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1. INTRODUCTION

The problem of state estimation of dynamical
systems has been studied extensively over the last
three decades. It is well known that the Luen-
berger observer can be used in a deterministic
context and the Kalman-Bucy filter theory can
be applied to stochastic processes (Kwakernaak
and Sivan, 1972; O’Reilly, 1983; Lewis, 1986; Mid-
dleton and Goodwin, 1990; Kucera, 1991; Kamen
and Su, 1999). These estimators have been ex-
tended to deterministic systems with unknown
inputs (see (Hou and Miiller, 1992; Darouach et
al., 1994) and references therein). However for the
stochastic systems with unknown inputs, only few
results exist on the design of the optimal filter-
ing. In (Kitanidis, 1987; Darouach and Zasadzin-
ski, 1997), full-order unbiased minimum variance
filters for discrete-time stochastic systems in pres-
ence of unknown inputs in the model have been
developed. The optimality of these filters has been
recently proved in (Kerwin and Prince, 2000).

In many practical problems we only need a partial
state or linear functional of the state. In (Nagpal
et al., 1987; Soroka and Shaked, 1988; Nakamizo,
1997), a reduced order filtering algorithm has been
developed for standard stochastic systems where
the inputs are known.

In this paper, we propose a new method to design

a reduced order filter for stochastic discrete-time
time-varying systems with unknown inputs. The
latters affect the model and also the outputs of the
system. The necessary and sufficient conditions
for the existence of the filter are given, they have
been obtained from the unbiasedness constraints.
The convergence and the stability conditions are
presented for the time-invariant case.

2. REDUCED ORDER UNKNOWN INPUT
FILTER

2.1 The time varying case

Consider the following stochastic discrete-time
time-varying systems with unknown inputs

z(t+1) = A()z(6)+B(Hu(t)+F(H)d(t)+w(t)(1a)

y(t) = C(H)x(t) + G(H)d(t) + v(?) (1b)

z(t) = L(t)=(t) (1c)

where z(¢) € IR"™ is the state vector, y(¢t) € IR?
1s the measurement output, u(¢) € IR™ is the
known input, d(¢) € IR? is the unknown input
and z(¢) € IR” is the vector to be estimated, with
r < n. A(t), C(t), B(t), F(t), G(t) and L(t) are real
matrices of appropriate dimensions. Without loss
of generality, it is assumed that rank L(z) = r. w(?),
v(¢) and o are zero-mean random vectors obeying
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where £{.} is the expectation operator, é;, (IS the
Kronecker delta function, Py > 0, Q(i) > 0 and
R(i) > 0.
Let us consider the following functional r™

filter
Z(t4HD) =N (E+DE(H) + E(t+Du()+J E+Dy(e+1) (2)

-order

where z(¢) € IR” is the estimate of z(¢), matrices
N(¢), E(t) and J(t) are of appropriate dimensions.
The estimation error is

e(t) = 2(t) — 2(t) = L(t)x(t) — 2(t).

The problem is to find the matrices N(¢), F(t) and
J(¢) so that z(¢) is unbiased, i.e.

E{e(t)} =0 (3)
and

J = tr(P(t)) (4)

1s minimum, where P(¢) is the estimation error
covariance matrix defined by

P(t) = S{e(t)eT(t)}. (5)

The dynamic of the estimation error is given by
e(t+1) =N (t+1)e(t) + (T (t+D) A(L) =N (E+1) L(£)) 2 (¢)
—J(tH)G(EH)d(E+) + (T (E+1) B(t) — E(t+1)) u(t)
+ (D) F(B)d(8) + Y (E4+D)w(t) = J (t+Dv(t+1)  (6)

where

For z(¢) to be an unbiased estimate of z(¢) we must
have the following constraints

0=U(t+1)A(t) — N(i+1)L(t) (7)
0=V(+1)F(t) (8)

= J(t+1)G(t+1) (9)
0= W(t+1)B(t) — E(t+1). (10)

Now since L(t) is a full row rank matrix, let
Ti(t) € R"™7*" be a matrix such that

TLl((tt)) - [Hl(t) El(t)} .

