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Abstract: This work investigates the problem of state estimation for singular stochas-
tic di®erential systems. A Kalman-Bucy-like ¯lter is proposed, based on a suitable
decomposition of the descriptor vector into two components. The ¯rst one is expressed
as a function of the observation, and therefore does not need to be estimated, while
the second component is described by a regular linear stochastic system and can be
estimated by a Kalman-Bucy ¯lter. Numerical simulations are presented on the case of
a stochastic system with an unknown input, modeled as a singular system. Copyright
c° 2002 IFAC
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1. INTRODUCTION

The ¯ltering problem for discrete-time singular
systems (also named descriptor systems) has been
widely considered in literature in recent years. In
(Dai, 1987; Dai 1989) the case of square singu-
lar systems has been investigated, while rectan-
gular systems were considered in (Darouach, et
al., 1993). Gaussian descriptor systems have been
treated in (Nikoukhah, et al., 1992; Nikoukhah, et
al., 1999), where an optimal ¯lter, according to
the Maximum Likelihood Criterion, has been pre-
sented. The case of non-Gaussian singular systems
has been studied in (Germani, et al., 2001), where
a minimum error variance polynomial ¯lter is con-
structed following the approach in (Carravetta, et
al., 1996). All ¯ltering algorithms developed for
the discrete-time case are based on a clever use
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of the time-shift of the output sequence, that al-
lows to transform a singular problem into a regu-
lar one. Unfortunately, such algorithms can not be
easily extended to continuous-time systems. The
main reason is that for continuous-time systems
the time-shift on the output should be replaced
with a time-derivative on the noisy output, that is
not available nor computable.

This work investigates and solves the ¯ltering prob-
lem for continuous-time stochastic descriptor sys-
tems, described by the Ito di®erential formulation.
The proposed ¯lter is based on a suitable decompo-
sition of the descriptor vector into two components,
one of which is a function of the measured out-
put, and therefore does not need to be estimated,
while the other component is described by a regu-
lar linear stochastic system and can be estimated
by a Kalman-Bucy ¯lter. As an example, the ¯lter
is developed and tested on the case of a descrip-
tor system that models a regular stochastic system
in the presence of an unknown input. Numerical
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simulations show the e®ectiveness of the proposed
¯lter.

The paper is organized as follows: in Section 2 the
¯ltering problem is formulated, and some impor-
tant properties concerning solvability and estima-
bility of discrete-time singular systems are suit-
ably extended to the continuous-time framework.
These properties help in developing the ¯ltering
algorithm, that is described in Section 3. The ex-
ample and numerical simulations are reported in
Section 4.

2. SINGULAR STOCHASTIC

DIFFERENTIAL SYSTEMS

Let (­;F ; P ) be a probability space and let©Ft; t ¸ 0
ª
be a family of nondecreasing sub-¾-

algebras of F . A singular time-invariant stochas-
tic di®erential system in the Ito formulation is de-
scribed by the equations:

Jdxt = Axtdt+ FdWt; x0 = Â; (1a)

dyt = Cxtdt+GdWt; y0 = 0; (1b)

where xt 2 IRn is the descriptor vector, yt 2 IRq is
the measured output, Â a Gaussian random vari-
able with mean ¹Â and covariance ªÂ. The pair
(Wt;Ft) is a standard Wiener process taking val-
ues in IRb. J and A are m£n, matrices, C is q£n,
F is m£ b and G is q£ b. Obviously, if J is square
and nonsingular, then system (1) can be put in a
regular form, so that the ¯ltering problem is solved
by the well-known Kalman-Bucy algorithm.

This paper considers the ¯ltering problem for sys-
tems of the type (1) in the more general setting of J
not square and/or not full-rank. Since in this case
the existence and the uniqueness of the solution
process xt of (1a) is not guaranteed for all triples
(J;A; F ), the solvability of the ¯ltering problem re-
quires that the singular system under investigation
satis¯es some structural properties. The problem
of existence of a solution and of its uniqueness, and
the property of the causality have been widely in-
vestigated for discrete time singular-systems (Lu-
enberger, 1977; Luenberger, 1978; Darouach, et
al., 1995, Germani, et al., 2001). Here follows an
essential extension of this analysis to continuous-
time singular systems modeled by the Ito stochas-
tic equations (1).

