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Abstract:

This paper presents fuzzy iden tificationof tw obioprocesses employing

TSK-type models. A "Modified Gram-Schmidt" (MGS) orthogonal estimator is used
to estimate the consequent parameters. This approach is then applied to identify tw o
distinct cases involving dissolved oxygen concentration: one related to a bioreactor
and the other one related to an activ atedsludge process. The obtained models are

then cross-validated.
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1. INTRODUCTION

Fuzzy systems have been employed in many
applications. A central characteristic of fuzzy
systems is that they are based on the concept of
fuzzy coding of information and operating with
fuzzy sets instead of numbers. In essence, the
representation of information in fuzzy systems
imitates the mechanism of approximate reasoning
performed in the human mind.

A common practice to model a complex non-linear
system is by decomposing it in smaller parts,
around given operating points. Thus, for
non-linear, partially kno wnhigh-order systems,
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the fuzzy modeling approach may be very
adequate. As it divides the input and output
spaces in subspaces, it means that local models
are created which cope with the complexity of
nonlinear systems.

A fuzzy modeling technique is here applied to
estimate the dissolved oxygen concentration in
tw odistinct cases: a bioreactor and an activ ated
sludge process. In both cases, the TSK-type model
dev eloped by Takagi, Sugeno and Kang is used
(T alagi and Sugeno, 1985), (Sugeno and Kang,
1986). They are formed by logical rules that have a
fuzzy antecedent part and a functional consequent
one. NARX ("Non-Linear Auto-Regressive with
eXogenous inputs")  structures are used in the
consequent part. The consequent parameters are
estimated using an advance regression orthogonal
estimator based on the Modified Gram-Schmidt



estimation method proposed in (Korenberg et al.,
1988) and (Chen et al., 1989).

This paper is organized as follows: section 2
presents the description of TSK-type fuzzy models
for dynamic systems. Section 3 presents the 2
bioprocesses to be identified. Section 4 presents
the fuzzy identification method applied to obtain
the models of the bioprocesses and their behavior.
Section 5 shows the conclusions of this work.

2. FUZZY MODELS FOR DYNAMIC
NON-LINEAR SYSTEMS AND TSK MODELS

To build fuzzy models from data generated
by poorly understood dynamic  systems,
the input-output representation is often applied.
A very common structure is the NARX model
("Non-Linear Auto-Regressive with eXogenous
inputs"), which can represent the observable and
controllable models of a large class of discrete-time
non-linear systems. It establishes a relationship
between the collection of past input-output data
and the predicted output.

gk +1) =F(y(k),... ,y(k —ny +1),u(k),...,
u(k —n, + 1)) (1)

where k£ denotes discrete time samples, n, and n,,
are integers related to the system order.

2.1 TSK Models

Consider the nonlinear multi-input single-output
system

y:f(CUhZUQ:---a«Tn) (2)
which has known m operating points (z;1, %; 2,
.y Tin), t =1,...,m, around which the system

can be decomposed into m linearized subsystems:
yi = fi(x1,22,...,2,). The TSK model for the
system can be generically represented as
R;: if = is A;; and...and =z, is A;,
then y; = fi(z1,22,... ,2,) (3)
or, more specifically:
R;: if y(k) is A;; and y(k-1) is
Ai» and... and y(k—n,+1)
is A;,, and wu(k) is B;; and
u(k—1) is Bis
u(lk—mn,+1) is

and...and
B;,, then

Gilk +1) = a;jyk—j+1)+
j=1

> bijuk—j+1)+c (4)

Jj=1

where a;;, b;; and ¢; are the consequent
parameters. The NARX local model can represent
MISO systems directly and MIMO systems in
a decomposed form as a set of coupled MISO
models. It should be noted that the dimension of
the regression problem in input-output modeling
is often larger than the state-space models, since
the state of the system can usually be represented
by a vector of a lower dimension than, for instance,
in the NARX model given by equation (1).