Then, equation (7) is equivalent to
(B(EHD)A(E) — N+ L) [Hi (1) Ba(0)] =0

which yields

From (8), (9), (12) and by using the definition of
U(t), we obtain the following equation

J(t+1)0(t+1) = Q(t+1) (13)
where

O(t+1) = [CU+DANE(H) CU+1)F(t) G(t+1)]

Qt+1) = [L{E+ DA Ei(t) L{t+1)F (1) 0]
Before giving the necessary and sufficient condi-
tions for the existence of the filter (2) for z(¢),
define the following matrix

Ct+1)A(t) C(t+1)F(t) G(t+1)

Be+1) = L(t) 0 0

)

then we obtain the following lemma.

Lemma 1. The reduced order unbiased filter (2)
exists if and only if

:rankE(t—l—l).( 14)

If equations (7)-(10) are satisfied, the filter dy-

namics error (6) can be written as

e(t+1) = N(t+1e(t) + $(t+1)w(t) — J(¢+1)v(t+1).
(15)

Now under condition (14) the general solution of
equation (13) is
J(t41) = J1(t+1) + K(t+1)J2(t+1) (16)

where

Ji(t4+1) = Q(t+1)01 (t41) (17)

and K (t) € R~ is an arbitrary matrix and
Jo(t4+1) = a(t+1) (fp - @(t+1)@T(t+1)) (18)

where ©1(t+1) is any generalized inverse matrix of
O(t+1) and a(t) € RP~7¢) P is an arbitrary full row
rank matrix such that J»(¢) is of full row rank and

[(3:((;))] is of full column rank with rank ©(¢) = re.
Remark 2. The parameter matrix a(t) is of full
row rank and must be chosen such that [(3:((;))]
is of full column rank, one choice can be done
as follows : a(t) = [0 Lp-re) JUT(t) where O(t) =
U(t) [0 01 v™(¢) is the singular value decompo-
sition of the matrix ©(t), U(¢) and V(¢) are or-
thogonal matrices of appropriate dimensions. In

this case J2(t) = a(t). |
Inserting (16) into (11) gives
N(t+1) = Q(t+1) — K(t+1)T(t+1) (19)
where
Q1) = (LY AT (tHDCEH) A()H (2) (20)

T(t) = R (t+1)C (1) A(t) Hi (). (21)

Then the filter (2) becomes

2(t+1) = Q(H1)Z(6) + E(t+Du(t) + i (t+1)y(t+1)
() (ot 1)y(E+1) =T (E+1)2(6) — B+ u(t))
where

E(t+1) = L(t+1)B(t) — Ji (¢+1)C(t+1)B(t) (22)

B(t+1) = L(t+1)C(t+1)B(t), (23)



and equation (15) becomes
e(tH1) = (Qt+1)— K (-4 DT(E41)) e(t)~(J1 (t4+1)
+K(t41)J2(t4+1)) v(H)+H(L(E+1) = J1 (¢ 4+1)C (¢4 1)
LK (1) L (t+ D)C(E+ 1) w(t).  (24)

From (24), the error covariance propagates as
P(t+1) = (Q(t+1) — K(t+1)I(¢+1)) P(¢) (Qt+1)
—K+DT(+1) " + Q(t+1) — S+ 1) KT (t+1)
—K(t+1)ST(t4+ 1)+ K(t+1)@(t4+1) K" (¢+1)  (25)
with the initial condition P(0) = L(0)P, L7 (0) and
Q(t+1) = (L(t+1) = 1 (t+1)C(t+1)) Q(#) (L(t+1)

— L (t+ 1) O+ 1) +T1 (1) R(E+1) T (E4+1)
S(t+1) = (L(t+1) — L (t+1)C(t+1)) Q(1)CT (¢+1)
) Jy (t4+1) = Ji (t+ 1) R(t4+1)J5 (t41)

O (t+1)=Lo(t+1)(CE+D)QOCT(t+ 1 +R(E+1))

) Jy (t+1).

