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1. INTRODUCTION

Set membership identification of linear sys-
tems in the presence of bounded disturbances
has received a huge attention in the last two
decades. This approach was introduced to deal
with parameters estimation when the standard
assumptions on the noise (such as zero mean
white Gaussian noise with a known variance) usu-
ally used in the well-known identification meth-
ods (Ljung and Soderstrom, 1983) are not satis-
fied, the only hypothesis required is that distur-
bances in the model are bounded. We refer the
reader to the pioneering works of Fogel and Huang
(Fogel and Huang, 1982), Milanese and Belforte
(Milanese and Belforte, 1982). Since then sev-
eral techniques have been performed to improve
the existing results (even for a class of nonlinear
models) and also to introduce new algorithms,
for more details see (Belforte et al., 1990; Das-
gupta and Huang, 1987; Norton, 1987; Canudas-
De-Wit and Carrillo, 1990; Boutayeb, 2000) and
the references inside. Many researchers are still
interested by this kind of problem (see (L. Sheng-

ping and Tianyou, 1999; Sen, 1999; Milanese and
Taragna, 2001; Sun and Fan, 2001)), but until
now, only SISO case has been treated.

In this note we address the problem of recur-
sive identification, of linear multivariable systems
in the presence of bounded disturbances. One of
the main features is to design a selection rule
for a weighting matrix computation. Indeed, we
notice that among on-line (or recursive) methods
only single output models have been considered
in the literature. Unfortunately, most of physical
and complex processes are described by multi-
input and multi-output differential equations. The
main difficulty in treating multivariable systems,
by a recursive algorithm, lies in determining some
weighting factors to assure both consistency and
output error constraints at each sampling time.
The proposed approach may be seen as a gen-
eralization to the multivariable case of the re-
sults performed in (Dasgupta and Huang, 1987),
(Canudas-De-Wit and Carrillo, 1990) and (Tan et
al., 1997; Sun and Fan, 2001).
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On the other hand, properties as well as condi-
tions for asymptotic stability of the algorithm are
given. Finally, the obtained results will be applied
to estimate physical parameters of a mechanical
system.

2. THE IDENTIFICATION ALGORITHM

Consider a discrete-time multi-input multi-
output system of the form :

yk = Fkθ∗ + vk (1a)

vT
k R−1

k vk ≤ 1 for all k ∈ IR+ (1b)

where yk ∈ IRp is a measurable system outputs
vector of the system, θ∗ ∈ IRn is an unknown
parameters vector to be identified, Fk ∈ IRp×n is a
measurable regressor, vk ∈ IRp is an unobservable
bounded noise vector including the measurement
noise, the modelling inaccuracy, the discretization
errors and eventually the computer round-off er-
rors and Rk ∈ IRp×p is a symmetric positive def-
inite known matrix which reflects a known upper
bound on noise covariance matrix.
Our aim in this paper is to design an identification
algorithm for the system (1a)-(1b), that maintains
the output error into the noise bounds, i.e. that
ensures (yk −Fθk)T R−1

k (yk −Fθk) < 1 with ỹk =
yk−Fkθ̂k−1. Hereafter, we propose to estimate the
parameters vector θ∗ of the MIMO system (1a-b)
by the recursive algorithm described bellow :

θ̂k = θ̂k−1 + Kk(yk − Fkθ̂k−1) (3)

Kk = Pk−1F
T
k Λk(FkPk−1F

T
k Λk + λI)−1 (4)

Pk =
1
λ

(I − KkFk)Pk−1 (5)

where Λk ∈ IRp×p is a symmetric positive semi-
definite weighting matrix given by :

Λk =




λ
(
FkPk−1F

T
k

)−1
(
‖ỹk‖MR−1

k
MM−1− I

)
if ‖ỹk‖MR−1

k
MM−1 − I > 0

and FkPk−1F
T
k > 0

0 otherwise

(6)

where ‖x‖W = (xT Wx)
1
2 is the weighted Eu-

clidean norm of a vector x, W is a symmetric
positive definite matrix of appropriate dimension
and M ∈ Rp×p is an arbitrary positive definite
matrix.
The estimation algorithm’s equations (3), (4) and
(5) and the expression of the weighting matrix Λk

