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Abstract: Stability criteria are proposed for two—variable (2D) polynomials having
interval parameters in polynomic uncertain ty structures. Both the left—half plane and

unit circle domains are considered. Save for a minor condition, the criteria reduce
robust stability testing of 2D polynomialsto testing positivity of only two polynomials.
The appealing feature of the new robustness criteria is that positivity testing can be
carried out by using the efficient Bernstein minimization algorithms.
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1. INTRODUCTION

Stability of two—dimensional polynomials arises in
fields as diverse as 2D digital signal and image pro-
cessing (Huang, 1981; Dudgeon and Mersereau,
1984; Lim, 1990) and time—delay systems (Kamen,
1982), repetitive, or multipass, processes (Rogers
and Owens, 1993) and target tracking in radar
systems. For this reason, there have been a large
number of stability criteria for 2D polynomials,
which have been surveyed and discussed in a num-
ber of papers (Jury, 1986; Premaratne, 1993; Hu,
1994; Bistriz, 1999, 2000; Mastorakis, 2000). In
achieving the maximal efficiency of 2D stability
tests, the reduction of algebraic complexity offered
by the stability criteria in (Siljak, 1975) has been
useful. Apart from some minor conditions, the cri-
teria convert stability testing of a 2D polynomial
to testing of only two 1D polynomials, one for
stability and the other for positivity.

Due to inherent uncertainty of the underlying
models, it has been long recognized that in prac-
tical applications it has been necessary to test
robustness of stability to parametric variations
(Siljak, 1989). Almost exclusively, the 2D robust
stability tests have been based on the elegant
Kharitonov solution of the stability problem in-

volving 1D interval polynomials (Bose and Ze-
heb, 1986; Basu, 1990; Rajan and Reddy, 1991;
Kharitonov et al., 1997; Xiao et al, 1999). In
the context of 2D polynomials, the solution lost
much of its simplicity resulting in numerically
involved algorithms. This fact made the testing of
2D polynomials with interval parameters difficult,
especially in the case of multiaffine and polynomic
uncertainty structures.

The purpose of this paper i1s to present new cri-
teria for testing stability of 2D polynomials with
interval parameters, which are based on the cri-
teria of (Siljak, 1975) and the positivity approach
to the interval parametric uncertainties advanced
in (Siljak and Stipanovié, 1999). An appealing
feature of the new criteria is the possibility of
using the efficient Bernstein minimizatia algo-
rithms (Garloff, 1986; Malan et al., 1992) to carry
out the numerical part of the positivity tests.
Furthermore, the proposed formulation can han-
dle the polynomic uncertainty structures having
interval parameters, and can be easily extended
to systems with time—delays along the lines of
(Kamen, 1982).



2. STABILITY CRITERION

Let us consider a real Llwo—variable polynomial

h(s,z) = ZZhjksjzk (1)
J=0k=0
where s, z € € are complex variables, and for some
J, k the coefficients h;, and h,,; are not both zero.
We are interested in determining conditions under
which the polynomial h(z, z) satisfies the stability
property
h(s,2) #0, {seCl}n{zeCl}, (2)
where €€ is the complement of O_ = {s € C:
Re s < 0}, the open left half of the complex
plane €. As shown by Ansell (1964), property (2)
is equivalent to
h(s,1) #0, Vs €T (3a)
h(iw,z) 20, Vz el (3b)
To test (3a) we can use the standard Routh test
(e.g.. Lehnigh, 1966). To verify (3b) we follow
Ansell’s approach and consider the polynomial

e(z) = hiiw, 2),

e(z) = chzk , (4)
k=0

where

3

C = hjksj (5)
7=0
and s = iw. With ¢(z) we associate the symmetric

m x m Hermite matrix C' = (c;;) with elements
¢ji defined by (e.g., Lehnigh, 1966)

J

cjr = 2(—1)FkI/2 E(—l)zﬁe (Crm—t41 Cm—j—kte) 5

=1

(j + k) even

J

cjp = 2(=1)9HR2N (1) T (epmrgr Enojokte)

=1

(j+ k) odd

(6)
where the overbar denotes conjugacy and j < k.
We recall that C' > 0if and only if ¢(z) = 0 implies

z € €_. Since C' = C(iw) is a real symmetric
matrix, we define a real even polynomial
g(w?) = det C(iw) (7)

and replace w? by w to get a polynomial g(w). We
also define a polynomial

f(s) = h(s,1) (8)
and state the following (Siljak, 1975):

Theorem 1. A two—variable polynomial A(s, z)
has the stability property (2) if and only if

(1) f(s) is C_—stable.

