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Abstract: The w orkpresents some simulation results concerning the application of
robust model{based fault diagnosis to an industrial process by using iden ti�cation
and disturbance de{coupling techniques. The �rst step of the considered approach
iden ti�es sev eral equation error models by means of the input{output data acquired
from the monitored system. Each model describes the di�erent w orkingconditions
of the plant. In particular, the equation error term of the iden ti�edmodels tak es
into account disturbances (non{measurable inputs), non{linear and time{invarian t
terms, measurement errors, etc. The next step of this method exploits state{space
realization of the input{output equation error models allo wing to de�ne several
equivalen tdisturbance distribution matrices related to the error terms. Moreover,
in order to achiev egood robustness properties for a process normally w orkingat
di�erent operating points, a single optimal equivalen t disturbance distribution matrix
is selected. Finally, eigenstructure assignment method for robust residual generation
and disturbance de{coupling can be successfully exploited for the fault diagnosis of the
dynamic process. The fault diagnosis procedure is applied to a benchmark simulation
of a gas turbine process.

Keywords: Model{Based Approach, Fault Diagnosis, System Identi�cation,
Eigenstructure Assignment, Industrial Process.

1. INTRODUCTION

In order to ensure reliable operations of an indus-
trial process and safety of the plant, it is necessary
to use correct measurements from actual system
inputs and outputs. This requires the use of Fault
Detection and Diagnosis (FDD) techniques for the
recognition of malfunctions regarding the system
under investigation (Isermann and Ball�e, 1997).

Recently, di�erent methods based on analyti-
cal redundancy have been developed to diagnose
faults in linear, time{invarian t, dynamic systems

and a wide variet y of model-based approaches
has been proposed (Frank et al., 2000; Patton et

al., 2000). There are di�erent model{based ap-
proaches to the FDD problem, namely parame-
ter identi�cation (Willsky, 1976), parity equations
(Gertler, 1998), methods in frequency (Ding and
F rank, 1990; Massoumniaet al., 1989) or in state{
space domain, such as diagnosis observers (F rank,
1990) and Kalman �lters (Xie et al., 1994).

Although the analytical redundancymethod has
been recognised as an e�ective technique for de-
tecting and isolating faults, the critical problem of
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unavoidable modelling uncertainty has not been
fully solved. The main problem regarding the re-
liability of FDD schemes is the modelling uncer-
tainty which is due, for example, to process noise,
parameter variations and non{linearities.

All model{based methods use a model of the mon-
itored system to produce the so-called symptom
generator. If the system is not complex and can be
described accurately by the mathematical model,
FDD is directly performed by using a simple ge-
ometrical analysis of residuals. In real industrial
systems however, the modelling uncertainty is un-
avoidable. The design of an e�ective and reliable
FDD scheme should take into account of the mod-
elling uncertainty with respect to the sensitivity
of the faults.

Several papers addressed this problem. For exam-
ple, optimal robust parity relations were proposed
in (Chow and Willsky, 1984; Lou et al., 1986), and
the threshold selector concept was introduced in
(Emami-Naeini et al., 1988).

One other promising approach is the decoupling
between disturbances and residuals achieved by
means of a proper observer eigenstructure assign-
ment (Chen and Patton, 1999, chapt. 4). This
approach requires the knowledge of the system
model and, in particular, of the estimation of the
disturbance distribution matrix (i.e. the structure
of the disturbance entry points) (Chen and Pat-
ton, 1999, chapt. 5). Thus, some procedures can be
de�ned to model correctly the disturbance matrix
(Patton et al., 2000).

In this paper, an identi�cation approach is sug-
gested, in which a family of equation error (EE)
models are derived from input{output data ac-
quired from the monitored system. A set of models
is here considered, since the operating point of the
monitored system may vary according to the dif-
ferent plant conditions (Simani et al., 2000b; Pat-
ton et al., 2001). In particular, in each EE model,
the error term takes into account any causes of
mismatch between model and real process (distur-
bances, measurement noise and modelling errors).
Under this assumption, it is supposed that EE
terms may change in connection with the di�erent
working conditions.

On the other hand, a state{space realization of
such models leads to de�ne a structure indicating
how non{ideal terms act on the system by means
of a disturbance distribution matrix (Simani et
al., 2000a).

In the design of the model{based FDD scheme,
instead of using a multiple model{based approach,
a single model for ease of implementation can be
exploited. However, when using a single model in
this way, it is supposed that di�erent modelling
errors can arise corresponding to di�erent operat-

ing points. Therefore, di�erent operating points
correspond to di�erent disturbance distribution
matrices. One way to achieve good robustness is
to satisfy the disturbance de{coupling conditions
for all the identi�ed disturbance distribution ma-
trices (Chen and Patton, 1999, chapt. 5). This
can be done by using an equivalent disturbance
distribution matrix (Fantuzzi et al., 2001) which
approximates all disturbance distribution matri-
ces.