From (25), the minimization of (4) leads to the

following equation

K (e+1) (T4 1) POT (£41) + 0(¢41))

= Q(t+1)POT (t+1) + S(t+1).  (26)

The optimal gain K(t—i— 1) exists if and only if
Qe+1)PHT (t+1) +5(+1)
T(t+1)P()T (t+1) + ®(t4+1)
= rank (r(t+1)P(t)FT(t+1) + (I>(t—|—1)) (27)

or equivalently
ker (T(t+1)P(t)FT(t+1) n (I>(t—|—1))

C ker <(ﬁ(t+1)P(t)FT(t+1) T 5(t+1)) T> . (28)

In this case the general solution of (26) is given

by (Kucera, 1991; Saberi et al., 1995)
K(t+1) = (ﬁ(t+1)P(t)FT(t+1) n S(t—i—l))
(T4 HPOTT (41) + @(e41)) ' + F(141)

where

span(EK (t+1)) C ker(T(t+1)P(OT (t4+1) + B(t+1)).
Using (28) and inserting this solution into (25)
gives the following generalized Riccati difference
equation (GRDE)

P(t+1):ﬁ(t+1)P(t)ﬁT(t+1)—(ﬁ(t+1)P(t)TT(t+1)
54 D) T+ ) POT (4 1) (e +1)
< (e DPOT(+D 454D + Q).

Remark 3. When rg = p we obtain J>(¢) = 0,

Ji(t+1) :_Q(t—l—l)@f(t—l—l) and the filter becomes
Z(t4+1) = Q(E4+1)2(8) + E(t+1D)u(t) + 1 (¢+1)y(t+1)
with

P(t+1) = Qt+1)PH)Q (t4+1) + Q(t+1)
Q(t+1) = (L(t+1) = Ji(t+1)C(t+1)) Q(t) (L(t+1)

—Ji(t+1)C(t4+1)" + T (t+ 1) R(E+1) I (¢41).
|

Remark 4. When L(¢)=1,, F(t)=0 and G(t)=0,
we obtain the full-order Kalman filter. |

Remark 5. If matrices G(¢t) = 0, L(¢) = I, and
®(¢+1) 1s nonsingular, we obtain the results pre-
sented in (Kitanidis, 1987; Darouach and Za-
sadzinski, 1997). |

2.2 The time tnvariant case

In this section we consider the case where the
system matrices are constant i.e. A(t)= A, B(t)= B,
Fty=F,C(t)=C,Gt)=G, L(t)y =L, Q(t) = Q,
R(t) = R and

TLl h - [Hl El].

Then the filter (2) becomes

2(t+1) = Q2(t) + Fu(t) + Jiy(t+1)

+K(t41) (ng(t—l— 1) - T2(t) — fu(t)) (29)

where
= LAHl — chAHl
= JLCAH,
= LB-J,CB
= J,CB

| | =1 2

with Ji = Q0" and J. = a(I, — ©01) such that
a € RP=76)XP ig g full row rank matrix and [(3:]

is of full column rank, where rg = rank ® and
© = [cAE, CF d]
Q = [LAEy LF 0.

The error covariance propagates as
P(t+1) = (Q - K(t+1)D) P(t) (@ — K(¢t+1)D) +Q
—SK"(t+1)-K(t+1)S" + K(t+ 1)@ K" (t+1)  (30)
with the initial condition P(0) = LP, LT and where
Q= (L-JCO)Q(L—-50)"+nRI"
S = (L-5LC)QCT I — Ry
=1 (CQCT + R) Iz
In the sequel we consider two cases. The first one
deals with a discrete Riccati difference equation
(DRDE) when @ is nonsingular, while the second
case treats a generalized discrete algebraic Riccati
equation (GDARE) when (TPT" +®) is nonsingu-
lar.