First, let us state some de¯nitions and results on
deterministic singular systems. In the following
the space of locally essentially bounded measur-
able functions from [0;1) to IRp is denoted by
M(IR+; IR

b), while the space of absolutely contin-
uous functions from [0;1) to IRn is denoted by
W (IR+; IR

n
¢
. The symbol Om£n denotes them£n

zero matrix, while In denotes the identity n £ n
matrix.

De¯nition 1. A continuous-time singular system
of the type

J _xt = Axt + Fut; x0 = Â; (2)

is said to be \causally solvable" if 8(Â; u) 2 IRn £
M(IR+; IR

b), there exists at least one solution x 2
W (IR+; IR

n
¢
of equation (2).

Theorem 2. A necessary and su±cient con-
dition for causal solvability of system (2) is that
R¡[A F ]¢ µ R(J).
Proof. The result derives from Rouch¶e-Capelli
theorem: at each time t ¸ 0 condition R¡[A F ]¢ µ
R(J) is necessary and su±cient to guarantee exis-
tence of _xt that satis¯es (2).

De¯nition 3. A causally-solvable singular system
with observations yt described by equations:

J _xt = Axt + Fut; x0 = Â; (3a)

yt = Cxt; (3b)

is said to be \estimable from the measurements"
if 8(Â; u; y) 2 IRn £ M(IR+; IR

b) £ W (IR+; IRq
¢

is such that if a solution x of (3) exists in
W (IR+; IR

n
¢
, this is unique.

Stated in other words, singular systems that are es-
timable from the measurements are such that the
evolution of xt is univocally determined by the out-
put yt. An important role for estimability from the
measurements of singular systems is played by the
matrix

H =

∙
J
C

¸
2 IR(m+q)£n: (4)

In particular, it will be required that H is a full
column rank matrix, that means that has n inde-
pendent columns. Obviously, a necessary condition
for this is that n ∙ m+ q.
Theorem 4. A solvable singular system of the
type (3) is estimable from the measurements if and
only if matrix H is full column rank.

Proof. By di®erentiating the output equation
(3b) system (3) can be put in the form∙
J
C

¸
_xt =

∙
A
Oq£n

¸
xt +

∙
Om£q
Iq

¸
_yt +

∙
F
Oq£b

¸
ut;

(5)
According to the solvability hypothesis of system
(3) and to the full column rank assumption for ma-
trix H , the right hand side belongs to the range of
H for any t ¸ 0, and _xt is obtained premultiplying
equation (5) by any left-inverse of matrix H, de-

noted in the following with H
+
(this means that

H
+
is such that H

+
H = In). It follows that the

evolution of (5) is univocally determined by the
equation below:

_xt = Axt +D _yt + Fut; x0 = Â; (6)



where the triple (A;D;F) is de¯ned as

A = H+
∙
A
Oq£n

¸
; D = H+

∙
Om£q
Iq

¸
; (7)

F = H+
∙
F
Oq£b

¸
:

Remark 5. (ÄOz»caldiran et al., 1992) gave
the concept of strong observability of autonomous
descriptor systems, and shown that the full rank
condition of matrix H is a necessary condition for
strong observability. ²
De¯nition 6. Any regular system of the type
(6) that gives the same solution of the partially ob-
served singular system (3) is called a \Complete
Regular System" (CRS) for (3).

Remark 7. Note that causal solvability and es-
timability from the output are necessary and suf-
¯cient conditions for the existence of a CRS for a
singular systems. ²
Now, before considering stochastic singular di®er-
ential systems of the type (1), the following remark
explains some facts about the measured variables.

Remark 8. Note that the observation model
(1b) provides yt as an \integrated measurement",
with a covariance error linearly increasing with
time (IEf(GWtW

T
t G

T g = GGT t). On the other
hand, physical sensors are a®ected by a noise with
bounded covariance (constant, in stationary mod-
els). Hence, from a practical point of view, we can
assume that a physical sensor provides the mea-
surement ³t formally de¯ned by the measure equa-
tion

³t = Cxt +Gnt; (8)

where nt is the formal derivative of the Wiener pro-
cess (white noise model). ³t such that yt =

R t
0
³¿d¿ .

