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Abstract: In this paper, a new method for solving the fault detection and isolation
(FDI) problem in general nonlinear stochastic systems is proposed. The proposed
method is based on adaptive Monte Carlo filter and likelihood ratio approach. The
simulation results on a highly nonlinear system are provided which demonstrate the
effectiveness of the proposed method.
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1. INTRODUCTION

The increasing complexity and growing demands
for reliability of modern control system have
stimulated the development of different fault de-
tection and isolation (FDI) approaches, as can
be seen from the survey papers (see e.g. Iser-
mann 1984, Basseville 1988, Frank 1990, Patton
and Chen 1996). In model-based approaches, the
FDI is based on available input-output measure-
ments and a mathematical model of the system
to be monitored. One of the main difficulties in
FDI of dynamic systems is due to the presence
of unknown and unmeasured variables, typically
state variables x. Two approaches are commonly
used to deal with them: estimation and elimina-
tion. The estimation of x is usually performed
with observers for deterministic systems, or filters
for stochastic systems, which lead to observer-
based and innovation-based FDI approaches re-
spectively. The elimination of x directly explores
the analytical redundancy embodied in the math-
ematic model. For the linear system, this leads to
the well-known parity space-based FDI approach.
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For nonlinear deterministic systems, the nonlinear
observer-based approaches have been reviewed in
(Garcia and Frank, 1997). However, in compari-
son with linear systems, the literature addressing
model-based FDI for nonlinear stochastic systems
is not extensive, the main reason being that the es-
timation of the state vector of a nonlinear stochas-
tic system is not easy. The model-based FDI for
nonlinear stochastic systems is known as a difficult
problem and very few results are available.

Recently, the Monte Carlo filter, a simulation-
based method for nonlinear non-Gaussian state
estimation, has attracted much attention (see e.g.
Gordon et al, 1993, Bolviken et al, 2001, Doucet
et al, 2001). This interest stems from the great
advantage of the Monte Carlo filter being able
to handle any functional nonlinearity and system
or measurement noise of any probability distribu-
tion. Our early work (see Kadirkamanathan et al,
2000), represents the first attempt to introduce
Monte Carlo filter into the field of FDI. More
recently, the Monte Carlo filtering based multiple-
model and likelihood ratio methods have been
developed in (Li and Kadirkamanathan, 2001a,b)
for solving the FDI problem for general nonlinear
non-Gaussian systems with known sets of possible
faults.
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In this paper, we generalize further by modelling
faults as changes in the parameters, and the
adaptive Monte Carlo filters are integrated with
the likelihood ratio test for a new approach to
FDI in general nonlinear stochastic systems. The
paper is organized as follows. In Section 2, the FDI
problem is formulated followed by a description
of the Monte Carlo filter and adaptive Monte
Carlo filter in Section 3. Then, the adaptive Monte
Carlo filtering technique is combined with the
likelihood ratio (LR) test and a new approach
to FDI is developed in Section 4. Experimental
results from simulations are provided in Section 5
with conclusions in Section 6.

2. PROBLEM STATEMENT

In this paper, the dynamics of the system consid-
ered is assumed to be governed by the following
discrete time nonlinear state space model:

xk = f(xk−1,θ,wk−1) (1)

yk = h(xk,θ,vk) (2)

where, f(·) and h(·) are the vector-valued non-
linear functions parameterized by vector θ =
[θ1, θ2, · · · , θM ]

T ; x is the state vector, y is the
measurement vector,w and v are white noise with
known probability density functions (pdfs) which
are not necessarily Gaussian.

Throughout this paper, the faults are modelled
as changes in the parameter vector θ. It is also
assumed that the nominal parameter value θ

0

characterizing the fault-free behavior of the sys-
tem is known. With the system model (1), (2) and
following above description, the FDI problem can
be stated as follows:

Problem 1. (Problem of FD). : Fault detection is
to decide between two hypotheses:

H0 : θ ∈ Θ
0 and H1 : θ /∈ Θ0

where: Θ0 = {θ| ‖ θ − θ
0 ‖< ε}

Problem 2. (Problem of FI). : Fault isolation is
to determine which component or subset of the
parameter vector θ has changed.

3. MONTE CARLO FILTER AND ADAPTIVE
MONTE CARLO FILTER

The Bayesian solution to the dynamic state es-
timation problem involves the construction of
the pdf of the current state xk, given the mea-
surements up to time k. If Zk is denoted to
be the set of measurements up to time k, i.e.

