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Abstract: This paper describes a method that combines Kalman-filter and neural network
to form an efficient data fusion technique for estimating payload in the bucket of a moving
loader. Kalman-filter is used to find the signal levels from noisy measurement data before
the data is fed to the neural network. Neural network is then used to form the nonlinear
connection between the indirect measurements describing the load and the actual load in
the bucket. The results show that the used combination of these different methods offers
a viable solution for estimating the payload. Copyright © 2002 IFAC.
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1. INTRODUCTION

In near future intelligent mine concept (Dasys et al,
1999; Singh, 1997) will become more and more im-
portant. The idea is to automate mining including e.g.
computer-based mine planning, information, commu-
nication and maintenance systems, production plan-
ning and simulation. A reliable method for measuring
the payload is an important aspect also in automating
the whole mine production process.

One way to do the weighing is to use a scale. The scale
should recognize different vehicles and the payload
measurement would be done by driving over the scale.
The problem is how to determine the actual payload,
when the weight of the driver, the amount of fuel, the
wearing of the components (e.g. bucket) etc. affect the
result. In addition, the measuring time is quite short
because the machines can not be stopped for weighing.
Also calibration of the scale can be time consuming
and expensive. However, the biggest problem is that
different machines can all have different driving paths.
Even the driving paths of the individual machines can
vary from work cycle to another. Thus the positioning
of the scale can be difficult. Also the repositioning of
the scale when the machines are moved to a new place

can be difficult. These problems are solved by inte-
grating the weighing system to individual loaders.

When weighing is done onboard the loaders, the infor-
mation can be used, besides controlling the production
process, also to monitor individual machines and indi-
vidual tasks and to plan the maintenance actions. This
way also the payment of salaries for the drivers can be
based on transported ore tons. In addition, information
of the payload helps to load the trucks and railroad cars
to their maximum rated capacity without the risk of
overloading.

This paper concentrates on the payload weighing
problem of moving LHD (load-haul-dump) machines
(figure 1) manufactured by Sandvik Tamrock Corpo-
ration, but the results can be generalized to other sim-
ilar hydraulic machines. LHDs are especially designed
for underground mining (they have low profile, large
bucket volumes and suitable weight distribution).
There are many tasks related to production and devel-
opment of the mine where these machines can be used.
From the weighing point of view, the most important
task is the ore transportation from the stope to the pri-
mary crusher.



Very few reported scientific contributions exist in the
field of weighing the payload of moving LHD ma-
chines. However, there exist several patents on the
topic e.g. (Kyrtsos and Worrell, 1990). There are also
commercially available products (e.g. by Tamtron Inc.
or Pfreundt Inc.). The purpose of this work was to im-
prove the accuracy of the existing methods, by using
neural networks together with a proper data prepro-
cessing method. As far as the authors know this is the
first time when Kalman-filtering and neural networks
are combined to form an efficient data fusion tech-
nique.

This paper is divided as follows: in section 2 the prob-
lem at hand is described. In section 3 follows the de-
scription of the used measurements and their behavior.
After that the data preprocessing method is discussed
in section 4. Section 5 presents the used neural net-
works. The results are given in section 6. Finally, in
section 7, some problems in practical weighing appli-
cations are discussed together with some remarks on
current research and the paper is concluded.

2. PROBLEM DESCRIPTION

The objective of this work was to estimate the payload
in the bucket of an ore transportation machine. The
weight determination is done onboard. Since no direct
measurements of the weight can be done, indirect
measurements must be used.

The presented method is based on the measurements
of hydraulic pressures in boom lifting cylinders (figure
2). The boom is stopped to a certain position while
weighing. The main problem is that for the sake of ef-
fectiveness the ore weighing has to be carried out dur-
ing the machine’s work cycle i.e. while the machine is
moving between loading and dumping points. The
movement indirectly corrupts measurements with
noise. Moreover, the system induced nonlinearities
have to be compensated in order to get satisfactory re-
sults. To enable the compensation, some additional
measurements were carried out as will be discussed in
section 3.

Because the relation between the load in the bucket
and the measurements is nonlinear and partly un-
known, neural networks are used to calculate the load
from the measured values. Inputs to the neural net-
works are signal levels calculated from the measured
signals. Signal levels from the noisy measurement
data are found using Kalman-filter.

Fig 1. LHD machine Toro450D manufactured by
Sandvik Tamrock Corporate.

Fig 2. Structure of the machine front.

3. MEASUREMENTS

Due to the fact that the loader is moving during the
weighing, many external factors can affect the pres-
sure signal levels and thus cause errors in weighing re-
sults. To compensate the effect of these factors,
several additional measurements were carried out.
Used measurements were inclination angle, boom po-
sition and temperature of hydraulic oil. Also some oth-
er measurements such as driving speed, gear
information, and engine rpm were carried out. Howev-
er, simulations indicated that only the first three mea-
surements contain significant information. Examples
of the signals’ behavior during a measurement are giv-
en in figures 3-7.