Although the observation model (8) is character-
ized by a measure error with constant covariance, it
is not mathematically rigorous in the Ito formula-
tion, and therefore the \integrated measurement"
model (1b) must be used. However, the knowledge
of ³t can be assumed, if required, for the ¯lter im-
plementation. (Note that in the Kalman-Bucy ¯l-
ter for regular stochastic systems the forcing term
in the ¯lter equation is the di®erential dyt, that is
assumed known.) ²
Here follows some de¯nitions and results for singu-
lar stochastic systems (1a).

De¯nition 9. A stochastic singular system de-
scribed by (1a) is said to be \causally solvable" if
for any Gaussian random vector Â there exists at
least one Gaussian solution process xt that is Ft-
adapted in [0;1).
It could be shown that also for stochastic singu-
lar systems a necessary and su±cient condition for

causal solvability is that R¡[A F ]
¢ µ R(J). In

some cases it is possible to de¯ne a stochastic reg-
ular system that gives the same solutions of a par-
tially observed singular system, if noise-free obser-
vations are available.

De¯nition 10. Consider a stochastic singu-
lar system (1) with G = 0 (noise-free measure-
ment):

Jdxt = Axtdt+ FdWt; x0 = Â; (9a)

³t = Cxt: (9b)

Assume that system (9) is causally solvable. A
regular system described by the following explicit
form:

d»t = A»tdt+Dd³t + FdWt; »0 = Â

³t = C»t
(10)

de¯ned by a triple of matrices (A;D;F) of suitable
dimensions, is called a \Stochastic Complete Reg-
ular System" (SCRS) for (9) if and only if »t is
also a solution of (9).

The following theorem can be given:

Theorem 11. A stochastic singular system (9)
admits a SCRS if and only if it is causally solvable¡R¡[A F ]¢ µ R(J)¢ and estimable from the output

(H full column-rank). All SCRS have the form
(10) with matrices (A;D;F) given by (7).
Proof. A simple proof can be obtained follow-
ing the same steps made to derive the CRS (6) for
deterministic singular systems. Take the di®eren-
tial of ³t given by (9b), obtaining d³t = Cdxt, and
write the stochastic system

Hdxt =

∙
A
Oq£n

¸
xtdt+

∙
Om£q
Iq

¸
d³t+

∙
F
Oq£b

¸
dWt:

(11)
From this, thanks to causal-solvability and estima-
bility conditions, the equation can be solved for the
di®erential dxt using any left-inverse of matrix H ,
obtaining the SCRS (10).

3. THE FILTER CONSTRUCTION

Consider a stochastic singular causally solvable
system, described by the Ito equations (1). Let
½ = rank(G). The main assumption needed in this
paper for the derivation of a ¯lter for (1) is the
following:

½ < q: (12)

Without loss of generality we will assume that the
¯rst ½ rows of G are independent. Then, a selection
matrix of the form T1 =

£
I½ O½£(q¡½)

¤
can be used

to de¯ne a new output y1;t = T1yt (y1;t 2 IR½), that
satis¯es the equation:

dy1;t = T1Cxtdt+ T1GdWt; y1;0 = 0: (13)



with T1G a full rank matrix. Now let T2 2
IR(q¡½)£q be a full rank matrix whose rows gen-
erate the left-null-space of G: T2G = O(q¡½)£b.
Another output y2;t = T2yt can be de¯ned (y2;t 2
IRq¡½), that satis¯es the equation

dy2;t = T2Cxtdt; y2;0 = 0: (14)

This allows to de¯ne a noise-free measurements
vector zt = T2Cxt that allows, under suitable as-
sumptions, the construction of a SCRS for the sin-
gular system (1).

Lemma 12. For the singular system (1) assume
that R¡[A F ]¢ µ R(J) and that ½ = rank(G) < q,
so that a noise-free measurement zt = T2Cxt can
be de¯ned. Assume that matrix

H =

∙
J
T2C

¸
; (15)

is full column rank. Then the singular system

Jdxt = Axtdt+ FdWt; x0 = Â;

zt = T2Cxt;
(16)

admits a SCRS given by:

dxt = Axtdt+Ddzt + FdWt; x0 = Â (17)

with matrices

A = H+

∙
A

O(q¡½)£n

¸
; D = H+

∙
Om£(q¡½)
I(q¡½)

¸
;

F = H+

∙
F

O(q¡½)£b

¸
;

(18)
in which H+ denotes any left-inverse of H.