Zk = {y1,y2, , · · · ,yk}, then the Bayesian solu-
tion would be to calculate the pdf p(xk|Zk). This
pdf will encapsulate all the information about the
state xk which is contained in the measurements
Zk and the prior pdf of x0.

The key to calculating the conditional pdf p(xk|Zk)
is Bayes law, the recursive formulas for the es-
timation of the pdf p(xk|Zk) are formed by the
following two steps:

• prediction: assuming knowledge of the pos-
terior pdf for the state at time k − 1:
p(xk−1|Zk−1), the one-step ahead predictive
pdf at time k−1, p(xk|Zk−1) can be obtained
by:

p(xk|Zk−1) =

∫

p(xk|xk−1)

p(xk−1|Zk−1)dxk−1 (3)

where p(xk|xk−1) is defined by the system
model (1) and the known statistics of wk−1.

• filtering: based on predictive pdf p(xk|Zk−1),
the posterior pdf at time k given measure-
ment yk, p(xk|Zk) can be computed via
Bayes rule:

p(xk|Zk) =
p(yk|xk)p(xk|Zk−1)

∫

p(yk|xk)p(xk|Zk−1)dxk
(4)

where the conditional pdf p(yk|xk) is de-
fined by the measurement model (2) and the
known statistics of vk.

The above Bayes recursive estimation (3) and (4)
can only be analytically solved for a small class of
problems. The most important examples of such a
class of problems are those with linear system and
measurement equations, and Gaussian additive
noise, in which the pdf can be summarized by
means and covariances. In such cases, the Kalman
filter is used to propagate and update the means
and covariances of the pdf. For general nonlinear,
non-Gaussian systems described by (1) and (2),
there is no simple way to proceed.

Monte Carlo filters (also known as particle filters)
were proposed as a new way of representing and
recursively generating an approximation to the
conditional pdf p(xk|Zk) (see e.g. Gordon et al,
1993). The key idea is to represent the required
pdf by a swarm of points called “particles”, rather
than by a function over the state space. For exam-
ple, the predictive pdf p(xk|Zk−1) is expressed or
approximated by a set of N particles {xk|k−1(i) :
i = 1, · · · , N}, and p(xk|Zk) is approximated by
a set of N particles {xk(i) : i = 1, · · · , N}. These
partilces can be considered as the realizations or
random samples from the required pdfs and, as
the number of particles increases, they effectively
provide a good approximation to the required pdf.



It can be shown that these particles can be ob-
tained recursively by the following filtering algo-
rithm (see e.g. Gordon et al, 1993):

Initialization: The random samples (particles)
{x0(i) : i = 1, 2, · · · , N} are drawn from the pdf
p(x0).
Repeat the following steps for each time
step k (k = 1, 2, · · ·)

(1) Draw N samples {wk−1(i) : i = 1, 2, · · · , N}
from the pdf of system noise wk−1.

(2) Generate N samples (particles) {xk|k−1(i) :
i = 1, 2, · · · , N}, which approximate the
predictive distribution p(xk|Zk−1), via state
equation (1):

xk|k−1(i) = f(xk−1(i),θ,wk−1(i)) (5)

(3) On receipt of measurement yk, compute the
importance weights associated with each pre-
dictive samples or particles by:

α̃k(i) = p(yk|xk|k−1(i))

αk(i) =
α̃k(i)

∑N
j=1 α̃k(j)

(i = 1, 2, · · · , N)

(4) Obtain N particles {xk(i) : i = 1, 2, · · · , N},
which approximate the filter distribution
p(xk|Zk) by the resampling of {xk|k−1(i) :
i = 1, 2, · · · , N} with sampling probabilities
satisfying:

Pr{xk(i) = xk|k−1(j)} = αk(j)

The resampling mentioned above is carried out by
following algorithm:

• Generate a uniform distributed random vari-
able ui ∈ [0, 1] for i = 1, 2, · · · , N .

• For i = 1, 2, · · · , N , set xk(i) = xk|k−1(j) if
∑j−1

l=0 αk(l) < ui ≤
∑j

l=0 αk(l) with αk(0) =
0.