The paper is organised as follows. In Section 2
the problem statement is given and it is described
from a mathematical point of view. The robust
fault diagnosis scheme is also presented in Section
2 considering the varied operating point. In Sec-
tion 3 the characteristics of a gas turbine model
used to test the proposed methodology are pre-
sented and the results regarding the diagnosis of
simulated faults are also reported. Finally, conclu-
sions and open problems reported in Section 4 end
the paper.

2. ROBUST RESIDUAL GENERATION

A typical description for the system uncertainty
make use of the concept of unknown inputs d(t)
acting upon a nominal linear discrete{time model
of the monitored system as described by

8<
:
x(t + 1) = Ax(t) + Bu(t) + R1f(t) + Ed(t)

y(t) = Cx(t) + R2f(t) + d(t) , t = 1; 2; : : :
(1)

where y(t) 2 <m is the system output vector
and u(t) 2 <r is the control input vector. The
vector x(t) 2 <n represents the system state,
whilst the term d(t) 2 <q takes into account the
modelling non{ideal terms, such as measurement
noise, real system non{linear terms, etc. The vec-
tor f(t) 2 <p represents the faults a�ecting the
process (Simani et al., 2000a).

In the general framework of linear system and
assuming fault free system operation, the system
matrices A(n�n), B(n�r) and C(m�n) can be ob-
tained by modelling or proper identi�cation pro-
cedures (Simani et al., 2000a). Moreover, when
the unknown vector d(t) is considered as a distur-
bance and the matrix E(n�q) describes its distri-
bution, the terms E d(t) represent uncertainties
acting upon the system. Fault matrices R1(n�p)

and R2(m�p) are assumed to be known (Chen and
Patton, 1999).

In fault free conditions (f(t) = 0), under the
assumption that the dynamic process works at
di�erent operating point, the modelling error
may vary according to di�erent plant conditions.
Hence, the system (1) can be rewritten as



�
x(t+ 1) = Ax(t) + Bu(t) + E(i)d(t)
y(t) = Cx(t) + d(t) , t = 1; 2; : : :

(2)

where E(i), with i = 1; : : : ;M , represents the
di�erent unknown input distribution matrices cor-
responding toM operating points of the system. It
is attractive to be able design a single robust FDD
scheme (i.e. for the A, B, C, R1 and R2 system
matrices) for the whole range of operating points
M . Therefore, in order to achieve a robust model{
based FDD, the \optimal" distribution matrix E,
which is unknown, has to be estimated by means
identi�cation procedure.

The problem of the estimation of the disturbance
distribution matrices E(i) can be approached from
an identi�cation point of view using input{output
data.

The mathematical description of the system under

diagnosis for the ith working condition can be
performed by means of a discrete{time equation
error linear model in polynomial form

Q(z)y(t) = P(z)u(t) + D(i)(z)d(t) (3)

where z is the unitary advance operator. Q(z),
P(z) and D(i)(z) are polynomial matrices with
maximal order n and whose coeÆcients have to be
identi�ed. When identi�ability conditions are ful-
�lled for the ARMAX (Auto-Regressive Moving
Average eXogenous) model described by Eq. (3),
a minimal parametrisation of (Q(z);P(z);D(i)(z))
can be successfully estimated (Guidorzi, 1996;
Ljung, 1999).

As an example, assuming fault{free system op-
eration, ARMAX model structure and parame-
ters can be estimated using a Prediction Error

Method (PEM) procedure in each ith working
condition. In particular, a Maximum Likelihood
(ML) (Ljung, 1999) technique can be exploited to
estimate the (Q(z);P(z)) coeÆcients and then the
D(i)(z) parameters of the ARMAX model in each

ith working point.

The identi�cation method used in this work for
the computation of the minimal parametrisations
in the multivariable ARMAX identi�cation relies
on iterative algorithms like Newton{Raphson or
Gauss{Newton numerical procedures (Guidorzi,
1996).

Concerning the determination of the plant work-
ing points and the clustering of the data fu(t);y(t)g
into M regions, the related works (Simani et

al., 2000b; Patton et al., 2001) by the same au-
thors could be referred.

However, for diagnosis purposes, a state{space
realization of the model (3) is needed. It can be
therefore proved (see, e.g., (Ljung, 1999)) that a

state|space minimal form (A, B, C, E(i)) can be
obtained from the input{output EE model (3) for

the ith working point. Once a suitable state{space
representation of the system model (3) is achieved,
there di�erent approaches to generate the residual
for the system (1).

