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Abstract: This paper describes a method for constrained state estimation based on
receding horizon optimization. The case here studied corresponds to an optimization
horizon of size two and a constraint horizon of size one. It is shown that, in this case, a
simple closed-form solution can be obtained. The resulting estimator is called a Rolling
Horizon Estimator with Constraint Horizon One. It is shown that this estimator is
analogous to a class of anti-windup control algorithms. Simulation results confirm the
merits of using this scheme for state estimation in the presence of state constraints.
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1. INTRODUCTION

It is well known that unconstrained state estima-
tion for linear systems is elegantly solved by the
Kalman filter and related schemes (Anderson et
al. [1979]). Recent research has focused on the
problem of adding constraints to the estimation
problem (Muske et al. [1993], Muske et al. [1995],
Robertson et al. [1996], Rao et al. [2001]). A
particularly attractive idea (Muske et al. [1993])
for constrained state estimation is to formulate it
as a receding horizon optimization problem with
quadratic cost. This keeps the size of the problem
constant and allows standard Quadratic Program-
ming (QP) methods to be utilized for its solution.

An important ingredient in constrained state es-
timation via a receding horizon formulation is the
“entry estimate” (Başar et al. [1995], Verdu et al.
[1987]). It has been shown that this estimate plays
an important role in the accuracy and stability of
the estimator. Several ways of defining the entry
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estimate have been explored in Rao et al. [2001].
One of the more appealing of these strategies is
to simply utilize the estimate x̂k−L obtained as
the final estimate from an earlier block of data as
the entry estimate when dealing with the block
of data from (k − L + 1) to k. This idea seems
to be a natural choice, in the sense that, in the
absence of constraints, the scheme simply reduces
to the Kalman Filter. To implement this idea
requires that L prior estimates be stored. The idea
is illustrated graphically in Figure 1 for the case
L = 3.

Fig. 1. Entry estimates given by early block esti-
mates

This idea is captured in the terminology “Rolling
Horizon Estimation”. Note that the key idea is to
store past estimates to be used as initial estimates
in future optimization blocks. This formulation
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leads to the natural question: “Is it possible, or
sensible, to use estimator blocks with constraint
horizon of length one?” Clearly this would not
make sense if past estimates were discarded but it
seems to have some merit when past estimates are
stored as initial estimates for the next block. Here,
we call this class of estimators, “Rolling Horizon
Estimators with Constraint Horizon One” or CH1
for short.

We show that the CH1 estimator is closely related
to standard schemes used for anti-windup control.
This creates and interesting connection between
constrained estimation and widely used methods
for constrained control.

The remainder of the paper proceeds as follows.
In the next section we briefly describe the general
case (arbitrary horizon) of the rolling horizon op-
timal state estimator. In Section 3 we develop the
theory for the rolling horizon estimator with con-
straint horizon one (CH1) and derive the analyti-
cal solution for this simple case. In Section 4, the
performance of the CH1 estimator is illustrated
with a simulation example. Some connections of
the CH1 estimator with anti-windup algorithms
are discussed in Section 5, and in Section 6 some
conclusions are drawn.

2. ROLLING HORIZON ESTIMATION

Consider a linear time invariant state space model
of the form:

xk+1 = Axk + Buk + Dwk (1)

yk = Cxk + vk (2)

where xk ∈ Rn, uk ∈ Rm, wk ∈ Rq, yk ∈
R�, vk ∈ R� are, respectively, the state, known
deterministic input, process noise of covariance Q,
output, and measurement noise of covariance R.
The process and measurement noises are assumed
to be uncorrelated.

2.1 Unconstrained case

The unconstrained best linear unbiased steady
state estimate for xk is well known to satisfy:

x̂∗
k+1|k = Ax̂∗

k|k + Buk (3)

x̂∗
k|k = x̂∗

k|k−1 + K
(
yk − Cx̂∗

k|k−1

)
(4)

where
K = PCT

(
CPCT + R

)−1
(5)

and P satisfies the following Algebraic Riccati
Equation

P = APAT + Q − APCT
(
CPCT + R

)−1
CPAT

(6)

It is also well known that the estimate x̂∗
k|k can

be determined, equivalently, by optimizing the fol-
lowing cost function w.r.t. {x̂k−L+1, ŵk−L+1, ...,
ŵk−1}

J =
(
x̂k−L+1 − x̂∗

k−L+1|k−L

)T

P−1
(
x̂k−L+1 − x̂∗

k−L+1|k−L

)

+
k∑

j=k−L+1

(yk − Cx̂k)T
R−1 (yk − Cx̂k)

+
k−1∑

j=k−L+1

ŵT
k Q−1ŵk (7)

where {x̂j} and {ŵj} satisfy the constraint

x̂j+1 = Ax̂j + Buj + Dŵj ; j = k−L + 1, ..., k− 1
(8)

We then set x̂∗
k|k as the current estimate x̂k

obtained from the above optimization problem.

