
CONTEXT-DEPENDENT AGENTS FOR
REAL-TIME SCHEDULING IN
MANUFACTURING SYSTEMS

Toshiyuki Miyamoto ∗ Bruce Krogh ∗∗,1

Sadatoshi Kumagai ∗

∗ Dept. of Electrical Eng., Osaka Univ., Suita, Japan
∗∗ Dept. of Electrical and Comuputer Eng., Carnegie

Mellon Univ., Pittsburgh, U.S.A.

Abstract: Autonomous distributed manufacturing systems(ADMS) consist of mul-
tiple intelligent components with each component acting according to its own judg-
ments. The ADMS objective is to realize more agile and adaptive manufacturing
systems. This paper presents the introduction of context-dependent agents (CDAs)
in ADMS that switch strategies depending on system conditions to achieve better
performance than can be realized by agents that use the same strategies under all
system conditions. For the real-time job scheduling problem, the paper presents
a basic CDA architecture and the results of an extensive empirical evaluation its
performance relative to other rule-based schemes based on several common indices
for real-time dispatch.

Keywords: Intelligent Manufacturing Systems, Agents, Real-time

1. INTRODUCTION

Recent progress in information technology has
opened a door to Next Generation Manufacturing
Systems (NGMS, 2000). NGMS are envisioned
to be: flexible and adaptable, information- and
knowledge-based, and modular to support distri-
bution and autonomy and reconfiguration. In the
NGMS program of the Intelligent Manufacturing
Systems project (IMS, 2001), architectures for
autonomous distributed manufacturing systems
(ADMS, 2001), which are manufacturing sys-
tems comprising multiple intelligent components
(agents) with each component acting according to
its own judgments (Lin, 1992) have been investi-
gated. This is in contrast to traditional centralized
control architectures, which suffer from a lack of,

1 The research of B. H. Krogh was supported in part by
the Complex Systems/Networks Initiative of EPRI, Palo
Alto, CA, and the U.S. Department of Defense.

or a difficulty to implement, agility and flexibility.
The ADMS structure makes it easy to design
or modify the controller, and makes it easy for
different generations of technology to coexist.

This paper addresses a common problem that
arises in the design of control agents for the ADMS
(and other such systems). Since agent decisions
are made independently, it is possible that agents
can end up working at cross purposes, leading to a
degradation in overall system performance. This
occurs when the system conditions are different
from the conditions that were assumed when the
agent strategies were designed. Agent strategies
that are very good in some situations can turn
out to be very bad for other situations. This
problem is addressed by the concept of context
dependent agents (CDAs) (Krogh et al., 2001).
In a CDA, local decision policies are designed
for different assumptions about the overall system
context. The appropriate policies are then invoked

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain

on-line based on real-time monitoring of system
performance.

This paper explores the application of the CDA
concept to ADMS, focusing on the problem of
real-time job-shop scheduling (Rovithakis et al ,
2001; Aydin and Oztemel, 2000; Cicirello and
Smith, 2001). The scheduling problem for job
shops is well known as a NP complete problem
(Smith, 1992). Moreover, in applications, there
are many performance criteria that apply depend-
ing on the situation. Even if a good schedule is
computed off-line, it is seldom possible to carry
it out without making real-time modifications to
accommodate new jobs and unanticipated changes
in the system. We are interested in performing
the scheduling task using distributed agents that
decide their next actions based on a dispatch rules.
CDA switching changes the criteria for the agent
decisions based on the system status. This paper
presents the basic system and CDA architecture,
along with a specific switching policy for the job
shop scheduling problem. The performance of the
CDA approach is compared with the performance
of fixed controllers using dispatch rules based on
several common indices used rank the urgency of
performing given tasks.

2. AGENT-BASED JOB-SHOP CONTROL

Job-shop manufacturing systems consist of three
types of physical components: manufacturing
cells, AGVs, and storage (e.g., a warehouse). For
the purposes of scheduling, the AGV system can
be represented as transport delays for moving
parts between cells. Figure 1 shows the ADMS
agent configuration for a job shop with three cells.
Each cell has a cell manager and cell controller.
These agents are connected with a communica-
tion network. A software agent, called a black-
board, has information about the whole system,
and other agents can get information from the
blackboard agent as needed. The solid lines indi-
cate communication links. The dashed and single-
dotted lines show which agents can query black-
board for the system status and can send state-
change information. The dashed lines show that
the cell manager can watch the status of its own
cell, and can send control messages to it.