3. CASES OF STUDY

Two  distinct cases of identification are
considered here. The first one involves the
identification of dissolved oxygen dynamics,
considering just one bioreactor, which is based
on a model proposed in (Nakajima et al., 1996).
The second case is based on identification
of the dissolved oxygen dynamics of a
benchmark simulator as presented in (Sotomayor
et al., 2001b). A detailed description  of
this process can be found in (Sotomayor et al.,
2001a). In both cases, the consequent part of
parameter identification was made "off-line",
combining the "Modified Gram-Schmidt" method
(its description can be found in (Chen et al.,
1989)) with the method presented in (Wang and
Langari, 1995)). The model significant terms could
be selected based on the "error reduction ratio"
(ERR).

It is next presented, in a condensed form, the
description of the parameter estimation procedure
of the TSK model consequent, based on (Wang
and Langari, 1995).

yr = 1 0 (5)

where
Z é [fl,ka,k e f(r+1)*q,k] (6)
0 £[0102 - 0s1ysgn]” (7)

where r and ¢ are, respectively, the number of
inputs and the number of rules.

Equation (5) can then be represented as:

(r+1)xq

vk =Y firbi (8)
i=1

Transforming equation (8) into an equivalent
orthogonal equation, results:
(r+1)=q
Y = Z Wik i 9)
i=1
where
wig = fik (10)



m—1

Wmk = fmk - § Aim Wik,
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m:2,3,---,(7‘+1)*q (11)
and
B E;@V:l wik fik
Qij = N 5
Dokt Wi,
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where N corresponds to the number of sampled
data.

The estimated coefficients g; are calculated by:
N
k=1 WikYk

9i N
Dk Wik
i=1,2-- (r+1)xq (13)
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3.1 Oy Dynamics - Bioreactor (Case 1)

The DO concentration dynamics y(¢) is obtained
from a mass balance (Bastin and Dochain, 1990).
dy(t) _ Q(t)

i = v Win(t) —y(t) + OTR(t) — OUR()
(14)

The first term of the right hand describes the
transport of the DO concentration, where Q(t)
is the waste water flow rate, V is the volume of
the waste water, y;, () is the DO concentration in
the influent flow and y(t) is the DO concentration
in the effluent flow. The second term, OTR, is
called the oxygen transfer rate. A common way
to formulate OT'R is

Kra(u(t)) * (ysat (t) — y(t)) (15)

where Kpa is the oxygen transfer function, wu(t)
is the air flow rate and yg.:(t) is the oxygen
saturation concentration. OT R describes the rate
at which oxygen is transferred into the waste
water when air bubbles pass upwards. This
function is expected to be non-linear and
dependent on several factors: the geometry of air
diffusers, waste water composition, temperature,
etc. The third term in 14), OU R, is the respiration
rate, denoted by R(t). It can suffer some
abrupt disturbances caused by several factors
such as DO concentration, biomass concentration,
substrate concentration, pH and temperature.
From equations (14) and (15), the continuous-
time model of the DO dynamics is derived:

WD _ by yin(t) — y(0)) + Kra(u(t))

dt
*(Ysar —y(t)) — R(t) (16)

where D(t) denotes %, the dilution rate.

The conditions for the simulation of DO dynamics
are presented in table 1, where Ts means sampling
time.

Table 1. Parameters of Bioreactor

Process - Case 1

| Bioreactor - Case 1 |
Te=28%10"3 [h], £ =17 [1/h]
Ysat = 10 [mg/l}, Yin =0 [mg/”
R(t) = 12 + 8sin(1.5t) [mg/l/h]
Kra(u) = 5arctan(4mu/1000) [1/h]

3.2 Os Dynamics - Activated Sludge Process (Case
2)

The Activated Sludge Process (ASP) is the most
widespread process used for biological waste
water treatment. Bioactivities in the ASP are
intimately related to the dissolved oxygen
concentration (DOC). Two factors that affect the
dynamics of the dissolved oxygen are the
respiration rate or the oxygen uptake rate (OUR)
and the oxygen transfer function (Kpa).