Before weighing the boom is in its lowest position
pulled against a stopper. When weighing is started,
boom is lifted a little and then stopped to a specified
level. Boom lifting can be seen as a stepwise change in
the boom lifting pressure (figure 3). The change in
boom position measurement is similar to changes in
pressure signals during the weighing i.e. there is a
stepwise change also in the boom position value when
the boom is lifted to its setpoint value (figure 4). De-
spite the setpoint value the boom position varies be-
tween lifts and this is why it has to be measured.
Factors causing the variations around the setpoint are

boom lifting cylinder

boom
bucket

dumping cylinder



Fig 3. Upper pressure during boom lifting. Pressure at
the other side of the cylinder piston makes a step
down at the same time as the pressure value rises
on the other side.

Fig 4. Boom position during weighing.

Fig 5. Temperature of hydraulic oil during weighing.

Fig 6. Example of the changes in inclination angle
during weighing.

Fig 7. Example of driving speed signal during one
weighing.

for example engine rpm and load in the bucket. Boom
position is the most important additional measurement
having the biggest influence on the accuracy of the
weighing results.

The variations in pressure result from inertia of the
mass when stopping the boom to the setpoint height
for measurements. Driving on a rough surface can
cause similar effects at any point of the measurements
as the vehicle hits or clears a bump. The amplitude and
the frequency depend on the load in the bucket and on
the previously mentioned external factors. Because the
whole machine instead of just the boom is oscillating
and the hydraulic oil is not very compressible, the
same fluctuations can not be seen in boom position
measurement.

Figure 5 represents a measurement of the temperature
of hydraulic oil. In figure 6 an example of a slope an-
gle measurement is given. Slope angle is the second
most important additional measurement after boom
position. In figure 6 oscillations between 1 and 2 sec-
onds are from the same origin that the oscillations in
pressure signals after stopping the boom. Other chang-
es in the signal are due to changes in the surface when
the machine is moving i.e part of the changes are due
to actual changes in the signal levels and part of the
changes represent noise. An example of driving speed
signal is shown in figure 7.

4. DATA PREPROCESSING

When using neural networks, it is very important that
the data fed into these systems is properly prepro-
cessed. In this case only the final values of the signals
i.e actual signal levels during the weighing are of in-
terest. During every weighing these levels are estimat-
ed and the estimated values are then fed into the neural
networks as the inputs in order to calculate the corre-
sponding payload in the bucket.

Because the signals can vary significantly during a
measurement, it is difficult to determine the actual sig-
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nal levels. Especially the machine inclination mea-
surement is difficult because part of the variations
represent noise and thus should be neglected and part
is due to actual changes on the state. Another problem
is that the work cycle of the machine can be very short
which limits the measuring time. Short measuring
time together with varying oscillation frequency of the
signals prevents for example simple mean value calcu-
lation to be used in signal level determination.

In the final system the preprocessing problem is solved
by using dynamic discrete-time linear Kalman-filter
(Bar-Shalom, 1993; Gelb 1974). Also other methods,
such as median filtering and low pass filtering, were
tested. However, when the results gained with differ-
ent methods were compared in various situations, it
was clear that Kalman-filter was the fastest and also
the most accurate method. Kalman-filter is a computa-
tional algorithm that processes the state of the system
by utilizing knowledge of the system and measure-
ment dynamics, assumed statistics of system noises
and measurement errors, and initial condition informa-
tion. It is an optimal estimator in minimum mean
square error sense. In figure 8 is depicted the structure
of one recursive round of state estimation.

State estimation is updated using state prediction to-
gether with the innovation (i.e. residual between actual
measurement at the time and the predicted value of the
measurement) weighted with filter gain value:

, (1)

where is the updated state, is

the predicted value of the state, is innovation
and W(k + 1) is the filter gain.

Fig 8. One cycle in state estimation of a linear system.

In this application separate Kalman filters are formed
for each measurement presented in figures 3-7, each
filter having only one state. This way both the state
transition matrix and measurement matrix, that are
needed in the state computation, have scalar value 1
and the covariance matrices reduce to scalar variance
values for each filter.

In figures 9-11 results of the state estimation are
shown for measurements during one weighing for
pressure, inclination angle and driving speed. When
estimating the pressure the state is deemed to be more
accurate than the new measurements. This way the os-
cillations of the signal can be ignored (filtered) and the
actual signal level can be found. In driving speed esti-
mation the new measurements are considered to be
more reliable than the predicted state. This way the es-
timate reacts more rapidly to the changes in the signal.

Estimating the state of the slope angle is the most dif-
ficult task. This is because part of the changes in the
signal are due to the actual changes in the state and
part is oscillation which is defined as an error and
should be filtered out. This means that a compromise
between trusting the measurements and trusting the
model is more difficult to find.

In Figures 9-11 it can be seen that the estimate follows
the signal and filters out the unwanted oscillations.
The true state can be read after a couple of seconds.

Fig 9. Kalman filter in estimating the pressure.

Fig 10. Kalman filter in estimating the driving speed.
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Fig 11. Kalman filter in estimating the slope angle.