2.2.1. The case where ® is nonsingular  In this
section we assume that ® (or J>(CQCT + R)JJ) is
a positive definite matrix, in this case the optimal
gain K (t+1) is given by

K(t+1) = (ﬁp(t)FT n s) (TP(t)FT n cp)

—1

and we can define the following matrices



Q. =0-507'T
Ko(t4+1) = K(t41) = S~
Q. =Q—567 57,
Equation (29) can be also written as the following

DRDE
P(t41) = (Q.— K. (t+1)T) P(t) Q.= K. (t+1)T) "

+ Q.+ K (t+1)dK T (t41).

In this case the filter (29) becomes
Z(t4+1) = Q.2(t) + Eeult) + Jiey(t+1)
+ Ko(t4+1) (Ly(t+1) = T2(0) - Bu())  (31)

where
Jie = Ji + 507"

E.=LB-J,.CB

Remark 6. The necessary condition for ® > 0 1s
that o to be of full row rank matrix. |

The ARDE associated with the above DRDE 1s
P=Q.-KI)P@. - KD)" +Q.+K.0KT.

The necessary and sufficient conditions for the
stability and convergence of the obtained filter,
when @ is nonsingular matrix, can be derived
from the standard results on the stability and
convergence of the Kalman filter (de Souza et
al., 1986; Lewis, 1986; Middleton and Goodwin,
1990). Before giving the conditions of stability and
convergence of the filter we can give the following
lemmas.

Lemma 7. The pair (T, Q.) or (the pair (T',Q)) is
detectable if and only if

AM—-LA —LF O
= = >
rank |: cA CF G:| rank 2, VA € C,|A| > 1
(32)
where Z = [¢2 ¢F 9. ]

Lemma 8. The pair (Q., Q}/?) has no unreachable
mode on the stability boundary if and only if

AH, —exp(jw)H; —F Q'* 0
—exp(jw)CH, G 0 R'Y?

Yw €[0,27]. (33)
[ |

rank =n+p,

From (de Souza et al., 1986; Lewis, 1986; Middle-
ton and Goodwin, 1990) and the above results we
have the following theorem.

Theorem 9. Assume that ® is a positive definite
matrix. Then there exists an unbiased stable re-

duced order filter (29) if and only if

(i) rank TALEO = rank =,
(ii) rank ALCTALA _csz g =rank=, VA C, || 21,

AH, —exp(jw)H, —F Q'* 0
—exp(jw)CH, G 0 RY?
Yw € [0, 27]. |

(iii) rank =n+p,

2.2.2. The case where (TPT' + ®) is nonsingular
In this section we consider the following time-
invariant filter

Z(t4+1) = QZ(t) 4+ Eu(t) + Jiy(t+1)
+ K (k+1) (Ly(t+1) = T2(0) - Bu())  (34)
and the associated GDARE
p=ara’—(art"+s)(TPr o) (arT"+5) +Q

with
ker (TPTT + @) C ker (ﬁPFT + 5) :

Define the following rational matrix

F(z)= [T(z_lfr—ﬁ)_l ]p—ro]
[6 S] [(ZIT—QT)_er]
ST @ Ty '

It is easy to see that @Q,S and & satisfy the
condition of positive semi-definiteness as follows

Q S| _|Mm
[ST @] - [MQ] [MlT Mg]
where
m
My|

Matrix [L}Q%C _Jil] is of full row rank, this can

be seen from

L—5C —-J

BC 0o R'/?

|:Q1/2 0

JEmne —a L [r=ne -] 1o
Y e R | T e on | |-,
| E [0 0
- 0 L ||0 6 I1,-06!
T Pl
= ran 00 L =r+p—ro

since J» 1s of full row rank.

Definition 10. The normal rank of the matrix
F(z) is the rank of F(z9) where zg is any complex
number which is not a zero of F(z). |

From (Kucera, 1991; Saberi et al., 1995), we have
the following lemma.
Lemma 11. F(z) has full normal rank if and only
the matrix (TPT" + @) is invertible. |
Under the assumption that F(z) has full normal
rank, the GDARE becomes

— 7 - -1, T __
P:QPQT—(QPFT+S) (FPFT+cI>) ' (QPFT+S) 10



and the gain matrix K is then given by
K = (art’ +5) (TPT" +0)

We can introduce the following definition for the
strong stabilizability of the quadruple
(Q, M,T, Ma).