A schematic diagram of an activated sludge
process in a configuration with pre-denitrification
for organic matter and nitrogen removal of
domestic efluent is shown in figure 1.
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Figure 1. Layout of the Activated Sludge Process

The process configuration is formed by a bioreactor
composed of an anoxic zone, two aerobic zones
and a settler. The compartments of the bioreactor
are considered to have constant volume (13 m?,
18 m?® and 20 m?, respectively) and to be ideally
mixed whereas the secondary settler (20 m?) is
modeled employing a series of 10 layers
(one-dimensional model, where it is assumed that
no biological reaction occur). The influent flow @,
is 4.17 m?®/h with a proportion of biodegradable
COD of 224 mg/l and a hydraulic retention time
of 17.0 h. The internal recycle flow is Qint = 2Qin,
the external sludge recycle flow is Qg = 0.5Q;n,
the wastage flow rate is Q,, = 0.0258 m3/h, the
external carbon source flow rate is Qert = 0
m3/h, the air flow rates are Qui » = 0.044
m3/h and Quir 3 = 0.033 m3/h, for the second
and third zones, respectively. In the anoxic zone,
no airflow rate is considered. For further details



about this benchmark simulator, see (Sotomayor
et al., 2001a).

4. FUZZY IDENTIFICATION AND
SIMULATION RESULTS

Data for cases 1 and 2 were collected in open-loop.

In case 1, the process has been simulated for 6
hours, being collected 925 samples (air flow rate
as input and Dissolved Oxygen Concentration as
output). The first 463 collected input
and output samples were considered in
the identification procedure, which basically
corresponded to a period of 3 hours. The
remaining 462 input and output samples were
considered for the process validation. Figure 2
shows both: the identification and validation input
and output data.
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Figure 2. Collected input and output signals - Case
1

In case 2, the input and output data used in the
identification of DOC dynamics, namely the air
flow rate and the corresponding dissolved oxygen
concentration (the other variables were considered
to be in the nominal state of operation), are
displayed in figure 3.
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Figure 3. Collected input and output signals - Case
2

The data were collected during a period of 12
hours, with a sampling time of Ty = 49.8 s,
representing a set of 869 input and output points.
The first 435 points were used in the identification
process, corresponding to 6 hours of operation,
whereas the 434 remaining points were employed
to validate the model.

4.1 Universe of Discourse

Being a fuzzy system, one of the first steps is
related to defining the Universe of Discourse,
based on prior knowledge of the process. In both
cases, the definition of the universe of discourse
for the input and output variables was based on
the minimum and maximum values of input and
output data. For case 1, the air flow rate varies
between (0 — 100) m3/h, whereas the oxygen
concentration varies between (0 — 5.4958) mg
O-/1. For case 2, the air flow rate varies between
(0.0101 — 0.0898) m?/h, whereas the oxygen
concentration varies between (0.2285 — 4.7101)
mg Oz/l.

4.2 Fuzzy Linguistic Attributes and Membership
Functions

Both input variables for cases 1 and 2 were
restricted to positive values. Therefore, in both
cases, the fuzzy linguistic attributes for  the
input variable were defined as low, below medium,
above medium and high. For the output variable,
the fuzzy linguistic attributes for the dissolved
oxygen concentration are low, medium, high and
very high. For both cases herein presented, the
linguistic attributes of membership functions were
based on the human expert experience, considering
the discourse intervals of each studied process, as
well as the premises of the fuzzy inference.

Figure 4 illustrates the membership functions of
the input and output variables for case 1.

Figure 5 illustrates the membership functions of
input and output variables for case 2.

In both cases, the process is represented as a first
order discrete-time NARX model

y(k+1) = f(y(k), u(k)) (17)

where k denotes the sampling instant, f is an
unknown relationship approximated by the TSK
fuzzy model, u(k) represents the air flow for both
cases and y(t) represents the dissolved oxygen
concentration for both cases. Based on
prior knowledge, this structure is considered
adequate for approximation of the activated sludge
process dynamics (Jeronimo et al., 2000).
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Figure 4. Membership functions of input (air flow
rate) and output (DOC) variables - Case 1
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Figure 5. Membership functions of input (Qgir—3
and output (DOC) variables - Case 2

For both cases, the fuzzy rule base was derived
from the human expert knowledge. In a first
approach, the idea would be to have 16 rules, since
the number of linguistic attributes of each model
input is 4. But it is known that the dissolved
oxygen concentration is directly proportional to
the air flow rate and there is no significant delay
between them. So, based on that, it is possible to
infer that for low air flow rates it will result a low
DOC and so on, resulting in just 4 rules for each
case.

