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Abstract: An optimal iterative learning control (ILC) technique based on a quadratic
optimal criterion has been implemented and evaluated in an experimental rapid
thermal processing (RTP) system fabricating 8-inch silicon wafers. The control
technique is based on a time-varying linear state space model which approximates a
nonlinear system along a reference trajectory. This ILC control technique is capable of
making improvements in the control performance from one run to next and eventually
converges to a minimum achievable tracking error despite model error. Through a
series of experiments with wafers on which thermocouples are glued, it was observed
that the wafer temperatures are steered to the reference trajectory reducing the
differences overcoming various disturbances. Copyright 2002 IFAC
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1. INTRODUCTION

Rapid thermal processing (RTP) has emerged as
one of indispensable semi-conductor manufactur-
ing processes after a decade of intensive research.
The main advantage of RTP over the conventional
furnace process is that various wafer manufactur-
ing operations such as annealing, oxidation, nitri-
dation, chemical vapor deposition, and cleaning
can be conducted in a single system with reduced
thermal budget, enhanced wafer granularity, and
cluster compatibility (Roozeboom, 1992). Despite
the high promise and wide applicability of RTP,
further applications have been deterred by the dif-
ficulty in attaining a required level of uniformity
in the temperature distribution across the wafer
surface. In order to overcome this barrier, research
efforts have been made in both the design and
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control aspects (Badgwell, et al., 1995). As the
standard size of the silicon wafer has grown from 6
inches to 8 inches and is now moving to 12 inches,
the temperature control requirement will continue
to pose new challenges.

In the early stage of RTP system control study,
multi-loop PID control had been attempted but
found unsatisfactory due to the strong interaction
in the system (Dilhac, et al., 1992). After that,
the focus was shifted to model-based multivari-
able control techniques, including model predic-
tive control (Stuber, et al., 1994), linear quadratic
gaussian (LQG) control (Gyuhyi, et al., 1992),
LQG with an optimally designed feedforward in-
put signal (Cho and Gyugyi, 1997), and inter-
nal model control (Theodoropoulou and Zafiriou.,
1999),. The performance of a model-based feed-
back control technique inevitably depends on the
quality of the model. Given the fact that vari-
ous causes such as contamination of the chamber



wall change the characteristics of an RTP, the
performance of the conventional model-based ap-
proaches may have limitations unless the model is
updated continuously.

As a way to achieve high-performance control
while overcoming the modelling demand, iterative
learning control (ILC) based on the exploitation
of the repetitive nature of RTP operation has been
attempted by other researchers (Bien and Xu,
1998; Lee and Lee, 2000). The ILC is a special
control technique for batch or repetitive processes
that update the current batch operation by feed-
ing back the previous batch information. Chen et
al.(1997) considered a so-called PI learning rule,
which doesn’t rely on a process model, and applied
it to a single-input single-output (SISO) RTP
model. Zafiriou et al.(1995a, 1995b) devised a non-
linear model-based run-to-run scheme, which is a
direct implementation of a numerical algorithm
of optimal control to a real system. They demon-
strated the performance with a SISO RTP model.
The above approaches are rather preliminary in
that they conduct only run-to-run improvement
(lacking real-time feedback control) in a determin-
istic framework. Recently, Lee et al. (2001) have
proposed an optimal ILC technique, called BLQG
(Batch LQG) control, based on a time-varying
linear stochastic state space model identified along
the reference trajectory. A unique aspect of the
technique is that it combines ”run-to-run” control
with real-time feedback control so that they work
in optimal and complementary manner.

In this study, the BLQG technique is implemented
in an experimental RTP system processing 8-inch
wafers and evaluated its performance. The RTP
system has an array of 19 lamps (max. 2Kw each)
and three thermocouple measurements across the
wafer surface. By partitioning the lamps with
three groups, the RTP system was configured as
a three-input three-output system. Model identi-
fication was conducted using N4SID (Overschee
and Moor, 1994) as proposed in Lee et al (2001).