In this paper, the job shop capabilities are spec-
ified by a table describing the functions that can
be performed by each cell and its capacity (see
Table 1). A second table specifies the jobs to be
done (see Table 2). An order request is given with
the number of batches, due date, a sequence of
functions and associated process amounts (total
effort to perform each function). Order requests
are not necessarily known initially, that is, new
jobs can arrive while the system is operating. The

Cell 1

CellMan 1

Cell 2

CellMan 2

Cell 3

CellMan 3

BlackBoard

Warehouse

Communication Link

Query and Inform

Monitor and Control

Fig. 1. Agents for job shop problem.

Table 1. Cell Specification

cell A B C D E capacity

Cell 1 1 0 2 0 1 10
Cell 2 1 1 0 1 0 10
Cell 3 0 0 0 2 0 10
Cell 4 2 0 0 0 0 10
Warehouse - - - - - 20

Table 2. Order Specification

order N D process sequence

Odr 1 3 520 D/38 A/36 A/34 B/22
Odr 2 6 470 A/28 A/28 A/20 C/30
Odr 3 4 490 E/36 A/34 C/24 A/24

N : the number of batches
D : due date

functions for a batch must be performed in the
order given by the process sequence. In the column
“process sequence” of Table 2, A, B, C, D, and
E are functions, and integer numbers are process
amounts. The process time for a function is cal-
culated by dividing the process amount by the
ability of a cell. For example, if Cell 4 processes
the second step of Odr 1, its process time is 18.
Constants specify the time required to transport
jobs between cells and the setup time require to
start a function at each cell.

It is assumed that the system is pull style. That
is, the cell sends a request to another cell or
warehouse when it does not have the next job. The
cell agents must make the following decisions:

• What job to do next;
• From which cell or warehouse to a request a
job; and

• Whether to give a job in its buffer to an agent
requesting it.

The remainder of the paper focuses primarily on
the first question.

3. CONTEXT-DEPENDENT AGENTS

Figure 2 shows the proposed CDA architecture.
Cellk is a target to control and xk is its state

Cellk

C1

C2

Cn

Mk

xk uk

m

Cell

Cell Manager

BlackBoard

Fig. 2. A cell agent and a cell manager agent
implementing a CDA.

vector. The cell agent has a set of controllers
C1, C2, · · · , Cn. Each controller implements a
strategy designed for a certain performance objec-
tive. The cell manager can switch the controller
according to the control signal m from the cell
manager agent. The output uk of the cell agent
is control signal to Cellk. The cell manager agent
collects information about the whole system and
decides a suitable control strategy m for the cell
agent.

The control strategies are based on dispatch in-
dices described in the following section. These
dispatch indices are used to create dispatch rules,
where a dispatch rule is a quantitative ranking
of the urgency of doing each of the next possible
jobs. The cell controller selects the job with the
highs ranking (most urgent). Section 5 describes
how the dispatch rules are constructed. A set of
dispatch rules and a switching strategy for a cell
manager is then described in section 6.

4. DISPATCH INDICES

Dispatching is typically performed by quantify-
ing the urgency of performing each of the possi-
ble next tasks. For job shops, several dispatch-
ing indices have been defined for this purpose,
each reflecting a particular performance objective
(Jaymohan and Rajendran, 2000; Gargeya and
Deane, 1999). The dispatch indices used in this
paper is shown in Table 3, where the definitions
of the indices use the following notation and ter-
minology (Jaymohan and Rajendran, 2000):

τ time at which the decision is made.
Di due date of order i.
Oi number of operational steps of order i.
F the set of functions.
O the set of orders.
Jij a job at j-th operational step of order i.
Fij required function for j-th operation of

order i.

Vij required process amount to complete j-
th operation of order i.

Wij(τ) number of jobs waiting for j-th operation
of order i at the instant τ in the whole
system.

Pij(τ) number of jobs being processed in the j-
th operation of order i at the instant τ
in the whole system.

Nij(τ) number of remaining jobs for j-th oper-
ation of order i at the instant τ in the
whole system. Nij(τ) =

∑j
l=1Wil(τ) +∑j−1

l=1 Pil(τ).
Zij(τ) priority index of j-th operation of order i

for the current control strategy at the in-
stant τ (to be computed by the agents).

C the set of cells.
CO the set of other cells.

S(τ) the set of idle cells at the instant τ . The
idle cell is defined as follows:
• at the instant τ , there is no job for
it, and

• in the future, it may process some
jobs.