Proof. The proof easily comes by applying Theo-
rem 11.

Remark 13. The condition for H to have n in-
dependent columns (full column rank) implies that
m (the number of rows of J) plus q¡½ (the dimen-
sion of the noise-free measurement vector zt) must
be greater than n, i.e. m+ q ¡ ½ ¸ n. This means
that the dimension of zt must be at least n¡m.
²
In Lemma 12 the noise-free component of the ob-
servation vector has been used to remove the singu-
lar formulation of the state equation. Here follows
how to exploit the noisy measures y1;t (13) for the
construction of a ¯lter for the SCRS associated to
the singular system.

By using a suitable change of state and output co-
ordinates, system (17) can be rewritten as stated
by the following lemma.

Lemma 14. Consider system (1) under the same
assumptions of Lemma 12. Consider the triple

(A;D;F) (18) de¯ned in Lemma 12. De¯ne two
processes Xt and Yt as
Xt = xt ¡Dzt; Yt = T1(Iq ¡ CDT2)yt: (19)

Then the processes Xt and Yt satisfy:
dXt=AXtdt+ Bdyt + FdWt; X0=(In¡DT2C)Â
dYt=CXtdt+ GdWt; Y0 = 0:

(20)
with:

B = ADT2; C = T1C; G = T1G: (21)

Proof. Direct computation of the di®erentials of
Xt and Yt as de¯ned by (19), taking into account
the expression of the SCRS (17) for the singular
system (16), provides equations (20).

In order to properly take into account the presence
of the output yt as a forcing term in the state equa-
tion (20), a suitable decomposition of the system
is required, as given by the following proposition.

Proposition 15. The processes Xt and Yt de-
¯ned in (20) can be split as

Xt = X d
t + X s

t ; (22a)

Yt = Ydt + Yst ; (22b)

with

dX d
t = AX d

t dt+ Bdyt; X d
0 = IE

£X0¤;
dYdt = CX d

t dt; Yd0 = 0:
(23)

dX s
t = AX s

t dt+ FdWt; X s
0 = X0 ¡ IE

£X0¤;
dYst = CX s

t dt+ GdWt; Ys0 = 0:
(24)

Proof. The proof is readily obtained by direct
computation, summing up the di®erentials dX d

t

and dX s
t of systems (23) and (24), respectively,

to obtain the di®erential dXt of system (20), and
summing up the di®erentials dYdt and dYst to ob-
tain the di®erential dYt of equation (20).

Remark 16. Proposition 15 shows the de-
composition of the new state Xt into two terms:
X d
t is the totally-observed component and X s

t is
the partially-observed, zero-mean component FYst -
adapted, where FYst is the ¾-algebra generated by
the measurement process Ys up to time t. ²
From the de¯nitions of Lemma 14 and Proposition
15 it follows that xt = X d

t +X s
t +Dzt. On the other

hand it must be stressed that X d
t is completely de-

termined by the measurements yt, through equa-
tion (23a), and therefore only X s

t , the state of sys-
tem (24), has to be ¯ltered. This is the reason why
we give the following:



De¯nition 17. A P-estimate for the descriptor
vector of the singular system (1) is an estimate with
the following structure:

~xt = X d
t + eX s

t +Dzt (25)

where eX s
t is any FY

s

t -measurable function.

Remark 18. Note that the estimation error
of a P-estimate is given by xt ¡ ~xt = X s

t + eX s
t ,

and therefore the error covariance matrix coincides
with the covariance of the estimation error of the
partially-observed component of the state:

Cov
¡
xt ¡ ~xt

¢
= Cov

¡X s
t ¡ eX s

t

¢
: (26)

²

Let us denote with Lt(Ys) the space of all linear
functions of the random process

©Ys¿ ; ¿ 2 [0; t]ª
with values in IRn.

De¯nition 19. A linear P-estimate for the de-
scriptor vector of the singular system (1) is any

P-estimate given by equation (25), where eX s
t 2

Lt(Ys).
It is known that the minimum error variance
estimate for X s

t , given the observation process©Ys¿ ; ¿ 2 [0; t]ª, is the linear function given by the
projection of X s

t onto the space Lt(Ys), denotedbX s
t = ¦

£X s
t jLt(Ys)

¤
.