Notice that the cost function (7) uses the prior
estimate x̂∗

k−L+1|k−L as part of the data. The cost
function can be motivated by maximum likelihood
arguments in the case of Gaussian noise or simply
as a convenient way to express the trade-off inher-
ent in finding an estimate which matches the given
observations {yj ; j = k − L + 1, ..., k} whilst not
causing the associated estimates {ŵj ; j = k−L+
1, ..., k − 1} to be unreasonably large.

2.2 Constrained case

The cost function (7) together with the linear
constraint (8) has also been suggested as a way of
estimating the state of (1), (2) when the estimates
are required to satisfy various hard constraints.
Indeed, we may define x̂L

k−L+j|k for j = 1, ... L

as the sequence
{

x̂k−L+j ; j = 1, ...L
}

that mini-
mizes (7) subject to (8) plus the additional con-
straints

ŵk−L+j ∈ W; x̂k−L+j ∈ X; j = 1, ..., L (9)

where W and X are allowable constraint sets.

A remark is in order regarding the notation
x̂L

k−L+j|k. The superscript refers to the length
of the block of data being processed (that is,
yk−L+1, . . . , yk), the first component of the sub-
script denotes the sample time for the state and
the second index denotes the end of the current
block, i.e. the last data point available. Note that
we use x̂L

k|k as the current state estimate.

The minimization problem defined by (7), (8),
(9) can be solved via Quadratic Programming
techniques. An important ingredient in the cost
function (7) is the, so called, entry cost which is
the first term on the right hand side of (7). In the



case of unconstrained estimation, this entry cost
summarizes the data up to time k−L via the pair
(x̂∗

k−L+1|k−L, P ). Indeed, in the case of Gaussian
noise, x̂∗

k−L+1|k−L is a sufficient statistic for the
past data. It is this fact which leads to the well
known recursive form of the optimal estimator in
the unconstrained linear case. Unfortunately, in
the constrained case, it is not generally possible to
have a finitely parameterized sufficient statistic for
past data on the semi-infinite interval (−∞, k −
L). In this case, we use the first term in (7) as
an approximate way of capturing the entry cost
via a quadratic function. However, this begs the
question of how one should define x̂∗

k−L+1|k−L

and P in the constrained case. Several options
are discussed in Rao et al. [2001]. Arguably the
most important ingredient is the entry estimate
x̂∗

k−L+1|k−L. Thus we take P to be the solution of
(6) without further comment. Similarly, we could
take x̂∗

k−L+1|k−L as the estimate provided by an
unconstrained linear Kalman Filter. This would
seem to be reasonable when the block length L
is large since, under these conditions, the initial
estimate will be swamped by the data from k −
L + 1 to k. However, this seems less reasonable in
the case of small block lengths as we are effectively
ignoring the constraints prior to time k − L + 1.

Here, we will be interested in making the block
length as short as possible. In part this is moti-
vated by a desire to simplify the computations.
However, we also want to make a connection with
anti-windup control. For the short block case, it
seems highly desirable that x̂∗

k−L+1|k−L is, in fact,
a constrained estimate obtained from an earlier
block of data. Indeed, this is the key recommen-
dation made in Rao et al. [2001].

In the sequel, we take uk = 0 since this determin-
istic input plays no part in the problem in view of
the linearity of (1), (2).

3. THE CH1 ESTIMATOR

The Rolling Horizon Estimator with Constraint
Horizon One is essentially as described in Sec-
tion 2, save that the block size is taken equal to
L = 2 and the constraint horizon is equal to one.

