 
 
Let Z be a data matrix size r x s such that 
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The weighting factor m is set equal to two in the 
simulation below. For both algorithms, the closeness 
of cluster centres (or prototypes) may lead to 
membership functions being very similar. When 
merging, overestimating the cluster number in the 
first round of clustering increases this possibility. 
There is no assumption that the data is normalised, 
scaled or noise-free.  
 
For the likelihood of high scale differences in the data 
and the need to retain original, albeit filtered, data and 
it sensitivity to variable data density GK appeared the 
best likely candidate for the application. 
 
 

3. METHODOLOGY 
 
The application considered is an adjunction to real-
time software used to monitor pipelines. Its aim is to 
warn operators when malfunction occurs due to fluid 
loss. Rather than develop and estimate levels of 
variable correlation for each project and adequately 
alter the software, what is proposed here is a generic 
classifier with minimal developer interaction. 
 
Aiming to be generic implies that a series of 
restrictions will apply. The first to come to mind is 
that for the model to be effective, no arbitrary 
formatting is possible to normalise the data. Others 
involve ease of application from one system to 
another, reliability and robustness.  
 
A decision model can be decomposed in two steps: 
training and application. The training is classically 
off-line, although on-line training can also be added 
and considered, whilst the application is a real-time 
process.  
 
Dubuisson (1996) rightly hints at the most essential 
criteria of an automatic diagnosis scheme:  

- Running mode recognition 
- Possibility to give several running modes 
- Non-identification of the running mode when 
unlike any other known one 
- Help to the operator. 

 
These fundamental points are considered in the 
creation of the methodology for this application. 
 
Training (off-line): 

− Get training variables in raw form or filtered 
− Define data space 
− Cluster/partition data space though GK 

algorithm obtained in (Babuška, 1998). A 
combination of agglomerative competitive 
clustering (Frigui and Krishnapuram, 
1997,1999) is applied off-line 

− Identify conditions for each cluster. 
 



 

Classification: 
− Get on-line variables and use a distance-

based algorithm to estimate membership 
values in training clusters. 

 
Diagnostic: 

− Use the max-rule to determine the 
membership of the output for the on-line 
estimation 

− Apply exclusion rules (as a reject option) as 
shown in Table 1 to correct the output 
membership for increased reliability 
(Boudouad, 1998 and Ménard, 2000). At this 
stage an automatic reject option and 
redefinition is not available but is being 
considered for further work. 

 
To increase accuracy in the model, training and 
classification are done for two separate sets of 
temporally related data requiring multiple classifier 
fusion to reach a decision. On another note, data can 
be created to accommodate most cases based on one 
example for the system in question. Data can be made 
to be representative and efficient. An option to update 
the classifier on-line is also available. The advantage 
of such classifier design is that it will detect new 
conditions as they appear. 
 
 Unfortunately, leaks of very different sizes will 
appear as different conditions and labelling will still 
have to take place off-line and within this application, 
labelling is required. The disadvantage of such 
technique over the off-line training is that a period of 
stability is required before new characterisation, thus 
slowing down the first detection of a new condition. 
 
 

4. EXAMPLE 
 

The following example is one where different types 
of faults occur. Figure 1 illustrates one of the two sets 
of variables used. The conditions present in this 
sample are: steady state, leak in steady state and 
transient. Although called steady state, the data is 
really effectively within acceptable change 
boundaries.  
 

Figure1 - Test time series: time serie
totally de-noised. The lower trace
and that of the upper trace are o
space is defined as the plotting 
each other. A variation of Gusta
used to define the partition. 

 
In this experiment the data is used
is present in the system. Normally
would be processed for outliers a

quality- data. The difference in scale is no issue in the 
clustering, however the closeness of the clusters 
initially led to unreliable partition. This was solved 
through the implementation of a merging technique 
complementary to GK algorithm. 
When put through the classifier, the results are very 
encouraging as shown in the top graph in Figure 2 
compared to the expected output (bottom). Besides a 
simple rule engine based on Table 1 and the 
identification of the clusters for ease of use by the 
user, no other interaction has taken place from the 
selection of the data to the results. The rules are 
needed to create an overall classifier output. The 
identification is essential to the user.  
 

Table 1- Excerpt of rule table for Diagnostic 
 

Rule # Class 1 Class2 Diagnostic  
 

1  TR SS TR  
2  TR  LSS TR    
3  SS LTR TR 
4  SS  TR SS  

 
 

It can be noted in Figure 2 that a transient is detected 
as a leak in the top half. There may be a need to 
verify the rules or the data to ascertain where the 
fusion went wrong (see Figure 3).  
 

 
Figure 2 - Diagnostic results. Top: Classifier output, 

bottom: expected output. Legend: TR -transient, SI-
shut-in, LSI-Leak in shut-in, SS: steady state, LSS: 
leak in steady state 
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Figure 3 - Classification results. 
        This shows the output for each classifier. The top 

classifier allows determination of the regime (0:steady 
state, 4: transient). The lower classifier defines the 
type of fault. The numbers have the same meaning as 
the acronyms in the top graph in Figure 2. 



     

Using this system enables a double check of the 
system regime. The idea is that only certain 
conditions, within the current realm of knowledge, 
occur under certain circumstances. This was achieved 
due to the extreme likeness of transient conditions to 
steady state ones, which can be noted in Figure 1. 
 
 

5. CONCLUSION 
 

The application is dealing with a series of faults and 
operational changes which need to be identified, 
although not all of them will impair the operation of 
the system, in particular the slow changes. Abrupt 
changes would either be leaks or large transient 
operational conditions. The faults presented here are 
of abrupt nature. Other applications of the 
methodology with incipient faults have also been run 
successfully. 
 
The methodology proved successful in this context on 
several points. Firstly in defining the data space in a 
very intuitive expert-like fashion. Secondly its ease of 
application meant that very little information was 
used and in terms of inputs a minimum level of 
information was necessary.  And finally, it provided 
fault diagnostics with low level of false alarms and 
few misdiagnoses under different conditions.  
 
Option for on-line update clusters is being currently 
considered to help make the training set more 
adaptive. Most of the training will take place off-line 
and in the eventuality of a new completely unforeseen 
condition developing, an on-line classifier could be 
applied. This would help reduce model dependency 
and increase robustness. 
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