Bkf ability value with cell k for function f .
maxBf the maximum value of ability among

cells for function f , given as maxBf =
maxk∈C Bkf .

rf (τ) remaining process amount for function
f , given as rf (τ) =

∑
i∈O

∑Oi

j=1 αijf (τ)Vij ,
where

αijf (τ) =
{
Nij(τ) ifFij = f
0 otherwise

remf (τ) remaining process amount divided by
the sum of ability value for function f ,
given as remf = rf

sumBf
.

Tijk time to process j-th operation of order i
by cell k. If BkFij > 0, then Tijk = Vij

BkFij
,

else Tijk is not defined.

SPT (Shortest Process Time) rule is commonly
used to minimize mean flow time and per-
centage of tardy jobs. In the table, Tmax =
maxi∈O,1≤j≤Oi,k∈C Tijk, and
Tmin = mini∈O,1≤j≤Oi,k∈C Tijk.

EDD (Earliest Due Date) rule is one of the old-
est indices commonly used for easy implemen-
tation. With this rule, a cell tries to process a
job with earliest due date. In the table, Dmax =
maxi∈O Di, and Dmin = mini∈ODi.

BAF (Best Ability First) rule tries to use better
function than other cells. In the table, m is the
cell itself. In the rest of this paper, each constant
is given as follows: b1 = 1.05, b2 = 0.9.

MRF (Most average Remain Function) rule uses
the remaining process amount for each function
which is dynamic information, and tries to process
the critical function at the instance.

Table 3. Dispatch Indices

Rule Index

SPT ZSPT
ij =

{
Tmax − Tijk

Tmax − Tmin
if BkFij

> 0

0 else,

EDD ZEDD
ij =

Dmax − Di

Dmax − τ
if Dmax > τ

τ − Di

τ − Dmin
otherwise,

BAF* ZBAF
ij =

BmFij

maxBFij

When ZBAF
ij = 1 for more than one func-

tion, the index would be replaced by

ZBAF
ij =

b1 if ∀k ∈ CO, BkFij
< BmFij

,

b2 if ∃k ∈ CO,∀f ∈ F ,
f �= Fij , Bkf = 0,

ZBAF
ij othersize.

MRF* ZMRF
ij (τ) =

remFij
(τ)

maxx∈F remx(τ)

PJI* ZPJI
ij (τ) =

Oi
max

x=j+1
six(τ)

LOC ZLOC
ij (τ) =

l1 if Jij is in buffer of itself,
l2 else if Jij is in buffer

of others, and all of them
cannot process Jij ,

l3 else if Jij is in
the warehouse,

l4 else if Jij is in buffer of
others, and some of them
can process Jij ,

l5 else.

SRF* ZSRF
ij (τ) =

Sij(τ)

maxy∈O max
Oy

z=1 Syz(τ)

LPF* ZLPF
ij (τ) =

 n1 if

x∗
mFij

maxf∈F x∗
mf

> th

n2 otherwise,

* New indexes introduced in this paper

PJI (Produce Job for Idle cell) rule looks ahead,
and tries to produce a job for idle cells. In the

table, six(τ) =

∑
k∈S(τ) BkFix

sumBFix

.

LOC (Loc dependent) rule gives a priority de-
pending on the current location of the job. In the
following part of this paper, each constant is given
as follows: l1 = l2 = l3 = 0.1, l4 = 0.05, and
l5 = 0.0.

SRF (Sum of average Remain Function) rule tries
to process a job whose remaining process amount
is more. In the table,

Sij(τ) =

Oi∑
x=j

remFix(τ) if Nij(τ) > 0,

0 otherwise.

LPF (Linear Programming Filtering) rule uses the
following linear program to minimize the total
process time. Let xkf denote a length of time for
which cell k processes with function f , and T be
a total process time to complete orders. Then the
minimization problem can be written

Table 4. Priority Index on Choice Cells
or the Warehouse

Index Condition

0.1 A cell has the job, and it cannot process the
job.

0.2 A cell has the job. Though it can process the
job, it has never rejected a request for the job.

0.3 The warehouse has the job.
0.4 A cell has the job. It can process the job, and it

has rejected a request for the job in the latest
δ clocks.

0.5 It does not have the job.

δ is set to 10 in this paper.

minimize T

subject to
∑
k∈C

Bkfxkf ≥ rf (τ),∀f ∈ F
∑
f∈F

xkf ≤ T, ∀k ∈ C,

and x∗kf in the table is an argument of the optimal
solution. In the table, th is a threshold. In the
following, each constants are given as follows:
n1 = 1.0, n2 = 0.1, and th = 0.1.