(ii) g(w) is IRy —positive.
(iii) C(0) is positive definite.

Conditions (1) means that f(s) = 0 if and only
if s € C_, while condition (ii) is equivalent to
g(w) > 0 for all w > 0.

In stability analysis of recursive digital filters
(e.g., Huang, 1981; Dudgeon and Mersereau,
1984), it is of interest to establish necessary and

sufficient conditions for a polynomial h(s,z) to
have the stability property

h(s,z) #0, {seK'}n{zeK} (9
where K = {s €C: [s| = 1} is the unit circle, and
K° = KUK? is the closure of K’ = {s €T : |s| <
1}. By following Huang (1972), one can show that
(9) is equivalent to

h(s,0) £0, Vs €K’ (10a)
h(e™,z) #£0, VzeK° (10b)
Condition (10a) means that A(s,0) = 0 if and only

if s € K°. To test condition (10b), we consider
d(z) = z"h(e™, 271 (11)

which we write as a polynomial
d(z) = diz" (13)
k=0
with coefficients
dk = Z hjym_ksk, (14)
§=0

and s = ¢'“. With the polynomial d(z) we asso-
ciate the Schur-Cohn m x m matrix D = (d;z)
specified by
j — —
dip = Z(dm—j+zdm—k+z —dj_ydp—y), (14)
=1
where j < k (e.g., Jury, 1982). The matrix D(e™)
1s a Hermitian matrix and we define
g(e') = det D(e'), (15)
where g(-) is a self-inversive polynomial. We also
define the polynomial
f(s) = s"h(s710) (16)
and state the following (Siljak, 1975):
Theorem 2. A two—variable polynomial h(s, 2)
has the stability property (9) if and only if
(i) f(s) is K'—stable.
(ii) g(z) is K-positive.
(iii) D(1) is positive definite.
Condition (i) means that the polynomial f(s) has
all zeros inside the unit circle K. Positivity of g(z)

on K can be verified by applying the methods of
(Siljak, 1973).

Finally, we show how the mixture of the two
previous stability properties can be handled using
the same tools. The desired property is defined as

h(s,z) #£0, {se@}n{zeK"}. (17)



By following Ansell (1964). one can show that this
property is equivalent to

h(s,0) # 0, Vs € €2 (18a)
h(iw,2) #0, Vze K° (18b)
In this case, the polynomial d(z) is defined as
d(z) = 2" h(iw, 27 1) | (19)

which is used to obtain the polynomial ¢(-) via
equations (12)—(15). From (18a), we get the poly-
nomial

f(s) = h(s,0), (20)
then define I = {z € € : Re z = 0} and arrive at
(Siljak, 1975):

Theorem 3. A two-variable polynomial h(s, z)
has the stability property (17) if and only if

(1) f(s) is C_—stable.
(ii) g(z) is I-positive.
(i) D(0) is positive definite.

We note that I-positivity of g(z) can be refor-
mulated as IRy—positivity (see, Siljak and Siljak,
1998).

3. UNCERTAIN POLYNOMIALS

We are interested in studying stability proper-
ties of uncertain two-variable polynomials with
polynomic uncertainty structures. A polynomial
h(s, z;p) is given as

h(s,zip) =YY hi(p)s?2F, (21)

F=0k=0

where hjg(p) are polynomials themselves in un-
certain parameter vector p € IR". We assume that
p resides in a box

P={pelWR: pe€lp,m]ker}. (22)

We want to investigate the robust versions of sta-
bility properties defined in the preceding section.
In the case of (2), for example, we are interested
in testing the robust property

his,z;p) #0, {seCtn{zelC }n{peP}.
(23)
To accommodate the uncertainty in h(s, z;p) we
define the polynomial families F = {f(-,p)
p € P}, G = {g9(-,p) : p € P} and state a
straightforward modification of Theorem 1.