5. NEURAL NETWORK

Almost 600 weighings were done to get enough mea-
surement data to train the neural network (Bishop,
1995; Jang, 1997). During the measurements driving
conditions - for example driving speed, inclination an-
gle etc. - were changed. Eleven different known
weights were used in the bucket while measuring.

Using Kalman filter the measurement signals were
preprocessed to get signal levels for the neural net-
work inputs. State estimates after 3 seconds of filtering
were used. Preprocessed data was then divided into
two different sets: training set and validation set. Val-
idation set was used to stop the training of the network
(with training set) before the network looses its ability
to generalize.

Because the actual weight in the bucket during every
weighing was known, supervised learning methods
were used in network training. The chosen network
structure was fully connected feed-forward (FF) type
of network. Both Multi-Layer-Perceptron (MLP) and
Radial-Basis-Function networks were tested. Also
several different learning algorithms, for example
Levenberg-Marquardt (LM) and resilient backpropa-
gation (Rprop), were used.

After some simulations the final network structure was
chosen to be an MLP-network with one hidden layer
and a Levenberg-Marquardt learning algorithm. With
this structure different input combinations and differ-
ent amounts of hidden nodes were tested. The struc-
ture of an MLP network with one hidden layer, n
different inputs and two outputs is shown in figure 12.
In the hidden layer there are m hidden nodes which act
as summing elements for the weighted sum between
inputs of the layer and the weights w and v. g(.) is an
activation function which in this case is hyperbolic
tangent.

Fig 12. Example of MLP type of neural network.

6. RESULTS

All the results shown here are obtained using valida-
tion data set. In figure 14 is shown an example of
weighing results with a neural network where the in-
puts were pressures from both sides of the boom lifting
cylinder, boom position, inclination angle and temper-
ature of hydraulic oil. In the figure measurements of
the weight 11660 kg (highest level) are totally new to
the system i.e. these measurements were not used dur-
ing the training of the network.

As can be seen from the figure, system has retained its
ability to generalize and the weighing results are satis-
factory also for the new data. In figure 15 is depicted
the relative errors in each measurement for the neural
network used in figure 14. From the figure it can be
seen that for the neural network relative errors are be-
tween -3.86 and 3.20% for 95% of the data.

Best network size was between 9 and 15 hidden nodes.
Different error calculations gave slightly different re-
sults concerning network size and best input combina-
tion. Best total error (0.004%) was obtained

Fig 14. Weighing results with a neural network.
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Fig 15. Relative error for the weighing results from the
neural network.

when inputs to the network were pressures, boom po-
sition, inclination angle and the temperature of hy-
draulic oil (see figure 14). Nine hidden nodes were
used in this case. Best mean of relative errors (1.68%)
on the other hand was obtained using 10 hidden nodes
and pressures, slope angle and boom position as inputs
to the network. These results can be seen from the ta-
ble 1 below.

In the table are shown the root mean square error, total
error (%), relative error (%) and error bounds (percent-
age for 95% of the data) for the weighing results when
different input combinations to the network are used.
The explanations for numbered input combinations
are: 1=pressure (upper), 2=pressure (lower), 3=incli-
nation angle, 4=boom position, 5=oil temperature,
6=rpm, 7=driving speed, 10=gear.

7. CONCLUSIONS

In this paper a neural network based method for deter-
mining the weight in the bucket of a moving loader is
presented. The most important thing in using neural
networks is to preprocess the data before feeding it
into the network. Here Kalman-filters with one state
are used for each measurement. Depending on the

problem also Kalman filters with several states can be
implemented.

The results indicate that neural networks together with
Kalman-filter offer viable solution for estimating the
payload. The results were obtained for Toro450D,
which is an LHD machine manufactured by Sandvik
Tamrock Corp. However, results can be generalized.

Although results obtained with neural network based
methods give good results, there are some problems
that have to be solved before these algorithms can be
implemented to the actual weighing system. Such
problems are for example the huge amount of training
data needed for the networks. In this case approxi-
mately 600 measurements were carried out which took
several days. In practice it is impossible to use such a
long period to tune the weighing system of each indi-
vidual machine. Also the calibration and tuning the
weighing algorithm after changing a component in the
machine is problematic. The algorithm should also
take into consideration the long term changes in the
function of the machine like the wearing of compo-
nents.
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Table 1: Results for neural networks with different
input combinations

Input
combinations

RMSE Total
error

Relativ
e error

Error
bounds

[1 2 3 4 5 7] 179 0.01 2.04 -4.2, 4.6

[11 3 4 5 7] 182 -0.25 1.90 -4.91, 4.87

[1 2 3 4 5] 178 0.004 1.69 -3.86, 3.20

[1 2 3 5] 170 -0.27 1.98 -4.03, 4.30

[1 2 4 5] 670 -0.45 5.66 -13.6, 15.0

[1 2 3 4 7] 178 0.18 1.73 -5.37, 4.53

[1 2 3 4] 178 -0.04 1.68 -3.71, 4.46

[1 2 3 4 5 6 7] 183 -0.10 2.12 -5.55, 4.29

[1 2 3 4 5 6 10] 188 0.24 2.32 -6.38, 6.05
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