For case 1, the rule base is:

Ry: if y(k) is low and wu(k) is low
then y(k+ 1) =0.011603 — 0.321802y(k)
—0.109168u(k)

Ry: If y(k) is
below medium
then y(k+ 1) = 0.591093 — 0.060413y (k)
+ 0.923741u(k)

Rs: If y(k) is high and wu(k) is
above medium
then y(k+ 1) =0.103973 4+ 0.053217y(k)
+ 0.103745u(k)

Ry: if y(k) is very high and w(k) is
high
then y(k+ 1) = 0.259074 — 0.692062y (k)
+ 0.187504u (k)

medium and wu(k) is

For case 2, the rule base is:

Ry: if y(k) is low and wu(k) is low
then y(k+ 1) =0.010673 — 0.014021y(k)
+ 0.094528u(k)

Ry: if y(k) is medium and wu(k) is
below medium
then y(k+ 1) = 0.006507 4+ 1.674532y (k)
+ 0.026547u (k)

Rs: if y(k) is high and w(k) is
above medium
then y(k+ 1) = 0.284062 — 0.056435y (k)
+ 0.073404u(k)

Ry: if y(k) is very high and wu(k) is
high
then y(k+ 1) =1.678352+ 0.724533y(k)
+0.224381u(k)

The validation of the fuzzy models was performed
using new data sets different from the ones
employed in the identification. Figures 6 and 7
show the cross-validation graphics for both cases.
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Figure 6. Model validation - comparison of the
process output and model predictions - Case
1
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Figure 7. Model validation - comparison of the
process output and model predictions - Case
2

5. CONCLUSIONS

This modeling approach has shown satisfactory
results  for both  studied cases, being able
to reproduce the dynamics of highly non-linear
processes with a very simple model constituted by
just a few fuzzy rules.

Some proposals for further works include the
definition of the number of membership functions
and the minimization of the number of fuzzy rules,
independent of human expert knowledge but based
on the collected data set.

Acknowledgement: This work was sponsored by
CAPES and FAPESP (process no. 98/12375-7).

6. REFERENCES

Bastin, G. and D. Dochain (1990). On-line
estimation and adaptive control of bioreactors.
Prentice Hall.

Chen, S., S. A. Billings and W. Luo (1989). Or-
thogonal least squares methods and their
application to non-linear system
identification. International Journal of Con-
trol 50(3), 8873-1896.

Jeronimo, R. A., O. A. Z. Sotomayor, C. Gar-
cia and S. W. Park (2000). Polynomial
nonlinear modelling of biological nutrients
removal (BNR) activated sludge processes.
XIII Brazilian Congress of Automatic - CBA-
2000, Florianépolis, SC, Brazil.

Korenberg, M., S. A. Billings, Y. P. Liu and
P. J. McILROY (1988). Orthogonal  pa-
rameter estimation algorithm for non-linear
Stochastic Systems. International Journal of
Control 48(1), 193-210.

Nakajima, S., C. F. Lindberg and B. Carlsson
(1996). On-line estimation of the respiration
rate and the oxygen tranfer function using an
extended Kalman Filter. Technical Report IR-
S8-REG-9613, Royal Institute of Techonol-
ogy, Sweden.

Sotomayor, O. A. Z., S. W. Park and C. Gar-
cia (2001a). A simulation benchmark to
evaluate the performance of advanced con-
trol techniques in biological wastewater treat-
ment plants. Brazilian Journal of Chemical
Engineering 18(1), 81-101.

Sotomayor, O. A. Z., S. W. Park and C. Garcia
(20010). Software sensor for on-line estimation
of the microbial activity in activated sludge
systems. ISA Transactions. (in press).

Sugeno, M. and G. T. Kang (1986). Fuzzy mo-
delling and control of multilayer incinerator.
Fuzzy Sets and Systems 18, 329-346.

Takagi, T. and M. Sugeno (1985). Fuzzy
identification of systems and its applicati-
ons to modeling and control. IEEE Trans-
actions on Systems, Man, and Cybernetics
15(1), 116-132.

Wang, L. and R. Langari (1995). Building
Sugeno-type models using fuzzy discretiza-
tion and orthogonal parameter estimation
techiques. IEFEE Transactions on Fuzzy Sys-
tems 3(4), 454-458.