Definition 12. The quadruple (Q, M, T, M>) is said
to be strongly stabilizable if the pair

(Q— AT, M1 — AM>) is stabilizable for every matrix
A. |

We have the following lemma.

Lemma 13. The quadruple (Q, M;,T, M>) is strongly
stabilizable if and only if
AH,—MH, —F Q'* 0
-\CH, G o0 R/
VAT, |A > 1.

rank =n+p,

From (Kucera, 1991; Saberi et al., 1995) and the
above results we have the following theorem.

Theorem 14. The gain matrix

K= (arT" +5) (TPT" + @) B
is the unique gain which stabilizes the filter (34)
and minimizes (4) if and only if

(i) F(z) has full normal rank,

(i1) rank TALFO = rank =,

(iii) rank[AngA _csz g =rank=, VA C, || 21,

) [AH, —XH, —F Q'* 0

(iv) rank CNCH, G o mP|E" +p,
VAe T, A > 1. [ |

Now from the definitions of Q, J, £ and T, the
filter (34) can be written as

Z(t+1) = LAH Z(t) + LBu(t) + Kve(¢+1) + p(t+1)

where .
vr(t+1) = Joy(t+1) = TE(t) — Eu(t)
p(t+1) = Ji (y(t+1) — CAH 2(t) — CBu(t)).

In the following we shall study the properties of
the sequences v, () and u(t).

2.2.3. Properties of the sequences v, (t) and u(¢)
In this section we discuss interesting properties of
the sequences v, () and u(t).

From the definitions of T and Z(t) we obtain

w(t)

v (t4+1) = Te(t) + [J20 JQ] o(t4 D)

Then v, () is a zero mean sequence.

Now by using (24) we obtain the following recur-

vr(t+1) _|o T vy ()
e(t+1) “ o9 -KT e(t)

JQC J2 ’LU(t)
L= (1 + KB)C —(h + K1) [u(t+1)

and for the covariance matrix

_ vi)[ [ v 1 [ 9u) 9w(t)
0(t)—5{[6 (t)] v/ () (t)]} = [Mt)T 022@)}

we have
0o T 0o T !
d(t+1) = [0 a- x| ¢ [0 a- KT]
N JC Ja Q0
L—(h+KJL)C —(L+KJh)||0R

T
% JQC J2
L — (Jl =+ [(JQ)C —(Jl =+ [(JQ)
which leads to

O12(t+1) = 8T — (@ + T (T K™ + T2 ()0

As in (Kwakernaak and Sivan, 1972), by using the
optimal solution of the gain matrix K and the
fact that 922(¢) = P(t%, we obtain 912(¢+1) = 0
and 911(t+1) = 'P(6)I" + &, which prove that the
sequence v(t) is white.

Now we have
p(t+1) = Ji (y(t+1) — CAH Z(t) — CBu(t)
Tl.’L‘(
d(t)

w(t)
v(t+1)

)
= JLCAH e(t) + [LAE1 LF] )

¥ [ch Jl]

with

E{u(t+1)} = [LAE, LF]

T1 :L‘(t)
d(t)

and

£ {u(t—i—l)uT(t-H)} -

I (c (AHlPHlT AT 4+ Q) ot 4+ R) g7

One can see that £{u(t+1)} is function of the
state z(¢) and the unknown input d(¢). If L = I,,,
then &{u(t+1)} = Fd(¢), which is only function of
d(t). This result shows that p(¢+1) is a pseudo-
innovation sequence, since it is not white. This
sequence can be used to detect a possible failure
represented by d(¢) if L = I,.



3. CONCLUSION

In this paper, a new functional reduced order
filtering design method for stochastic discrete-
time time-varying systems with unknown inputs
is proposed. The obtained results generalize those
presented in (Kitanidis, 1987; Nagpal et al., 1987;
Darouach and Zasadzinski, 1997). The conditions
for the existence of the filter are given, its prop-
erties in the time-invariant case are studied and
the necessary and sufficient conditions for the
convergence and stability are derived.
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