(6) are obtained by minimizing the following cost
function :

J(θ̂k)=
k∑

t=1

λk−t(yt − Ftθ̂k)T Λt(yt − Ftθ̂k) (7)

subject to the constraint :

H(θ̂k−1,Λk)=(yk − Fkθ̂k)T

×R−1
k (yk − Fkθ̂k) − 1 ≤ 0 (8)

where λ ∈]0, 1] is a forgetting factor. To solve this
problem, let us introduce the following Lagrangian
function :

L(θ̂k, µ) = J(θ̂k) + µH(θ̂k−1,Λk) (9)

where µ ≥ 0 is the Lagrangian multiplier such
that µ = 0 if H(θ̂k−1,Λk) < 0 and µ > 0
otherwise. When H(θ̂k−1,Λk) ≥ 0 (µ > 0),
the minimization problem under the inequality
constraint is solved by :

∂L(θ̂k, µ)

∂θ̂k

=
∂J(θ̂k)

∂θ̂k

= 0 (10.a)

∂L(θ̂k, µ)
∂µ

=H(θ̂k−1,Λk) = 0 (10.b)

As
∂2J(θ̂k)

∂θ̂2
k

=
k∑

t=1

λk−tFT
t ΛtFt ≥ 0, J(θ̂k) is con-

vex in θ̂k and this minimization problem admits
an unique solution. Algorithm’s equations (3), (4)
and (5) are implicitly derived from (10.a), and
now we use(10.b) to determine the expression of
the weighting matrix Λk given by (6). Indeed,
substituting (3) and (4) into (8), relation (10.b)
becomes :[

yk − Fk

(
θ̂k−1 + Pk−1F

T
k

(
FkPk−1F

T
k

+λΛ−1
k

)−1
(yk − Fkθ̂k−1)

)]T

(yk − Fkθ̂k) =0

⇔
[
(yk − Fkθ̂k−1) − FkPk−1F

T
k

(
FkPk−1F

T
k

+λΛk
−1

)−1(yk − Fkθ̂k−1)
]T

Rk
−1(yk − Fkθ̂k) − 1=0

Using a simple factorization technique and the
identity :
I =

(
FkPk−1F

T
k + λΛ−1

k

)−1 (
FkPk−1F

T
k + λΛ−1

k

)
it follows that :

λ2(yk − Fkθ̂k−1)T
(
FkPk−1F

T
k Λk + λI

)−T
R−1

k

× (
FkPk−1F

T
k Λk + λI

)−1
(yk − Fkθ̂k−1) − 1 = 0

(11)

Using the a priori estimation error ỹk = yk −
Fkθ̂k−1 in equation (11) yields :

λ2ỹT
k

(
FkPk−1F

T
k Λk + λI

)−T
R−1

k

× (
FkPk−1F

T
k Λk + λI

)−1
ỹk = 1 (12)

It should be noticed that (12) can be viewed as
one single equation with p(p − 1) variables (since
Λk is a symmetric p × p matrix), this quadratic
scalar relation then admits an infinity of solutions
Λk. For any arbitrary positive definite matrix M ∈
IRp×p, it is obvious that

ỹT
kMTRk

−1Mỹk(√
ỹT

kMTRk
−1Mỹk

)2 = 1

and all the solutions of equation (12) may be
parameterized by M in the following way :

λ
(
FkPk−1F

T
k Λk + λI

)−1
=

M√
ỹT

k MT R−1
k Mỹk

(13)

From (13), the weighting matrix Λk is given by :

Λk = λ
(
FkPk−1F

T
k

)−1



×
(

M−1
√

ỹT
k MT R−1

k Mỹk − I

)
(14)

As M is a free design parameter, we set M = I
for simplicity in the rest of the paper. In this
particular case, Λk rewrites as :

Λk = λ

(√
ỹT

k R−1
k ỹk − 1

) (
FkPk−1F

T
k

)−1
(15)

Since Λk must be a positive definite matrix, the
equality (15) is true only if ỹT

k R−1
k ỹk > 1 and

if FkPk−1F
T
k is positive definite, so invertible.