5. CELL CONTROLLERS

The control strategy is to prioritize possible next
tasks using measures constructed from the dis-
patch indices. These measures are expressed by
the following format:

index[, index][; index[, index]]

where [xxx] means any number of iterations of
xxx, and ‘,’ is a separator for elements and ‘;’
is a separator for sets. The order of the sets of
indices indicate their priority in the rule, with the
first set having the highest priority. For example,
index1, index2; index3 means index1 and index2
are in the set of the first priority and index3 are in
the second priority set. The index Zij is calculated
by the weighted sum of an index for each rule
except a case that some of the rules are filtering
rules like LPF as follows:

Zindex1
ij + Zindex2

ij + γ × Zindex3
ij

where γ is a discounting factor and is set to 0.1 in
this paper. If index1 is a filtering index, then Zij

of this strategy is calculated as follows:

Zindex1
ij × (Zindex2

ij + γ × Zindex2
ij)

If one of the indices is used more than one times in
different sets, the second or later entry is ignored.
The cell agent calculates Zij for each existing job,
and it puts jobs into its schedule in descending
order.

Cell tries to process the first job in the schedule.
If it does not have the job, it tries to get the job
from another cell or the warehouse. In this paper,
the following procedure to decide which cell or
warehouse to send a request is used:

1 Calculate a priority index for each other cells
and the warehouse using Table 4.

2 A target which has the smallest index is se-
lected. If multiple cells have the same index,
a cell which has the most jobs in its buffer is
selected.

If the request is rejected, it goes back to re-
schedule, and the reject information is stored. The
agent schedules at the next clock. If the request is
accepted, the cell gets the job, and it is put in its
buffer.

Let ε be a estimated time to transport a job from
another place. In this paper, it is fixed to 2. If the
cell can process the first job in the schedule, it
will make the next scheduling at ε clock before of
expected finish clock of current job.

When a request message from another cell, Cell
decides whether it will give a job to the cell or
not by the following rule:

• If the requested job is in the schedule, it
is rejected. But when this cell has more
batches than in the schedule, they could be
distributed.

• If more than one cell requests for the same
job at the same time, a priority of the cell is
given lexicographically.

6. CELL MANAGER:
CONTEXT-DEPENDENT SWITCHING

Developing the set of controllers and switching
rules is not easy, because even if the strategy
seems to work well for some cases, there may be
other cases for which the strategy works badly,
and vice versa. The following empirical procedure
for developing CDA switching rules is used:

1 Select the dispatch indices to be used.
2 Define a collection of dispatch rules (con-
trollers) using the indices.

3 Design rules for switching among the con-
trollers.

4 Generate sets of sample orders randomly.
5 Simulate the CDA with the sample sets.
6 Analyze the result, and find a sample for
which the strategy does not work well.

7 Change the switching rule (if necessary), and
return to the simulation step.

The CellManager described in this section has
been designed to minimize the total process time.
This agent decides the next control strategy for
its cell agent. The control strategy is the set of
dispatching indices with two priorities. Hereafter,
the first priority set is called major rules, and the
second priority set is called minor rules.

The possible control strategies available to this
CellManager are expressed as follows:{

LOC, SRF
∣∣{BAF|MRF,SRF}, {−|LPF}};

LOC, {SRF|PJI}
where {A|B} means a choice of A or B, and −
means no index is selected. Thus the CellManager
has to make four choices; the result of these
four choices is a particular control strategy. After
extensive simulation studies, the following rules
for making these four choices has been developed.

Rule1 If the cell has only one function, Cell-
Manager chooses “LOC,SRF”. Otherwise, it se-
lects {BAF|MRF,SRF}, {−|LPF} depending on
the status.

Rule2 To minimize the total process time, each
cell should select a function for which the cell
has more ability. In this sense, BAF should be
used. But if most of remaining jobs require limited
functions, then the cell which has the function
should use it. In this case, “MRF,SRF” should be
used. A guard condition for switching from “BAF”
to “MRF,SRF” is as follows:

∃f ∈ F , Bkf > 0, remf > ave+∆,∆ >
ave

2
,

where ave is the average of remf , and ∆ is the
standard deviation of remf . Its negation is a guard
condition for reverse switching.

Rule3 The CellManager activates LPF, when
it has to restrict a use of some functions. The
condition to activate LPF is as follows:

∃f ∈ F , Bmf > 0,
xmf

maxj∈F xmj
< th,

where m is the cell itself, and th is given in sec-
tion 4. Its negation is a guard to reverse transition.

Rule4 CellManager selects “PJI” when the fol-
lowing conditions are true:

1 S �= ∅
2 ∃f , ∃k ∈ S, Bkf > 0,

remf

maxj∈F remj
> 0.5

Its negation is a guard to reverse transition.