The use of adaptive Monte Carlo filter for simulta-
neously estimating the states and the parameters
in general nonlinear non-Gaussian systems has
been proposed in (Kitagawa, 1998). The method
is also termed as the “self-organizing state space
model” since the method automatically yields the
distribution of the parameters to be estimated.
The idea is to view the parameters as additional
states, or more precisely, to augment the state
vector x with the parameter vector θ as zk =
[xTk ,θ

T ]T and rewrite the state space model in
terms of zk:

[

xk
θk

]

=

[

f(xk−1,θk−1,wk−1)
θk−1 +w

′
k−1

]

(6)

yk = h(xk,θk,vk) (7)

where, a random walk model θk = θk−1 +w
′
k−1,

with w′k−1 a zero mean Gaussian white noise, is

introduced for parameter evolution to allow the
exploration of the parameter space.

Given the above state space representation (6)
and (7), the Monte Carlo filter outlined in this
section can be used to obtain the sample-based
joint pdf of the state x and parameter vector θ.
In the sequel, the aforementioned Monte Carlo
filtering technique is integrated with the LR test
and a new FDI method for general nonlinear
stochastic systems is developed.

4. FDI VIA ADAPTIVE MONTE CARLO
FILTERS AND LR APPROACH

4.1 Design of adaptive Monte Carlo filters

To simplify presentation, we first restrict the
faults to those leading to changes in a single
component of θ. Extensions of the general case
can be readily made. Let θ0 ∈ <M be the known
nominal parameter vector. A Monte Carlo filter
is implemented based on the following nominal
system model:

Nominal M-C filter M0 :

x
(0)
k = f(x

(0)
k−1,θ

0,wk−1)

yk = h(x
(0)
k ,θ0,vk)

We then further implement a set of M adaptive
Monte Carlo filters with each monitoring only one
parameter (i.e. one component of θ). These adap-
tive Monte Carlo filters are based on following
augmented state space models:

Adaptive M-C filter M1 :
[

x
(1)
k

θ1,k

]

=

[

f(x
(1)
k−1,θ

0
1 , θ1,k−1,wk−1)

θ1,k−1 + w′1

]

yk = h(x
(1)
k ,θ0

1 , θ1,k,vk)
•
•
•

Adaptive M-C filter MM :
[

x
(M)
k

θM,k

]

=

[

f(x
(M)
k−1,θ

0
M , θM,k−1,wk−1)

θl,k−1 + w′l

]

yk = h(x
(M)
k ,θ0

M , θM,k,vk)

where, for j = 1, · · · ,M , θ0
j is the part of θ

0

complementary to its jth component, θj,k is the
value of the jth component of θ at time instant
k. It can be seen that the state space models for
each adaptive Monte Carlo filter are essentially
the same as that for nominal Monte Carlo filter,
but the state vector is augmented by a different
component of θ.

As we have M adaptive Monte Carlo filters run-
ning in parallel and each estimates one parame-
ter as described in section 3, it seems that the



FDI could be achieved using these M parameter
estimates. Unfortunately, because each adaptive
Monte Carlo filter estimates only one of the pa-
rameters and assumes that the other parameters
are known and constant, a change in a single
parameter affects all the models and hence the pa-
rameter estimates. It is thus not straightforward
to determine which parameter has really changed.
This motivates the development of the following
FDI method.

4.2 FDI based on adaptive Monte Carlo filters and
likelihood ratio test

The starting point for the LR approach is the
logarithm of the likelihood ratio (LLR), which is
a function of a random variable y, defined by:

s(y) = ln
pθ1(y)

pθ0(y)
(8)

where pθi
(y)(i = 0, 1) is a pdf parameterized by

θi. The key statistical property of this ratio is as
follows (see e.g. Basseville and Nikiforov, 1993):
Let Eθ0 and Eθ1 denote the expectations of the
random variables with distributions pθ0 and pθ1
respectively, then:

Eθ0(s) < 0 and Eθ1(s) > 0

In other words, any change in parameter θ is
reflected as a change in the sign of the mean
value of the log-likelihood ratio (LLR). If the
observations yk(k = 1, 2, · · ·) with a pdf pθ(y) are
independent of each other, the joint LLR for the
observations from yj to yk can be expressed as:

Sk
j =

k
∑

i=j

si and si = ln
pθ1(yi)

pθ0(yi)
(9)

Suppose θ = θ0 before change, and θ = θ1 6= θ0
after change, then the typical behavior of this
joint or cumulative LLR Sk

1 shows, on average,
a negative drift before change, and a positive
drift after change. This behavior can be used
for detecting any change between two known pdf
pθ0 and pθ1 , and several detection algorithms
based on the LLR test have been developed (e.g.
SPRT, CUSUM, GLR etc.) (see e.g. Willsky and
Jones, 1976, Basseville and Nikiforov, 1993). In
the rest of this section, a new method for FDI in
general nonlinear stochastic systems is proposed
by combining the adaptive Monte Carlo filters
described previously with the LLR test.