In this work, the observer{based method is used
to estimate the outputs of the system from
the input{output measurements. In model{based
FDD, the state estimation is not necessarily
needed, because the required information is in
the diagnostic signal (the residual). So direct ap-
proach to de{couple residual to disturbance can
be used, even if state estimation error still coupled
with disturbance.

This approach is detailed in (Chen and Patton,
1999, chapt. 4). However, that procedure should
be modi�ed to take into account the di�erent
plant working conditions according to Eq. (2). The
following fault f(t) to residual r(t) transfer matrix
is obtained:

rf (t) = QR2f(t)+

+ H(zI�A+KC)�1(R1 �KR2)f(t)
(4)

where H = QC.

On the other hand, the disturbances d(t) to resid-
ual r(t) transfer matrix is

rd(t) = QId(t)+

+ H(zI�A+KC)�1
�
E(i)

�KI
�
d(t):

(5)

It is worthwhile noting how the disturbance d(t)
acts either on system state and output (see Eq.
1), but it can not be completely rejected. Only
the dependence of d(t) on system state can be
eliminated with a proper choice of matrix H (Chen
and Patton, 1999, chapt. 4). In such way, only the
disturbance term (6) in Eq. (5) can be deleted, i.e.

H(zI�A+KC)�1E(i)d(t) = 0: (6)

In particular, concerning a dead{beat design for
robust residual generation (Chen and Patton,
1999, chapt. 4), in order to make the disturbance
de{coupling hold for all operating points, the
following relation should be satis�ed

HE(i) = 0 for i = 1; : : : ;M: (7)

The relation (6) is nulled when the following
condition is satis�ed

HAc = 0 (8)

where Ac = A � KC. Matrices H and K have to
be designed in such a way that rows of H are left
eigenvectors of Ac corresponding to zero{valued
eigenvalues, Eq. (8) then holds true.



On the other hand, the Eq. (7) means that the
left eigenvectors to be assigned are orthogonal
to the disturbance directions, and the residual
weighting matrix Q is therefore computed using
this equation.

Finally, according to the system (1), in order to
choose the \optimal" disturbance distribution de{
coupling matrix E(i), the problem could be solved
by de�ning the following optimisation procedure

minE(i)k rd(t) k s.t. maxE(i)k rf (t) k

for i = 1; : : : ;M
(9)

or

minE(i)

k rd(t) k

k rf (t) k

for i = 1; : : : ;M:

(10)

Under the previous assumptions, in connection
with a dead{beat observer, the optimal E is se-
lected among all disturbance distribution matrices
E(i) for i = 1; : : : ;M in order to minimise distur-
bance e�ects and to maximise residual sensitivity
to faults.

In the formulation of the problem (9), the in�nity
norm of the matrices may be used. However, other
matrix norms (such as the Frobenius norm) can
be also exploited (Frank et al., 2000).

3. GAS TURBINE MODEL DESCRIPTION

The process under investigation is a simulated
model of a single{shaft industrial gas turbine.
The block structure of the plant is depicted in
Figure (1) and more detail about the process can
be found in (Bettocchi et al., 1996; Simani et

al., 1998).

The actuator control inputs are u1(t), represent-
ing the Inlet Guide Vane (IGV) angular position
�(t) and u2(t), corresponding to the fuel mass ow
rate, Mf (t).

The output sensors are those used for the mea-
surement of y1(t), the pressure at the compressor
inlet pic(t), y2(t), the pressure at the compressor
outlet poc(t), y3(t), the pressure at the turbine
outlet pot, y4(t), the temperature at the com-
pressor outlet Toc, y5(t), the temperature at the
turbine outlet Tot and y6(t), the electrical power
at the generator terminal Pe.

The process operates at di�erent working condi-
tions and 8 noisy process measurements, including
temperatures, ow rates, pressures, control sig-
nals, turbine speed and torque can be acquired
with a sampling rate of 0:1 s. Due to the presence

of sensors, actual measurements u(t) and y(t) are
a�ected by noise (Simani et al., 1998).

A pressure sensor bias (abrupt fault on the pot

pressure sensor signal) and an actuator failure
(abrupt fault on the �(t) signal) have been sim-
ulated to experiment with both the identi�cation
and the fault diagnosis methods.

CC

C T

1u = α
y = p1 ic

IGV

y = p
y = T

oc

oc

ID ED

y = pot

y = Tot

3

5

2

4

u = M

EG

y = P6 e

f2

Fig. 1. Layout of the turbine model.

Because of the underlying physical mechanisms
and because of the modes of the control signals,
the process has non{linear steady state as well as
dynamic characteristics (Simani et al., 1998).

A clustering algorithm was used with M = 3 clus-
ters (operating conditions) (Juli�an, 1999b; Juli�an,
1999a). After clustering, the ARMAX (3) model
order n = 2 and structure (Q(z);P(z);D(i)(z))
have been estimated using PEM and ML identi�-
cation method in each region with i = 1; 2; 3.