Theorem 4. An uncertain two-variable poly-
nomial h(s, z; p) has the robust stability property
(23) if and only if

(1) F is C_—stable.

(i1) G is IRy —positive.

(iil) C(0, p) is positive definite for all p € P.

Robust versions of the remaining two stabil-
ity properties of the preceding section can be

tested by Theorem 4 via bilinear transformation in
pretty much the same way D—stability was tested
in (Siljak and Stipanovié, 1999). We also note the
structural similarity of Theorem 4 with theorems
on robust SPR. properties (Stipanovi¢ and Siljak,
2001), which motivates the work presented next.

Condition (i) in Theorem 4 obviously means that
all zeros of f(s,p) lie in C_ for all p € P. To es-
tablish this type of robust stability via polynomial
positivity, we define the magnitude function

p)f(sp) =D ) ar(p)aj(p)s's’

k=05=0

f(s,p) = [,

(24)
where overbar denotes conjugation. We note im-
mediately that the magnitude function f(s,p) =
|f(s,p)]? is nonnegative for all s € €. This obvious
fact is essential in the following development.

Let us form a family F = {f(-,p) : p € P} and
use the result of (Siljak and Stipanovié, 1999) to
conclude that a family F is C_—stable if and only
if the corresponding family F is I-positive, and
f(s,p’) isC_—stable for some p’ € P. Furthermore,
from (7) it follows that positivity of det C(0;p)
is included in testing condition (ii) of Theorem 4.
This means that to test condition (iii) of Theorem
4, it suffices to verify that C(0;p’) is positive
definite for some p° € P. We finally arrive at

Theorem 5. An uncertain two—variable polyno-
mial A(s, z; p) has the robust stability property 23
if and only if

(1) F is IRy —positive and f(s;p') isC_—stable for

some p’ € P.

(ii) G is IRy —positive.

(iii) C(0;p") is positive definite for some p” € P.
Example 1. To illustrate the application of

Theorem 5, let us use the two—variable polynomial
from (Xiao et al., 1999),

h(s,z;p) = hi1(p)sz+hia(p)s+hoi(p)z +hoa(p) ,
(25)

where
hii(p) = 0.9 = 0.1p1 — 0.3ps
hlo(p) =0.8—-0.5p1 + 0.3p2 (26)
hm(P) =1+0.2p; +0.3ps
hoo(p) = 1.6 +0.5p1 — 0.7pa
and
P={pelR’ p€[-0.3,04], p»e[0.1,05]}.

(27)
To test condition (i) we compute the polynomial
f(s;p) = (1.7—0.6p1)s+2.64+0.7p; —0.4ps (28)

and note that, in this simple case, we do not
need to compute the corresponding magnitude
function f(w;p). Robust C_—stability of f(s;p)
follows directly from positivity of its coefficients.

Indeed,



1.7—0.6p; > 1.46

2.6+ 0.7p; — 0.4py > 2.19 (29)

for all p € P.

Since the matrix C'(iw;p) is a scalar, condition
(ii1) is included in (i1) which is satisfied because

g(w;p) = (140.2p1 4 0.3p2) (1.6 + 0.5p1 — 0.7p2)
+(0.9 - 0.1])1 - 0.3])2)
x (0.8 = 0.5p1 + 0.3p2)w
> 0.4473w + 1.0670
(30)
is obviously R4 —positive.

Our analysis is elementary when compared to the
stability testing procedure of Xiao et al. (1999),
which involves extensive computation required by
the Edge Theorem.

Let us consider more complex examples which well
require the use of Bernstein’s algorithm.