Since the system is time invariant, we can simplify
the notation by setting k = 1 without loss of
generality. The cost function and constraints then
become:

J =
(
x̂0 − x̂∗

0|−1

)T

P−1
(
x̂0 − x̂∗

0|−1

)
(10)

+ (y0 − Cx̂0)
T

R−1 (y0 − Cx̂0)

+ (y1 − Cx̂1)
T

R−1 (y1 − Cx̂1)

+ŵT
0 Q−1ŵ0

where
x̂1 = Ax̂0 + Dŵ0 (11)

Combining (10) and (11), (and, assuming that A
is invertible), gives a function that is quadratic in
x̂1, ŵ0 which can be written (modulo a constant)
as:

J = [x̂1 − x̂uc
1 ŵ0 − ŵuc

0 ]
[

Γ S

ST Ω

] [
x̂1 − x̂uc

1

ŵ0 − ŵuc
0

]

(12)
where x̂uc

0 and ŵuc
0 are the unconstrained min-

imizing estimates. The latter quantities can be
obtained from a standard linear Kalman Filter
on the interval [0, 1] with initial condition x̂∗

0|−1.
(Remember, however, that the latter estimate ac-
counts for earlier constraints.) Thus, we have

x̂0|0 = x̂∗
0|−1 + K

[
y0 − Cx̂∗

0|−1

]
(13)

x̂1|0 = Ax̂0|0 (14)

x̂uc
1 � x̂1|1 = x̂1|0 + K

[
y1 − Cx̂1|0

]
(15)

ŵuc
0 =

[
DT A−T P−1

1|0 A−1D + Q−1
]−1

DT A−T P−1
1|0

(
x̂0|0 − A−1x̂1|1

)
(16)

where K � PCT
[
CPCT + R

]−1 and P1|0 �
APAT + Q. Then,

x̂uc
0 � x̂0|1 = A−1x̂uc

1 − A−1Dŵuc
0 (17)

In Seron et al. [2000], the geometry of the con-
strained quadratic optimization problem is ex-
ploited to obtain a finitely parameterized solu-
tion for the case of model predictive control of
arbitrary prediction and constraint horizons. The
unconstrained solution is first obtained analyti-
cally, then the variables are transformed such that
the constrained optimum is given by the orthogo-
nal projection into the allowed set. Finally, the
space is partitioned into regions such that the
orthogonal projection into the allowed variables
attains the same closed-form expression for the
constrained minimizer. The result is a controller
which is finitely parameterized as a piece-wise
affine function of the state. (See Seron et al. [2000]
for the details.)

The same methodology can be used to add con-
straints to the block size two optimization prob-
lem described above. As in Seron et al. [2000], the
first step is to carry out a transformation so as
to turn the ellipsoidal cost contours in (12) into
spheres. Thus, let

LT L =
[

Γ S

ST Ω

]
(18)

and perform the following change of variables

η̂uc
0 = L

[
x̂uc

1

ŵuc
0

]
(19)



Then η̂∗
0 (the constrained optimum in the trans-

formed variables) is simply the closest point (in
terms of the Euclidean norm) to η̂uc

0 in the allowed
region. The constrained optimum in the original
variables is, thus(

x̂∗
1

ŵ∗
0

)
= L−1η̂∗

0 (20)

Another alternative in the case of the rolling hori-
zon estimator of block size two, is to consider the
simpler case of constraint horizon one. In fact, we
have found that, for simple systems, the estimator
with constraint horizon one performs remarkably
better than the unconstrained estimator and very
close to estimators with longer constraint horizons
(we illustrate this with an example in Section 4).

Therefore, as a simple special case, we consider
here the situation where the state is scalar and
the constraint set is the interval X = [−∆,∆]
and the disturbances are unbounded (e.g., they
have a Gaussian distribution). Furthermore, we
take the constraint horizon equal one, i.e., we only
constrain x̂1 to be such that |x̂1| ≤ ∆. Notice
that, with this choice, the actual estimate x̂∗

k|k �
x̂∗

k satisfies the constraints. Moreover, as shown
below, this case has a very simple closed-form
solution and, as discussed in Section 5, has close
connections with anti-windup control schemes.
For this simple case, it can be readily seen that
the optimal constrained estimate x̂∗

1 is

x̂∗
1 = sat∆ {x̂uc

1 } (21)

where sat∆(·) saturates x̂uc
1 at ±∆. Substituting

back into (12) gives a quadratic function in ŵ0.
The latter function reaches its global minimum at
ŵ∗

0 where

ŵ∗
0 = ŵuc

0 + Ω−1S (x̂uc
1 − x̂∗

1) (22)

We can then propagate x̂∗
1 to the next time instant

to generate

x̂∗
2|1 = Ax̂∗

1 + Dŵ∗
1|1; ŵ∗

1|1 ≡ 0 (23)

Here we have used the fact that the best es-
timate of w1 given data up to time 1 is zero.
The estimate x̂∗

2|1 is then stored ready for the
next block processing. Of course, there are two
interlaced estimators required in this case, so the
next update begins with x̂∗

1|0 which would have
been previously stored. (This form of propagating
past information, which is illustrated in Figure 1
for the case L = 3, is called here Rolling Horizon
technique.)