The key idea of the new method is to compute
the joint likelihood of the measurements based
on each (adaptive) Monte Carlo filters via Monte
Carlo integration which uses the complete sample-
based pdf information provided by (adaptive)

Monte Carlo filters, and then activating in parallel
M LLR tests for Mm(m = 1, 2, · · · ,M) versus
M0. More specifically, the joint LLR to be com-
puted in the present case is actually as follows:

Sk
j (m) =

k
∑

r=j

ln
p(yr|Mm,Zr−1)

p(yr|M0,Zr−1)
(10)

where the likelihood p(yr|Mm,Zr−1), is precisely
the one step ahead output prediction density
based on the mth Monte Carlo filter Mm which
can be expressed as:

l(m)
r = p(yr|Mm,Zr−1)

=

∫

p(yr|x
(m)
r , θm,r)p(x

(m)
r , θm,r|Zr−1)dxr

(m = 0, 1, · · · , l) (11)

The calculation of the quantity defined by (11)
can not be performed analytically for general
nonlinear non-Gaussian model. However, with the
adaptive Monte Carlo filter described above, this
quantity can be estimated by utilizing the com-
plete pdf information of the predictive augmented

state [x
(m)
r|r−1, θm,r|r−1]

T represented by a swarm

of particles, here [x
(m)
r|r−1, θm,r|r−1]

T denotes the

one step ahead prediction of the augmented state
given Zr−1 and based on mth (adaptive) Monte
Carlo filter. This is achieved by reusing the like-
lihood of each predictive augmented state parti-
cle computed during Monte Carlo filtering. More

specifically, since {[x
(m)
r|r−1(i), θm,r|r−1(i)]

T : i =

1, · · · , N} can be considered as the samples from

p(x
(m)
r , θm,r|Zr−1), the required quantity defined

by (11) can be estimated viaMonte Carlo integra-
tion as follows:

l(m)
r ≈

1

N

N
∑

i=1

p(yr|x
(m)
r|r−1(i), θm,r|r−1(i)) (12)

where the likelihood of each predictive aug-

mented state sample [x
(m)
r|r−1(i), θm,r|r−1(i)]

T (i =

1, · · · , N) from (adaptive) Monte Carlo filter is
defined by the measurement equation and the
known statistics of the measurement noise vr.

Prior to the occurrence of any fault, the output
predictions given by the filters described above
are all filtered versions of the actual measurement
y, therefore, after initial transition, they are iden-
tical up to filtering errors resulting only from the
intrinsic uncertainty in the system model. Conse-
quently, the likelihood of the one step ahead out-
put prediction based on each Monte Carlo filter
are all close to each other. Thus, the joint LLRs
Sk

1 (m)(m = 1, · · · ,M) defined by (10) are all close
to zero after an initial period of transition.



In the presence of a fault, due to different adapta-
tions of the above Monte Carlo filters, the output
predictions behave differently, and the likelihood
of the output predictions based on different adap-
tive Monte Carlo filters and the nominal Monte
Carlo filter are no longer close to each other and
the joint LLRs Sk

1 (m)(m = 1, · · · ,M) defined
by (10) will drift away from zero. Intuitively,
the output prediction obtained with the adaptive
Monte Carlo filter estimating the changed param-
eter should be closer to the measured output y
than the output prediction of any other adaptive
Monte Carlo filters and the nominal Monte Carlo
filter, or more specifically, if θf (1 ≤ f ≤ M)
is the changed parameter, then the likelihood
p(yk|Mf ,Zk−1) based on the fth adaptive Monte
Carlo filter will be greater than the likelihood
based on any other adaptive Monte Carlo filters
and the nominal Monte Carlo filter. Thus Sk

1 (f)
will positively drift away from zero as k increases
and take the greatest value among the M LLRs
defined by (10).