Otherwise, i.e., either if ỹT
k R−1

k ỹk ≤ 1, that is the
a priori estimation error is already inside the noise
bounds defined in (1b) so the object is attained
and we can’t find better estimate for θ at time
k, or if FkPk−1F

T
k is not invertible, that is the

measurement sequence {Fk} is not persistently
exciting, in those cases it is useless to update
the estimated parameters and the only possible
solution is to set Λk = 0 then the gain of (4)
Kk = 0 and θ̂k = θ̂k−1. Using (15) and for the
reasons explained above, the weighting matrix Λk

is then given by :

Λk=




λ
(
‖ỹk‖R−1

k
− 1

) (
FkPk−1F

T
k

)−1
if ‖ỹk‖R−1

k
> 1

and FkPk−1F
T
k > 0

0 otherwise
(16)

Theorem 1. Given (3) to (5), if the weighting
matrix Λk introduced in (4) is given by (16),
then the estimated parameters vector θ̂k has the
following properties :

i.
∥∥∥θ̂k − θ∗

∥∥∥ is upper bounded i.e. :∥∥∥θ̂k − θ∗
∥∥∥ ≤ κ

∥∥∥θ̂0 − θ∗
∥∥∥ ;

ii. there exists a scalar σk > 0 such that
|θ̂ik − θ∗i | ≤ σk

√
Piik for all k ≥ 0,

i = 1, 2, . . . , n;

where κ =
λmax(P0)
λmin(P0)

, σ2
k =

λk

λmin (P0)

∥∥∥θ̃0

∥∥∥2

, θ̂ik

(resp. θ∗i ) is the ith element of the vector θ̂k (resp.
θ∗) and Piik is the ith diagonal element of the
matrix Pk.
Furthermore, if the measurement matrix sequence
{Fk} is persistently exciting, i.e. for some constant
integer m ≥ n and all k, there exist positive
constants α and β such that

αI ≤
k+m∑
i=k

FT
i ΛiFi ≤ βI (17)

then the estimation algorithm (3)-(5) has the
following additional properties :

iii.
∥∥∥θ̂k − θ∗

∥∥∥2

≤ γ
∥∥∥θ̂0 − θ∗

∥∥∥2

λk

for all k ≥ m + 1;

iv. lim
k→∞

∥∥∥yk − Fkθ̂k

∥∥∥
R−1

k

≤ 1.

where

γ =




1
αλmin (P0)

(
λ−(m+1) − 1

λ−1 − 1

)
if λ < 1

1
αλmin (P0)

if λ = 1

■

PROOF. : Each part of the theorem will be
demonstrated

i. Let us define the estimation error vector
θ̃k = θ∗ − θ̂k and consider the candidate
Lyapunov function :

Vk = θ̃T
k P−1

k θ̃k (18)

Using (4) and (5) and after some linear ma-
nipulations, the following relations are obvi-
ous :

Kk = PkFT
k Λk (19)

P−1
k = λP−1

k−1 + FT
k ΛkFk (20)

Substituting (19) in (3) and (3) in (18)
yields :

Vk =
(
θ̃k−1 − PkFT

k Λk(yk − Fkθ̂k−1)
)T

P−1
k

×
(
θ̃k−1 − PkFT

k Λk(yk − Fkθ̂k−1)
)

(21)

Using (20) and a priori estimation error vec-
tor definition, (21) becomes :

Vk = θ̃T
k−1(λP−1

k−1 + FT
k ΛkFk)θ̃k−1

−θ̃T
k−1F

T
k Λkỹk − ỹT

k ΛkFkθ̃k−1

+ỹT
k ΛkFkPkFT

k Λkỹk

= λVk−1 + ỹT
k Λk

(
FkPkFT

k − Λ−1
k

)
Λkỹk

+
(
ỹk − Fkθ̃k−1

)T

Λk

(
ỹk − Fkθ̃k−1

)
(22)

where Vk−1 = θ̃T
k−1P

−1
k−1θ̃k−1. Using a priori

and parameters estimation error vectors def-
initions, it comes that :

ỹk − Fkθ̃k−1 = yk − Fkθ = vk (23)

and, using (4), (5) and the matrix inversion
lemma we obtain :