The model has been then validated on a separate
data set. Therefore, model (2) matrices (A, B, C,
E(i)) have been estimated with i = 1; : : : ;M and
M = 3.

In fault{free conditions, Table (1) reports the
mean square values of the output estimation er-
rors r(t) given by classical observers for all oper-
ating conditions without de{coupling properties
(Simani et al., 1999; Simani et al., 2000a). These
values are large and they cannot be used to detect
faults reliability.

A meaningful improvement has been obtained
by using the identi�cation technique presented
in Section 2 when the process disturbances are
described by means of di�erent E(i) matrices, with
i = 1; 2; 3.

The mean square errors of the residuals r(t) =
rd(t), are also collected in Table (1), under no{
fault conditions. The results indicate that the
residuals obtained using a dead{beat observer
when optimisation procedure (9) is performed can
serve as reliable fault symptoms. Hence, using
these diagnostic signals, the observer{based ap-



proach for fault diagnosis can be exploited and
applied to the power plant.

Table 1. Residual rd(t) values with and
without the de{coupling approach.

Outputs pic poc pot

Classical Observer 13.29 7.56 15.34

Dead{Beat Observer 1.04 1.22 0.67

Outputs Toc Tot Pe

Classical Observer 20.22 21.57 19.70

Dead{Beat Observer 1.55 1.58 0.70

The fault f(t) occurring on �(t) actuator or pot(t)
sensor causes alteration of the signals u(t), y(t)
and of the residuals r(t) = rf (t) + rd(t) cor-
responding to Equations (4) and (5). Residuals
should then indicate fault occurrence whether
their values are lower or higher than thresholds
�xed in fault-free conditions (residual geometrical
analysis).

To summarise the performance of the whole FDD
technique, the minimal detectable faults on the
m = 6 output sensors and r = 2 actuators,
expressed as per cent of the mean values of the
relative signals, are collected in Table (2). The re-
sults were obtained by using Luenberger observers
for all operating conditions without disturbance
de{coupling.

An improvement of the FDD performance has
been obtained by using the presented de{coupling
algorithm. Table (2) summarises also the perfor-
mance of the enhanced FDD technique and col-
lects the minimal detectable faults on the var-
ious sensors and actuators. The fault sizes are
expressed as per cent of the signal mean values.

Table 2. Minimal detectable faults with
and without de{coupling approach.

Meas. � Mf pic poc

Classical Obs. 4% 4% 5% 7%

Dead{Beat Obs. 0.8% 1.3% 0.08% 0.08%

Measurements pot Toc Tot Pe

Classical Obs. 5% 5% 2.5% 1.7%

Dead{Beat Obs. 0.8% 0.7% 0.05% 0.2%

The residuals r(t) obtained by using the presented
de{coupling approach are more sensitive to faults.
Noise rejection is, in fact, almost achieved by
means of the optimisation method here developed.
Moreover, smaller thresholds can be placed on the
residual signals to declare the occurrence of faults.

As an example, fault{free and faulty residuals r(t)
regarding the �(t) signal are reported in Figures
(2) and (3). They were generated by using a
classical observer approach and the presented de{
coupling method, respectively. Fault-free thresh-
olds were marked by using '�' and '+'.

Finally it is worthwhile noting how the values
of the faults, reported in Table (2), obtained
by using the enhanced FDD technique are lower
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Fig. 2. Residuals for the actuator signal �(t)
without de{coupling procedure
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Fig. 3. Residuals for the signal �(t) with de{
coupling approach

than the ones corresponding to classical observers.
Moreover, the minimal detectable faults on the
various sensors and actuator seem to be adequate
to the industrial diagnostic applications. However,
these improvements are not free of charge: they
have been obtained with a procedure of greater
complexity.

4. CONCLUSIONS AND FURTHER WORKS

This paper concerned the identi�cation of models
suitable for fault diagnosis purpose. The structure
of equation error models (ARMAX) are derived
from an identi�cation procedure. In this manner,
state{space realizations of such models lead to
estimate a set of disturbance distribution matrices
related to the error terms. Di�erent operating
points correspond to di�erent disturbance distri-
bution matrices.

The state{space models are successfully exploited
for the design of a robust fault diagnosis schemes,
once the single disturbance distribution matrix
approximating all disturbance distribution matri-
ces is estimated.

Finally, the paper reports a eigenstructure assign-
ment procedure for a dead{beat observer, which
is applied to the robust fault diagnosis of a non{
linear model of a turbine model working at di�er-
ent operating points.



Open problems regard the isolation of the di�erent
fault occurring on the monitored process as well
as the application of the proposed FDD procedure
to real data acquired from the actual plant.
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