2. PROCESS DESCRIPTION

The experimental RTP system used in this study
was designed for fabricating 8-inch wafers. The
actual apparatus and schematic diagram of the
system are shown in Figs. 1 and 2, respectively.
The system has 19 linear-type tungsten-halogen
lamps (max. 2Kw each) as the heat source. The
lamps are grouped into three zones as shown Fig.
2 (seven lamps for the center zone, six lamps
for the middle and edge zones, respectively) so
that respective lamp zones can exert independent
radiation heat on the wafer surface. The wafer
is placed on a quartz support and heated in the
nitrogen atmosphere. The wafer temperature was
measured using K-type thermocouples (TC). In

Fig. 1. Picture of the experimental RTP system
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Fig. 2. Tungsten-halogen lamp arrays and RTP
temperature control system.

fact, a calibration wafer which has three TC points
at the center, middle, and edge of the wafer sur-
face is used as shown in Fig, 2. The system cham-
ber is designed to have embedded coolant paths
inside and is cooled by circulating cooling water.
As a consequence, the RTP system is configured as
a 3x3 MIMO system. Note that there is a special
scheme for compensation of the AC power fluc-
tuation. The AC source voltage (220V normally)
supplied to the lab can fluctuate by about 10V.
This fluctuation poses an unexpected disturbance.
Since ILC studied in this research improves the
control input on the basis of the input profile
of the previous run, such a disturbance at the
input may have a harmful effect on the resulting
control performance. To compensate the power
fluctuation, a kind of AVR is implemented using
a high-gain P control.

2.1 Step Response

In Fig. 3, a typical step response of the wafer
temperatures is shown. The response was ob-
tained around the steady state of 450°C to 5%
increase in the lamp power of the edge zone. The
responses for other inputs show similar pattern.
One can see that considerable effects are given
on all three temperatures measurements simulta-
neously, which demonstrates the high interaction
inherent in the system dynamics. An interesting
phenomenon is that the response doesn’t tend to
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Fig. 3. Step response of wafer temperatures to a
step increase of lamp power in the edge zone.

settle at a new steady state easily due to integrat-
ing nature. However, such slow dynamics by the
large thermal mass of the chamber wall can be
easily compensated by feedback control.

2.2 Experiment Condition

The overall batch horizon for each experiment was
chosen as 30 seconds with the sampling time of 0.2
sec by referring to the dynamic response given in
Fig. 4. Also the reference temperature trajectory
was as follows:

For the first 10 seconds, the wafer is heated
from 300°C to 700°C linearly, and then the
wafer temperature is maintained at 700°C for
the next 20 seconds.

Cooling trajectory was not considered since the
objective of the study is confined to evaluation of
a control technique. Also, a higher reference tem-
perature was not attempted by some limitation
of the experimental apparatus. Even at 700 °C,
a longer operation than 50 seconds induces over-
heating of cooling water, which may cause leakage
and catastrophic damage of the experimental RTP
system.

3. MODEL IDENTIFICATION

The optimal ILC (BLQG) technique requires a
time-varying linear state space model identified
along a reference trajectory. To identify the re-
quired time-varying linear state space model, the

following steps are taken as proposed in Lee et al.
(2001):

step 1: Using multi-loop PI control, the wafer
temperatures are kept at around 400°C. To the
respective steady state input values, indepen-
dent PRBS’s are added for 120 seconds and the
resulting temperature responses are taken.
step 2: Both the input and output signals are
filtered by
1—¢1

. -1y _ - 7 1
fleter(q ) 1— 0‘925q_1 ( )

in order to remove the bias term and high fre-
quency noises. The filtered input and output
signals are processed by a subspace identifi-
cation method, called N4SID (Overschee and
Moor, 1994), and a linear time-invariant linear
stochastic state space model (valid around 400
°C) of the following form is found.

z(t + 1) = Az(t) + Bu(t) + Ko(t), (2)
y(t) = Cz(t) + v(t), with R, 2 E{v(t)v(t)T}

Here, u € R® and y € R® rrepresent the lamp
power inputs and the temperature measure-
ments, respectively. Also, z(t) and v(t) denote
the Kalman state and the innovation.

step 3: Repeat steps 1 and 2 for 600°C. Identifi-
cation experimental run lasts for 60 sec for this
case due to physical limitation.

step 4: Construct a time-varying linear stochas-
tic state space model valid along the reference
temperature trajectory after the basis adjust-
ment and model interpolation procedure given
in Lee et al. (2001). The resulting model has
the form of

z(t+ 1) = A(t)z(t) + B(t)u(t) + K(t)v(t), (3)
y(t) = C(t)z(t) + v(t), with R, = E{v(t)v(t)T}

In the above, N4SID employed in step 2 provides
a state space model in a balanced form. Due to
the balanced realization, a transformed state will
be obtained. Hence, a similarity transformation
to recover the original is needed in step 4. The
idea of model interpolation employed is as follows.
Let 77 and 7> be two adjacent temperatures
and (4;,B;,C;,K;) i = 1,2, be the associated
balanced realization. Let T, be a temperature
between 77 and T, such that