FkPkFT
k − Λ−1

k =
1
λ

[
FkPk−1F

T
k − FkPk−1F

T
k

×(
FkPk−1F

T
k + λΛ−1

k

)−1
FkPk−1F

T
k − λΛ−1

k

]
=

1
λ

{[(
FkPk−1F

T
k

)−1
+ λ−1Λk

]−1

− λΛ−1
k

}

= −λΛ−1
k

(
FkPk−1F

T
k + λΛ−1

k

)−1
Λ−1

k (24)

Introducing (23) and (24) into (22) gives :

Vk =−λỹT
k Λk

(
FkPk−1F

T
k Λk + λI

)−1
ỹk

+λVk−1 + vT
k Λkvk (25)

If ỹT
k R−1

k ỹk ≤ 1 or if FkP−1
k−1F

T
k is not

invertible, the algorithm is not updated i.e.
Λk = 0 and (25) reduces to



Vk = λVk−1

Vk − Vk−1 = (λ − 1)Vk−1 (26)

Otherwise (i.e. if ỹT
k R−1

k ỹk > 1 and FkP−1
k−1F

T
k

is invertible), from (15) we have :

(
FkPk−1F

T
k + λΛ−1

k

)−1
=

Λk

λ
√

ỹT
k R−1

k ỹk

(27)

Using (27), (25) may be rewritten as :

Vk − Vk−1 = (λ − 1)Vk−1 + q (28)

where q ∈ IR is defined by :

q = vT
k Λkvk − λỹT

k

[
FkPk−1F

T
k + λΛ−1

k

]−1
ỹk

= vT
k Λkvk − ỹT

k

Λk√
ỹT

k R−1
k ỹk

ỹk (29)

Now let us study the sign of q. As ỹT
k R−1

k ỹk ≥ 0
and if ỹT

k R−1
k ỹk �= 0, multiplying ỹT

k R−1
k ỹk

by q doesn’t change its sign :

ỹT
k R−1

k ỹkq = (ỹT
k R−1

k ỹk)(vT
k Λkvk)

−
√

ỹT
k R−1

k ỹk(ỹT
k Λkỹk)

= ỹT
k

(
(vT

k Λkvk)R−1
k − (

√
ỹT

k R−1
k ỹk)Λk

)
ỹk

= −ỹT
k Qỹk (30)

where
Q = (

√
ỹT

k R−1
k ỹk)Λk − (vT

k Λkvk)R−1
k (31)

The scalar q defined in (29) is negative if the
matrix Q is semi-positive definite. ∀vk ∈ IRn

we have :

vT
k Qvk = (

√
ỹT

k R−1
k ỹk)(vT

k Λkvk)

−(vT
k Λkvk)(vT

k R−1
k vk)

= vT
k Λkvk

(√
ỹT

k R−1
k ỹk − vT

k R−1
k vk

)
(32)

Recall that we are in the case where

ỹT
k R−1

k ỹk > 1 with vT R−1
k v < 1, thus, it

comes from (32) that :

vT
k Qvk ≥ vT

k Λkvk

(√
ỹT

k R−1
k ỹk − 1

)
≥ 0 (33)

Consequently, we can write :
∀vk ∈ IRn: ‖vk‖R−1

k
< 1, vT

k Qvk ≥ 0
Hence it is clear that the matrix Q given by
(31) is semi-positive definite which implies
that q ≤ 0.
Therefore we have :
Vk − Vk−1 = (λ − 1)Vk−1 + q

≤ (λ − 1)Vk−1 ≤ 0 λ ∈]0, 1[

Furthermore, by the aid of (26), we have :

∀ λ ∈ ]0, 1], Vk ≤ λVk−1.

Next, from (18) we obtain :

θ̃T
k P−1

k θ̃k ≤ λθ̃T
k−1P

−1
k−1θ̃k−1

≤ λ2θ̃T
k−2P

−1
k−2θ̃k−2

≤ . . .