7. EXPERIMENTAL RESULTS

Simulation software is written in Java using the
Multi Agent Net (MAN) library(Miyamoto and
Kumagai, 1999).

Randomly generated a set of 100 examples has
been used for simulations on 17 strategies. Sixteen
cases were done with fixed control strategy, and
one case was done with switching by the CDA.
Table 5 shows experimental results, and each
column is the strategy, the average of the total
process time, and the average of the different

Table 5. Experimental Results

strategy T T − T ∗
BAF,MRF,LPF;LOC,SRF 575.3 11.5

BAF,MRF;LOC,SRF 588.1 24.3
BAF,LPF;LOC,SRF 596.2 32.7
BAF;LOC,SRF 585.2 21.4
EDD;LOC,SRF 684.0 120.2
SPT;LOC,SRF 680.1 116.3
CDA 572.3 8.5

from the best total process time. Here, we show
only results of selected strategies because of the
limitation of papers. Strategy CDA refers to the
results generated by implementing the strategy
switching rules described in the previous section.

Indices EDD and SPT are well-known and com-
monly used. Since they are not designed to mini-
mize the total process time, results are the worst.

The result of “BAF;LOC,SRF” was better and
“BAF,MRF;LOC,SRF” or “BAF,LPF;LOC,SRF”.
This means making a complex control rule makes
the result worse in some cases.

Control strategies “BAF,MRF,LPF;LOC,SRF”
and “CDA” use almost the same set of rules. This
means the performance could be improved with
the CDA switching.

8. CONCLUSIONS

This paper describes an agent-based real-time
scheduling system for job shops. The scheduling
problem is an optimization problem with multiple
criteria, and which criterion is important at that
point may vary depending on the state of the sys-
tem. The scheduler must react to changes in sys-
tem conditions. And even for one objective, con-
trol strategy should be changed depending on the
system configuration. Without CDA switching,
realizing a controller satisfies everything would be
difficult. This paper showed a basic agent archi-
tecture to realize the switching among strategies.

A switching strategy to minimize the total process
time has been designed, and a simulation software
has been developed. An evaluation about strate-
gies has been done based on experimental data.
The experimental results show that the perfor-
mance could be improved with the CDA.

Future works include designing a switching rules
for multiple criteria, developing a systematic
method to define a CDA structure and switching
rules, and developing an evaluation method of
strategies.

REFERENCES

Autonomous Distributed Manufacturing Systems,
http://www.ims.mstc.or.jp/project
/project end/95002/95002 3-1 contents.html.

Aydin, M. E. and E. Oztemel (2000). Dy-
namic job-shop scheduling using reinforce-
ment learning agents. Robotics and Au-
tonomous Systems, 33, 169-78.

Cicirello, V. A. and S. F. Smith (2001). Wasp
Nets for Self-Configurable Factories. Proc. of
the 5-th International Conf. on Autonomous
Agents, 473-480.

Gargeya, V. B. and R. H. Deane (1999). Schedul-
ing in the dynamic job shop under auxiliary
resource constraints: a simulation study. Intl.
Journal of Production Research, 37, 2817-
2834.

Intelligent Manufacturing Systems,
http://www.ims.org.

Jayamohan, M. S. and C. Rajendran (2000). New
dispatching rules for shop scheduling: a step
forward. Intl. Journal of Production Research,
38, 563-86.

Krogh, B. H. ed. (2001). Context-Dependent Net-
work Agents. EPRI/DoD Complex Interac-
tive Networks/Systems Initiative: Second An-
nual Report. Technical Report no. 1006094,
EPRI, Palo Alto, CA, 2001.

Lin, G. Y. J. and J. J. Solberg (1992). Integrated
shop floor control using autonomous agents.
IEE Transactions, 24, 55-71.

Miyamoto, T. and S. Kumagai (1999). A Multi
Agent Net Model and the Realization of Soft-
ware Environment. Proceedings of Workshop
of Petri Nets to intelligent system develop-
ment with 20th International Conference on
Application and Theory of Petri Nets, 83-92.

Project Report of NGMS (2000), IMS95002.
http://www.ims.org.

Rovithakis, G. A., S. E. Perrakis, and M.
A. Christodoulou (2001). Application of a
neural-network scheduler on a real manufac-
turing system. IEEE Trans. on Control Sys-
tems Technology, 9, 261-270.

Smith, S. F. (1992) Knowledge-based produc-
tion management: approaches, results and
prospects. Production Planning and Control,
3, 350-380.