Ta:(l—a)T1+aT2, 0<ax<l1 (4)

Since a direct interpolation of the system matri-
ces, would result meaningless model, it is logical
to interpolated the frequency gain. Note that the
frequency gain from the input to the state is
represented by (e/] — A)"'B and that of the

dual system is [C'(e?“ ] — A)fl]T. Then the system
matrices at that linearly interpolate these two
gains can be obtained. However, the system matri-
ces suitable for all frequency, (4;, B;, C;, K;), do
not exist, and they should be determined in the
least squares sense at selected finite frequencies in
w € [0,7]. The detail can be found in Lee et al.
(2001).

4. OPTIMAL ITERATIVE LEARNING
CONTROL

In this section, the optimal ILC technique (BLQG)
is briefly reviewed.



4.1 Stochastic System Model for ILC Design

In the batch operations, the information on previ-
ous runs can be exploited to enhance the control
performance for the future runs. Throughout this
section, the subscript k represents the run index.
In (3), vg(t) is an i.i.d. (independent and iden-
tically distributed) sequence during a batch, but
vg(t) for different run indices may show signifi-
cant correlation. In fact, in terms of &, the error
term vy (t) may exhibit ”persistent” or ”drifting”
behavior in addition to random fluctuations. Such
behavior can be reasonably modelled by the equa-
tion

’Uk(t) = Uy, (t) + ﬁk(t), U — ’l_)k_l(t) =Ny (t) (5)

where 9y(t) and ng(t) are independent random
sequences with respect to both k& and ¢ indices.
Roughly speaking, 9, (t) represents the part of the
error that will persist through all future runs while
05 (t) is the part that will disappear. Now, (3) can
be decomposed into two parts, one that is driven
by u(t) and 0 (t) , and the other driven by o (¢).

Zx(t + 1) = A(t)Zx (¢) + B(t)ur (t) + K (¢)x(t)
gr(t) = C(t)Zx (t) + vk (t) (6)
Ex(t + 1) = A(t)2x (t) + K (t)0x(t)
Uk (t) = C(t)2x () + 0r(t) (7)

Of course, yi(t) = Gr(t) + yr(t). Also, if the
reference trajectory for yi(t) is denoted by yq(%),
the error signal becomes e (t) = yi(t) — ya(t). In
order to put (6) into the standard form in which
the external noise is an independent sequence in
terms of k as well as ¢, the difference on the
equations for two consecutive runs results

Azp(t +1) = A(t)Azg (t) + B(t)Aug(t) + K(t)nk(t)
Ir(t) = C(t)AZg(t) + Fr—-1(t) + nx(t) (8)

where AZj, £ T, — Trp_1, Aup = up — up_1. Note
that the output equation of (7) can be equivalently
written as

er(t) = C(t) 2(t) + C(6)AZy () + Ex-1(t) (9)
+ lA)k (t) + ng (t)

where e, (t) = 91 (t) —74(t) . In order to utilize the
information on past run, &;_;(t) can be included
as states. Thus, the following is defined.

&, = [er(0) -+ & (N)T]F (10)
Now, by including é;(t) in the state while com-
bining (7) and (8), the following augmented state
space equation is obtained:

Er(t+1) [A(t) 0 O & (t)
Azp(t+1) | =] 0 A(t) 0| | Azg(t) (11)
er(t+1) | 0 C(t) I er(t)
[ 0 K ()0 (t)
+ | B(t) | Aug(t) + | K(t)ng(t)
| 0 H (t)n (t)
25 (t)
ex(t)=[C(t) C(t) H(t) ] | Az (t)
ex(t)
~+ U (t) + nk(t) (12)
where, C(t) £ [0 --- CT(t) --- O]T and H(t) is

a matrix that extracts out the t+ 1t element from
€ (t) .

4.2 BLQG Formulation
The input change Aug(t) for the £*® run is deter-

mined according to the following Linear Quadratic
Gaussian (LQG) objective subject to (12):

=2
iR

min Jk=E{e{(N)Mek(N) + t T (£)Qex(t)

Il
o

+ Au;‘f(t)RAuk(t)} (13)

The above is a standard LQG problem, but the
resulting technique will be called as Batch LQG
(BLQG) control in accordance with the original
motivation of the problem. The optimal solution
is standard (Lewis and Syrmos,1995) and given by
a combination of the Kalman filter and the Linear
Quadratic Regulator (LQR).