≤ λkθ̃T
0 P−1

0 θ̃0 (34)

and using (20) :

P−1
k ≥ λP−1

k−1 ≥ λ2P−1
k−2

≥ . . . ≥ λkP−1
0 (35)

By the aid of Rayleigh principle (Golub and
Loan, 1993), a result of the Weyl inequality 1 ,
(34) and (35), we show that :

λkλmin

(
P−1

0

) ∥∥∥θ̃k

∥∥∥2

≤ λmin

(
P−1

k

) ∥∥∥θ̃k

∥∥∥2

≤ θ̃T
k P−1

k θ̃k

≤ λkθ̃T
0 P−1

0 θ̃0

≤ λkλmax

(
P−1

0

) ∥∥∥θ̃0

∥∥∥2

(36)

and hence :
∥∥∥θ̃k

∥∥∥2

≤ λmax

(
P−1

0

)
λmin

(
P−1

0

) ∥∥∥θ̃0

∥∥∥2

that proves i.

ii. From inequality (36), we have

θ̃T
k P−1

k θ̃k ≤ σ2
k

where
σ2

k = λkλmax

(
P−1

0

) ∥∥∥θ̃0

∥∥∥2

Let us write the Sherman-Morrison formula
(Golub and Loan, 1993) :(
σ2

kPk − θ̃kθ̃T
k

)−1

= (σ2
kPk)−1

+
(σ2

kPk)−1θ̃kθ̃T
k (σ2

kPk)−1

1 − θ̃T
k (σ2

kPk)−1θ̃k

σ2
kPk − θ̃kθ̃T

k = (σ2
kPk)

(
I +

P−1
k θ̃kθ̃T

k

σ2
k − θ̃T

k P−1
k θ̃k

)−1

If θ̃T
k P−1

k θ̃k < σ2
k then the matrix(

I +
P−1

k θ̃kθ̃T
k

σ2
k − θ̃T

k P−1
k θ̃k

)
is positive definite and

so it is for
(
σ2

kPk − θ̃kθ̃T
k

)
. Moreover, as the

matrix
(
σ2

kPk − θ̃kθ̃T
k

)
is symmetric, its di-

agonal elements are positive and it follows
that :

σ2
kPiik − θ̃2

ik ≥ 0 for i = 1, 2, . . . , n

where θ̃2
ik are the diagonal elements of θ̃kθ̃T

k .
Thus, property ii is proven.

1 if A, B are two square positive definite matrices then :
λmin(A) − λmin(B) ≥ λmin(A − B). Furthermore if
A − B ≥ 0 then λmin(A) ≥ λmin(B).



iii. Let k ≥ m + 1. (20) yields :

P−1
k = λP−1

k−1 + FT
k ΛkFk

= λ2P−1
k−2 + λFT

k−1Λk−1Fk−1 + FT
k ΛkFk

...

= λm+1P−1
k−m−1 + λmFT

k−mΛk−mFk−m

+ . . . + λFT
k−1Λk−1Fk−1 + FT

k ΛkFk

= λm+1P−1
k−m−1 +

m∑
i=0

λiFT
k−iΛk−iFk−i

(37)

Let us define Gi = FT
k−iΛk−iFk−i.

As Gi is a positive semi-definite matrix and
as 0 < λ ≤ 1, it comes that :

m∑
i=0

λiGi − 1
m∑

i=0

λ−i

m∑
i=0

Gi

=
m∑

i=0

{( 1
λ−i

− 1
m∑

i=0

λ−i

)
Gi

} ≥ 0 (38)

If λ �= 1 and as λm+1P−1
k−m−1 > 0, it comes

from (37) and (38) that :

P−1
k = λm+1P−1

k−m−1 +
m∑

i=0

λiGi

≥
m∑

i=0

λiGi

≥ 1
m∑

i=0

λ−i

m∑
i=0

Gi =
λ−1 − 1

λ−(m+1) − 1

m∑
i=0

Gi

≥ λ−1 − 1
λ−(m+1) − 1

αI (39)

If λ = 1, P−1
k ≥

m∑
i=0

Gi ≥ αI. Using (34),

(39) and Rayleigh principle again and setting

ρ =




λ−1 − 1
λ−(m+1) − 1

if λ < 1

1 if λ = 1

we have :