Thanks to expression (26) for the covariance error
of a P-estimate, it follows that the optimal linear
P-estimate of xt is

x̂t = X d
t + bX s

t +Dzt;
with bX s

t = ¦
£X s

t jLt(Ys)
¤
:

(27)

The following theorem gives an algorithm that
computes the optimal linear P-estimate of the de-
scriptor vector xt of system (1).

Theorem 20. The linear optimal P-estimate for
system (1) under the same assumptions of Lemma
12 is given by

~xt = bXt +Dzt (28)

where eXt is given by the ¯lter equation
d bXt = A bXtdt+ Bdyt

+
¡FGT + PtCT ¢¡GGT ¢¡1³dYt ¡ C bXtdt´;bX0 = (In ¡DT2C)¹Â; (29)

in which matrices A;DF are de¯ned by equations
(18) and B; C;G are de¯ned by (21), and matrix Pt
is the estimation error covariance matrix computed
solving

_Pt = APt + PtAT + GGT

¡ ¡FGT + PtCT ¢¡GGT ¢¡1¡FGT + PtCT ¢T;
P0 = ªÂ;

(30)

Proof. Equations (29) and (30) are obtained

de¯ning bXt, the optimal linear P-estimate Xt, as
bXt = X d

t + bX s
t ; (31)

where bX s
t is obtained by the Kalman-Bucy ¯lter

applied to system (24), that is

d bX s
t =A bX s

t dt+
¡FGT + PtCT ¢

¢ ¡GGT ¢¡1³dYst ¡ C eX s
t dt
´
;

(32)

with the error covariance matrix Pt given by (30).
The sum of the di®erential dX d

t given from (23)

with d bX s
t from (32), after simple computations,

gives the ¯lter (29). Note that the choice of T1
operated at the beginning of the section guaran-
tees that matrix GGT = T1GGTTT1 is nonsingular,
so that the ¯lter equations are well-posed.

4. SIMULATION RESULTS

This section reports some simulation results ob-
tained by the application of the proposed ¯lter (29)
on an unknown-input system modeled as a singu-
lar system. The unknown-input system here con-
sidered has the following structure

d³t = eA³tdt+Bdut + FdW 1
t ; ³t0 = ³0

dyt = eC³tdt+GdW 2
t

(33)

where ³(t) 2 IR3, y(t) 2 IR2 are the state and
the output, respectively, u(t) 2 IR is the unknown-
input and the W 1

t , W
2
t are scalar standard Wiener

processes. The system matrices used in the simu-
lations are:

eA=
24¡4 1 0
0 ¡3 1
0:4 0 ¡5

35; B=
24 1
0:5
¡1:5

35 ; F =
24¡0:50:6
¡0:2

35 ;
(34)

eC=∙ 1 0:5 ¡2
1 1 ¡0:2

¸
; G=

∙
1
0:5

¸
: (35)

According to a procedure borrowed from the
discrete-time case (Darouach, et al., 1995), the
unknown-input system (33) can be modeled as a
singular system of the type (1) by the de¯nition of
the extended state

xt =

µ
³t
ut

¶
2 IR4: (36)

Since input ut is unknown, an equation for the dif-
ferential of the state variable x4 = ut can not be
written, and this leads to a singular system of the
type (1) with

J =
£
I3 ¡B

¤
; A =

£ eA O3£1¤; C = £ eC O2£1¤:
(37)



Fig. 1. The unknown input ut.

Fig. 2. True and estimated x1;t.

The piece-wise constant input ut shown in ¯g. 1
has been used in the simulations. Fig.'s 2{4 report
the true and the ¯ltered state variables. Numerical
simulations are obtained trough the construction
of an exact stochastic realization of system (33)
at discrete times tk = k¢, with ¢ = 0:001. The
Kalman-Bucy ¯lter is integrated using the Euler-
Maruyama method (Higham, 2001) with ¯xed step
dt = 0:001.

5. CONCLUSIONS

This paper presents a minimum variance ap-
proach to solve the ¯ltering problem for stochas-
tic continuous-time descriptor systems described
using the Ito formulation. The solution is a lin-
ear, Kalman-Bucy-like algorithm, which estimates
the descriptor vector of a singular system onto the
Hilbert space spanned by the family of a suitable
class of transformations of the measured outputs,
denoted as linear P-estimates. Numerical simula-
tions show the e®ectiveness of the proposed ¯lter.
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