4. SIMULATION EXAMPLE

To investigate the performance of the CH1 estima-
tor, discussed in the previous section, as compared

with the Kalman filter and with a Long Horizon
estimator, we consider the following simple model

xk+1 =
{

0.8xk + wk ; if |0.8xk + wk| ≤ ∆
∆ × sgn(0.8xk + wk) ; otherwise

yk = xk + vk

where wk, vk are stationary, independent Gaus-
sian white noises of variance Q and R, respec-
tively. The noise variance is taken as Q = 1 and
the value of R is varied from 0 to 200.

Note that in our model, the state xk evolves
linearly until it hits a barrier (±∆), in which case
it remains saturated until future noise values take
it inside the linear range. (This is a simplified
model of a linear system with nonlinear “overflow”
effects.) In Figure 2 we show the Mean Square
Error of three different estimators:

(i) Kalman Filter, which satisfies (13)–(17);

(ii) CH1, i.e., with block size L = 2 and constraint
horizon 1. In this case the estimator is given by the
analytical expressions (13)–(17) and (21)–(23);

(iii) Long horizon estimator, with block size L = 8
and constraint horizon 8. In this last case, the
optimization (7) subject to (8) and |xk−L+j | ≤
∆, j = 1, . . . , L is performed via a numeri-
cal quadratic programme (QP) routine. (No fur-
ther performance improvements were obtained for
horizons longer that 8.)
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Fig. 2. Mean Square Error vs. Noise Variance
R for: Kalman Filter, Rolling Horizon with
Constraint Horizon One, and Long Horizon
QP estimator with L = 8.

The three curves shown in Figure 2 pass through
the origin. Notice, from Figure 2, that the CH1
estimator performs remarkably close to the Long
Horizon estimator (specially when both are com-
pared to the unconstrained Kalman Filter esti-
mator). Notice also that, as R increases, the three
estimators tend to perform similarly. This is due
to the fact that, as R → ∞, the Kalman gain in (5)
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û(t)+ +r(t) u(t) y(t)
h
−1
∞

u′(t)

H(z)

Fig. 3. A typical anti-windup control scheme

tends to K → 0 and, hence, the state estimate x̂uc
k

becomes small and never reaches the constraints.

5. RELATION TO ANTI-WINDUP CONTROL

The scheme described in the last section reduces
to the Kalman Filter when the saturation function
in (21) is removed. Thus, the only nonlinear
element in the constrained state estimator is a
simple saturation function. A crucial feature of
equations (21) and (23) is that the effect of the
saturation is remembered via the state x̂∗

2|1 which
is passed onto the next block. We see that this
is analogous to the standard anti-windup circuit
(Goodwin et al. [2001]) shown in Figure 3 where
current control saturations are remembered by the
control law for future use.

In this context, we recall recent work reported
in De Doná et al. [2000], which shows that anti-
windup control is closely related to receding hori-
zon control with constraint horizon one. Of course,
in control, the effect of past constraints are au-
tomatically remembered by the plant. However,
in constrained state estimation we have to make
special provisions in the estimator so that it re-
members the effect of past constraints. This has
been achieved here by using x̂∗

k+1|k to pass data
from one block to the next.

Moreover, it has been shown in De Doná et
al. [2000] that a receding horizon control with
constraint horizon one is actually also optimal for
longer horizons in a non-trivial region of the state
space. By similar arguments, one can show that
the CH1 scheme is also optimal in a nontrivial
sense.

Finally, a major advantage associated with hav-
ing one single nonlinearity in the CH1 estimator,
is that stability can be analyzed using standard
ideas from nonlinear control, e.g., the Popov crite-
rion (Vidyasagar [1993]). Thus, techniques analo-
gous to those for anti-windup control (Teel [1999])
can be employed to study stability. This is a
considerable simplification relative to the usual
methods needed for receding horizon estimation
(Rao et al. [2001]).

6. CONCLUSIONS

This paper has described a method for con-
strained state estimation which is analogous to
anti-windup techniques in control. In particular,
the constraint horizon has been restricted to one
as is effectively done in anti-windup control. A
major advantage of the proposed method is that
it does not require on-line numerical computations
as opposed to standard longer horizon estimators.
Simulation results have confirmed that there are
cases in which the constraint horizon one estima-
tor performs very close to longer horizon estima-
tors.
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