4.3 A Suboptimal BLQG Formulation

The underlying model (11) for BLQG has a high-
order state dimension. Especially, §x_1(t) is not
measurable and a model for this will contribute
to the increase in model size. Hence, it requires a
rather heavy computational demand though not
too much. In order to enhance the computational
efficiency while retaining the basic structure of the
underlying model, a suboptimal algorithm is for-
mulated. The key to the suboptimal formulation
is to approximate (8) as

AZp(t+1) = A(t)AZk(t) + B(t)Aug(t) + K(t)ng(t)
Ir(t) =C(t)AZk(t) + gr1(t]t) + ne(t) (14)

Here, §x_1(t) is replaced by gj—_1(t|t) which repre-
sents an estimate based on information available
at time t of the &k — 1°¢ run. In this way, the
computational burden can be reduced by using
readily available information on g1 (t) from the
estimated state of the previous run.



By scrutinizing the input calculations, one can
see that ug(t) from suboptimal as well as optimal
BLQG control is determined as a summation of
the output error over the run index. This run-wise
integral action enables us to attain the minimum
achievable tracking error as k — oo (just as the
integral action over time removes steady state
offsets) such that

N-1
Jy > minE {eT(N)Me(N) + eT(t)Qe(t)}
t=0
as k— oo (15)

despite model uncertainty (within certain limits).

5. RESULTS AND DISCUSSION

The identified model obtained at 400 °C is tested
for a verification data set which is filtered with
(1). Due to the relatively small number of data
sets (by the physical limitation of the system),
the identified state space model is not accurate
but still captures the major dynamics of the
system. It has not been tried to elaborate the
model further since the BLQG technique possesses
a capability to overcome the model uncertainty.
The state dimension of 3 was found to be most
appropriate for both 400 °C and 600 °C models.
Figure 4 exhibits a typical result of BLQG runs.
The initial run is conducted with multi-loop PI
control, and BLQG control is started based on PI
control result. Figures 4(a), (b), (c), (d) show the
temperature responses together with the reference
trajectory for PI, first run of BLQG, fifth run
and then tenth run of BLQG, respectively. It is
obvious that the tendency of decreasing track-
ing error for all three wafer temperatures as the
run is repeated. However, result of the tenth run
doesn’t look improved much compared to that of
the fifth run. The theory dictates that, under the
situation that there is no random disturbance,
BLQG can reduced the squared tracking error
to the achievable minimum as the operation is
repeated on and on. However, the achievable min-
imum is determined by the design of an RTP
system. Although there is no means to check the
achievable minimum tracking error for concerned
RTP system and also the temperature measure-
ment is corrupted by persisting random noise, it
is thought that the temperature profiles after the
tenth run are close to the best attainable ones for
the experimental system. More experimental tests
are being under way in parallel with improvement
from the design aspect (e.g., modification of the
lamp grouping, reduction of measurement noise,
etc) as well as from the control aspect (e.g., accu-
racy of the model, etc.). Figure 5 shows the BLQG
performance when a disturbance is introduced at
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Fig. 4. Response of wafer temperatures (a) with
PI control, (b) with BLQG (first run), (c) un-
der BLQG (fifth run), and (d) under BLQG
(tenth run).

time 20sec. The disturbance is an injection if cold
air. In this result, BLQG could overcome the effect
of disturbance as the batch is repeated.

6. CONCLUSION

A computationally efficient linear quadratic gaus-
sian iterative learning control technique, named
BLQG, has been applied to a temperature uni-
formity control of silicon wafers with a proto-
type RTP system, experimentally. The applied
technique conducts run-to-run feedback together
with real-time state feedback based on a lin-
ear quadratic gaussian criterion. Along with this
study, a method for identifying a linear time-
varying state space model has also been adopted
as an integral part of the control technique.

Experimental application to a prototype 8-inch
RTP system shows that BLQG technique per-
forms quite satisfactorily. From the experiment,
BLQG technique was found to attain an accu-
rate tracking to the achievable minimum tracking
error. Even under a repeated disturbance BLQG
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Fig. 5. Response of wafer temperatures of re-
peated disturbanc occurring (a) with PI con-
trol, (b) with BLQG (first run), (c) under
BLQG (fifth run), and (d) under BLQG
(tenth run).

could compensate the disturbance effect satisfac-
torily.
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