Based on the above argument, define the decision
function for fault detection as:

dk = max
1≤m≤M

max
1≤j≤k

Sk
j (m) (13)

then dk is close to zero in the fault-free condition
and increases positively after the occurrence of a
fault. Fault detection could thus be achieved by
thresholding dk and a fault alarm is set at the
time ta determined by:

ta = min{k : dk > λ} (14)

where λ > 0 is a threshold which depends on the
noise level in the monitored system and can be
determined by simulation. The fault isolation is
achieved, after fault detection, by finding out the
index f of the faulty parameter which is given by:

f = arg max
1≤m≤M

Sk
ta
(m) (15)

In the implementation of the proposed method,
the maximization of the joint LLR over the time
index j is constrained in a sliding window with
width W to avoid the linearly growing compu-
tation. In practice, W can be chosen sufficiently
large to insure detection and isolation of all im-
portant faults subject to the computation limit,
the decision function is then given by:

dk = max
1≤m≤M

max
k−W+1≤j≤k

Sk
j (m) (16)

In the above discussion, the single fault condition
(single parameter change) is assumed, the exten-
sion to the general case (i.e. the faults leading
to simultaneous changes in several parameters) is
straightforward. In such a case, a similar method

would require adaptive Monte Carlo filter esti-
mating multiple parameters, i.e. the state vectors
of the adaptive Monte Carlo filters described in
§4.1 are augmented by the different subsets of θ
corresponding to the different faults, instead of a
different component of θ.

5. NUMERICAL EXAMPLE

An example is presented in this section to il-
lustrate the operation of the new FDI method
proposed in this paper.

The considered system is described by following
state space model:

xk = 0.5xk−1 + a
xk−1

(1 + x2
k−1)

+b cos(1.2(k − 1)) + wk−1

yk = cx2
k + vk

where wk and vk are uncorrelated zero mean
Gaussian white noise with variance Qw = 1 and
Qv = 10 respectively. The parameters to be
monitored are collected in the vector θ = [a, b, c]T .
The nominal value of θ is θ0 = [a0, b0, c0]

T =
[25, 8, 0.05]T which are taken from (Gordon et al,
1993).

Three kinds of fault are considered in simulations,
the component fault is modelled by a change in the
parameter a of system state equation, the actuator
fault is modelled by a change in parameter b and
the sensor fault is modelled as a change in the
parameter c of the measurement equation.

Two Monte Carlo simulation experiments have
been carried out. In the first experiment, the
component fault is simulated to occur at time
k = 201 at which the parameter a jumps from
the nominal value a0 to 0.5a0. In the second
experiment, the sensor fault is simulated to occur
at time k = 201 at which the parameter c is
shifted from c0 to 0.5c0. The new method for FDI
proposed in this paper is used to detect and isolate
these faults.

In the two experiments, the sample sizes for nom-
inal Monte Carlo filter and adaptive Monte Carlo
filters are chosen as N = 1000, the width of sliding
window for maximizing the joint LLRs defined by
(10) is chosen as W = 50, the threshold in (14)
is chosen as λ = 2.5. The decision function dk
defined by (16) and the cumulative LLRs Sk

ta
(m)

from these two experiments are shown in Fig.1
and Fig.2 respectively. The component fault is
detected at time ta = 223 and the sensor fault is
detected at time ta = 218. We can see, from these
figures, that dk remains steady around zero before
the fault takes place, and drifts positively away
from zero after the fault occurs and the cumula-
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tive LLR Sk
ta
(m) corresponding to the changed pa-

rameter (e.g. Sk
ta
(1) in Fig.1 and Sk

ta
(3) in Fig.2)

takes the greatest value. These results show that
the proposed FDI method is able to detect the
faults in time and to isolate the faults correctly.

6. CONCLUSION

A new method for FDI in general nonlinear
stochastic dynamic systems has been proposed by
combining adaptive Monte Carlo filters with the
likelihood ratio approach, the FDI performance
of the new method is illustrated with a highly
nonlinear stochastic system. The results from the
simulations show that the proposed method is
capable of detecting the fault in time and isolating
faults correctly. The proposed method provides an
uniform framework for model-based FDI in gen-
eral nonlinear systems with non-Gaussian system
disturbance and measurement noise.
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