Example 2.
as

A two—variable polynomial is given

h(s,z;p) = §222 —|—h21(p:)szz + hlg(p)sz2 + hgo(p)sz

+hoa(p)=” + hi1(p)sz
+hio(p)s + ho1(p)z + hoo(p)
(31)

where
ha1(p) =3 —m
hzo(p) =P1p2
hi1(p) = 3pips — pips
ho1(p) = 6 — 5p1 + 3p2 — pip2 + pi (32
hi2(p) = pip2 32)
12
hoa(p) =2 —p1+p2
hio(p) = pips
hoo(p) = 2p1p2 — PPp2 + p1P3

and
P:{pE[Rz 4 6[1,2], sz[l,z]}. (33)
The polynomial f(s;p) is computed as

f(s;p) = (4 —p1 +p1pa)s® + (4p1ps — Pip2 + pips)s

+8 — 6p1 + 4ps + pipa + T — pips + pip
(34)

The corresponding minimizing polynomial
fls)=4s" +4s+4 (35)

i1s obtained by minimizing each coefficient using
Bernstein’s algorithm. Obviously, F i1s C_—stable
since f(s) has positive coefficients.

Next, we compute

c(z;p) = ca(p)2® + c1(p)z + co(p) (36)
where

ca(p) =2 —p1 + p2 — w? + ip1pow

c1(p) =6 —5p1 +3p2 — pips +pi — 3w® + prw?
+i(3p1p2 — pipa)w

co(p) = 2pip2 — pips — pipaw” + ipipiw .

(37)

In this case, the 2 x 2 matrix C'(iw; p) turns out
to be a diagonal matrix

Cl(iw; p) = diag {e11(iw;p), cooliwsp)}  (38)

and conditions (ii) and (iii) of Theorem 5 reduce
to positivity of the coefficients

c11(iw;p) = é11(w?;p)

= (3 —p1)w* + (=124 10p1 — B6p2 + 2p1po

—2p7 + 3pip; — pip3)w’
+12 — 16py + 12ps — 10p1ps
+7p§ + 3p§3— p1p3

+2pip2 — py

Caa(w?: p)

= (3p1pa — pip2)w’

+(=12p1ps + 10p3ps — 6p1p3
+2pip5 — 2p3p2 + 3pips — pips)w’?
+12p1p2 — 16pips + 12p1p3
—10p?p3 + Tpips + 3p1ps — pips

+2pp3 — pip2 -

sz(iw; P)

(39)
By using Bernstein’s minimization algorithm we
compute the minorizing polynomials (Siljak and
Stipanovié, 1999) and establish positivity of the
two polynomials ¢11(iw; p) and caa(iw;p) by ob-
taining the minima

mein é11(w;p) =1.3724 at p;1 =2, py =1,
pcp

u/G]R,+

w=20.1715
rgleigl éoo(w;p) = 31185 at p;1 =2, p, =1,
u/EJH,+

w = 0.2487 .

(40)
Positivity of the minima implies robust stability
property 25 for the polynomial h(s, z; p) of 31.

4. TIME-DELAY SYSTEMS

Our objective in this section is to show how the
tools presented in this chapter can be applied to
test robust stability of linear systems of the re-
tarded type described by a differential-difference
equation

n—1 m

W)+ > hik(p)rW(t—kr) =0, (41)
J=0k=0

where 7 > 0. The cocfficients hjy(p) arc polyno-

mials in the uncertain parameter vector p € IR’
which belongs to a box P.

It is well known (Bellman and Cooke, 1963) that
for a fixed parameter p, a system (41) is stable if
and only 1f

n—1 m
h(s,e™™p) = s" + Zzhjk(p)gje—krs £0,
=0 k=0
Res>0. (42)



The system is robustly stable if (42) holds for all
peP.