ρα
∥∥∥θ̃k

∥∥∥2

≤ λmin

(
P−1

k

) ∥∥∥θ̃k

∥∥∥2

≤ θ̃T
k P−1

k θ̃k

≤ λkθ̃T
0 P−1

0 θ̃0

≤ λkλmax

(
P−1

0

) ∥∥∥θ̃0

∥∥∥2

this yields to the result :∥∥∥θ̃k

∥∥∥2

≤ 1
αλmin (P0) ρ

λk
∥∥∥θ̃0

∥∥∥2

(40)

iv. The inequality (40) garanties that the pa-
rameter error norm

∥∥∥θ̃k

∥∥∥ is upper bounded
by an exponentially decreasing term as long
as the persistence condition (17) is fulfilled
and while ‖ỹk‖R−1

k
> 1, in other words, as

long as the estimation algorithm is updated
(when Λk �= 0). This yields to the asymptotic
convergence of θ̂k to some value contained
in a certain neighborhood of the true pa-
rameter θ∗ where the measure error satisfies
‖ỹk‖R−1

k
≤ 1.

This completes the proof. ❏

Remark : We can choose any symmetric positive
definite matrix M instead of M = I in the
theorem. The weighting matrix Λk in (16) is
then replaced by (6). The matrix M introduces
more weight to some composants of estimation
error vector rather than others, and a judicious
choice of this matrix can improve the algorithm
convergence.

3. A SIMULATION EXAMPLE

Consider the following car suspension contin-
uous two inputs/two outputs model (for t ∈
[0,+∞[) :

m1ẍ1(t) + f(ẋ1(t) − ẋ2(t)) + k1x1(t) = u1(t)

m2ẍ2(t) + f(ẋ2(t) − ẋ1(t)) + k2x2(t) = u2(t)

By using first order Euler discretization, we obtain
(for k = 0, 1, 2, . . .) :

m1x
′′
d1(k) + f(x′

d1(k) − x′
d2(k)) + k1xd1(k) + εd1(k)

= u1d(k)

m2x
′′
d2(k) + f(x′

d2(k) − x′
d1(k)) + k2xd2(k) + εd2(k)

= u2d(k)

where (for i = 1, 2)

uid(k) = ui(t = k)

xdi(k) = xi(t = k)

x′
di(k) =

xdi(k) − xdi(k − 1)
T

x′′
di(k) =

x′
di(k) − x′

di(k − 1)
T

=
xdi(k) − 2xdi(k − 1) + xdi(k − 2)

T 2

and εd1 and εd2 are the discretization errors and
T is the sampling period.
We can now rewrite the above discretized model
in the form :

ud(k) = F (k)θ + εd(k) + v(k)

where



ud(k) =
(

u1d(k)
u2d(k)

)
, θ =




m1

m2

f
k1

k2


 ,

εd(k) =
(

εd1(k)
εd2(k)

)
, v(k) =

(
v1(k)
v2(k)

)
,

F (k) =
(

x′′
d1 0 x′

d1 − x′
d2 xd1 0

0 x′′
d2 x′

d2 − x′
d1 0 xd2

)
.

The inputs u1(t) and u2(t) are rectangular signals
with linearly varying frequencies and sinusoidal
magnitudes. In addition of unmodeled discretiza-
tion errors, the measurements are subject to un-
known but bounded noises v1(k) and v2(k) (uni-
formly distributed random sequences) of known
bounds which are chosen so that the signal-to
noise ratio is 20 dB.
Table 1 shows the good performances of the pro-
posed algorithm. The final estimated parameters
given in Table 1 represent the mean values of 100
simulation results.

True Initial Final
parameters values estimated values

m1 (kg) 30 0 30.5

m2 (kg) 285 0 285.8

f (Nm−1s) 2000 0 1987.7

k1 (Nm−1) 20210 0 19714.9

k2 (Nm−1) 850000 0 852329.2

Table 1. Numerical values of the true pa-
rameters, initial and final values of estimated

parameters

4. CONCLUSION

In this paper, we have addressed the problem
of set membership identification of linear multi-
variable systems with unknown bounded distur-
bances. From minimization of a prescribed La-
grangian function, a recursive identification al-
gorithm is deduced so that consistency of the
estimated parameters with the measurements and
noise constraints are guaranteed. Properties and
convergence of the proposed approach were estab-
lished. Finally, the proposed technique was suc-
cessfully applied to the identification of physical
parameters of a car suspension model.
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