The following theorem is a straightforward robus-
tification of a theorem by Kamen (1983):

Theorem 6. System (41) is robustly stable

independent of delay if

hs 7p) £0, {s €N {zeK}n{peP}.
(43)

This condition is also necessary if

h(0,2;p) 20, {zeK}N{p€eP}. (44)

To test condition (43) we first use the bilinear

transformation

{1+M, w € IR when z € K\{-1} (45)

2=9 1—w

-1, z=-1
to define the polynomials

~ Cy L \m )l—I—iw.
h(s,iw;p) = (1 — iw) h(a,m,p) (46)

f(s;p) = h(s,—1;p) .
Then, by following Ansell’s approach in, we con-
sider the polynomial ¢(s; p) = h(s,iw;p),

n

c(sip) = ci(p)s (47)

§=0

where
ci(p) = D hir(p)(iw)* . (48)
k=0

With ¢(s;p) we associate the symmetric n x n

Hermite matrix C' = (¢jx) having elements ¢;p
defined in {6), and obtain the polynomial
9(w?; p) = det C(iw; p) . (49)

Finally, with polynomials f(s;p) and g(w?;p) at
hand, we can imitate Theorem 5 to state the
following;:

Theorem 7. System (41) is robustly stable in-
dependent of delay if
(1) F is IRy —positive and f(s;p") is C_—stable for
some p’ € P.
(i) G is IRy —positive.
(iil) C'(0; p”) is positive definite for some p”’ € P.
It is obvious that condition (44) of Theorem 6,

which is included in (45), can be tested wvia posi-
tivity as well.

To illustrate the application of Theorem 7 let us
use the following:

Example 3. A time-delay system (41) is given
as
.1:(2)(7‘,) —|—p2x(1)(t — 1)+ pxe(t—7)+ .1:(1)(7‘,)
+H(L+pip)a(t) = 0 (50)
with the uncertainty box

P={pelR?: p; €[-05,0.5], ps € [-0.5,0.5]}.

(1)

From (50), we compute the associated polynomial
h(s,z;p) = 8>+ (p2s +p1)z + s+ 1+ pips , (52)

and test first the necessity of condition (43) by
checking condition (44). Since

R(0,2;p) = p1z + 1 + p1p3 (53)

and 1 + p1p3 > |p1], we conclude that (44)
is satisficd. This implics that condition (43) is
necessary and sufficient for robust stability of
system (50}, and we proceed to compute the
polynomial

Flsip) ="+ (L—pa)s+1—pi+pips . (54)
To test robust stability of this polynomial we do
not need to construct the family F. It suffices to
check positivity of each coefficient, which we do

by using the Bernstein algorithm. The resulting
minorizing polynomial

f(s) =52 +0.55+0.5 (55)

implies robust stability of f(s;p), that is, condi-
tion (i) of Theorem 7 is satisfied.

For testing condition (ii) we need the polynomial

h(s,iw;p) = (1 —iw)s? + [1 4 pa + (=1 + p2)iw]s
+1+p1+ p1p
+(=1+p1 — prp3)iw .
(56)
Using equations (47)—(49), we compute

g(w;p) = 4(1 — p1 — 2p2 + 2p3 + 2p1p2

—2p1ps + pip3)w’

+8(1 = 2p% — p3 + pip3 — pipa)w

+4(1 + p1 + 2ps + 2pips + 3 + 20193

+2p1p5 + p1ps.

(57)

By applying the Bernstein algorithm to each co-
efficient of g(w; p), we obtain the minorizing poly-
nomial

g(w) = 0.625w” + 1.25w + 0.375 (58)

which is clearly IR} —positive, and (ii) of Theorem
T is satisfied.

Finally, the matrix of condition (iii} is computed
as C(0,0) = 21, where I, is the identity matrix
of dimension 2, and robust stability independent
of delay of system (50) is established with respect
to the uncertainty box P in (51).

5. CONCLUSIONS

We have shown how stability of 2D polynomials
with interval parameters can be tested wvia poly-
nomial positivity. To test stability of polynomials
with multiaffine and polynomic uncertainty struc-
Lures, positivily ol only two interval polynomialsis
required. A remarkable efficiency of the proposed
stability criteria is duc to their suitability for
applications of Bernstein’s expansion algorithms.
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