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Abstract: Although deadlock avoidance issue has attracted much attention and has been 
extensively studied, most of the existing results assume reliable machines, which makes it 
difficult to apply existing deadlock avoidance algorithms to a real manufacturing system 
with unreliable machines. This paper presents the results to apply existing deadlock 
avoidance algorithms to systems with unreliable machines by analysing the robustness of 
the deadlock avoidance algorithms. Sequential production processes are considered in this 
paper and Petri Net is adopted as the tool for modelling and analysis of the sequential 
processes. The tolerable machine failure under which liveness property can be preserved 
is characterized.  Copyright © 2002 IFAC 
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1. INTRODUCTION 
 

Deadlock is a highly undesirable situation in which a 
set of parts or jobs are requesting or waiting for 
resources held by other parts or jobs in the same set, 
with the set of parts or jobs in circular waiting. 
Deadlock issue has attracted much attention in the 
last decade in the context of manufacturing systems. 
However, most of the existing results (Reveliotis, 
1999; Lawley, 1998a; Lawley, 1998b; Reveliotis, 
1997; Cho, 1995; Ezpeleta, 1995; Hsieh, 1994; Wysk, 
1991; Banaszak, 1990;Viswanadham, et al., 1990;) 
assume reliable machines, which is an inappropriate 
assumption for real manufacturing systems. These 
works focus on deadlocks issues in the context of 
flexible manufacturing systems. Banaszak and Krogh 
(Banaszak, 1990) proposed a production Petri net 
(PPN) to model concurrent job flow and dynamic 
resource allocation in FMS. In their work, a simple 
and low computational complexity deadlock 
avoidance scheme is proposed based on restriction 
policy based on current marking for allocating 
resources. Although such restriction policy is 
suitable for real-time control logic implementation, it 
may impose unnecessary constraints on resource 
allocation and degrades system performance. Hsieh 
(Hsieh, 1994) overcame the drawbacks of the above 

approach by formulating a deadlock avoidance 
controller (DAC) synthesis problem for a class of 
Petri net called CPPN. Ezpeleta et al. (Ezpeleta, 1995) 
formulated a policy that prevents deadlock by 
establishing the equivalence between deadlocks in a 
manufacturing system and unmarked siphons in a 
class of Petri net called S3PR. Wysk et al. (Wysk, 
1991) and Cho (Cho, 1995) proposed  graph-
theoretic models for deadlock detection and 
avoidance for manufacturing systems.  Lawley 
(Lawley, 1998a; Lawley, 1998b) addressed the 
scalability, configurability and routing flexibility 
design issues of deadlock avoidance algorithms for 
manufacturing systems and proposed deadlock 
avoidance algorithms for manufacturing systems 
with flexible routing capability. However, these 
deadlock avoidance algorithms do not address the 
issues of handling uncertainties such as unreliable 
machines in manufacturing systems.  
 
In manufacturing systems, uncertainties such as 
unreliable machines may occur stochastically. This 
pose problems to apply existing deadlock avoidance 
algorithms to manufacturing systems with machines 
that may fail stochastically. Unreliable machines 
pose challenges in design and control of production 
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processes as machine failure may bring the system to 
a dead state and has negative impacts on scheduled 
production activities. Feasibility of tailoring existing 
deadlock avoidance algorithms for manufacturing 
systems with reliable resources to systems with 
unreliable resources requires further study.  
 
An interesting question is whether existing deadlock 
avoidance algorithms posses desirable robust 
properties for handling such uncertainties. In control 
theory, a controller designed for a plant often 
exhibits some degree of robustness with respect to 
uncertainties. That is, as long as the unmodeled 
dynamics is within some safety margin, the real 
system stays stable using the nominal controller. A 
similar line of thinking motivates the research of this 
paper. An interesting question is whether there exists 
any safety margin within which a nominal deadlock 
avoidance algorithm still works. Is it possible to 
characterize the safety margin quantitatively? There 
is apparently a lack of research regarding evaluation 
of the impacts of unreliable machines on the 
manufacturing systems.  The goal of this paper is to  
quantitatively characterize the tolerable margin that 
machines may fail without the risk to enter a 
deadlock. It will provide much insight on 
development of deadlock avoidance algorithms for 
manufacturing systems with unreliable machines. 
 
To focus on the characterization of safety margin for 
deadlock avoidance algorithms, we consider the class 
of sequential processes that have been extensively 
studied in existing literatures. To facilitate the 
analysis of sequential processes, a proper 
mathematical model is required. Although there are 
many literatures on modeling and design of 
production shop floor controllers (Jeng, 1997; Jeng, 
1993; Zhou, 1992; Zhou 1991; Zhou, 1989; Narahari, 
1985), Petri Net is chosen in this paper owing to its 
modelling power as well as analysis capability. This 
paper focuses on synthesis of Petri Net controllers 
that can operate in the presence of unreliable 
machines. In addition to a nominal deadlock 
avoidance, robustness property of the nominal 
deadlock avoidance is studied. Given a state or a 
marking in Petri Net’s terminology, sufficient 
liveness conditions for a perturbation of the state or 
marking are established.  Each liveness condition 
represents a subset of state space within which the 
perturbed system can be kept live. Safety margins 
that guarantees liveness property of the nominal 
system are established.  
 
The remainder of this paper is organized as follows.  
Section 2 formulates the deadlock avoidance 
problem for sequential production processes based 
on Petri Nets. Section 3 presents the concept of token 
flow path in Petri Nets which will be used to 
characterize necessary and sufficient liveness 
conditions for sequential processes. Section 4 
analyzes the robustness of deadlock avoidance 
algorithm. Tolerable machine failure under which 
liveness property can be preserved are established. 
Section 5 demonstrates the result of this paper by an 
example. Section 6 concludes this paper. 

2. PETRI NET MODEL 
 
This Section first introduces the sequential process 
that will be considered throughout the remaining of 
this paper. Then Petri Net is used to model this type 
of production processes. The class of sequential 
processes under consideration is defined as follows. 
 
Definition 2.1: A sequential process is a process 
involving a sequence of operations. A sequential 
process is said to be a re-entrant process if there 
exists at least one two operations requiring the same 
resource. 
 
A Petri Net (PN) G  is a five-tuple G = 
( P , T , I , O , 0m ), where P is a finite set of places 
with cardinality P , T  is a finite set of 
transitions, I ⊂ P ×T is a set of transition input arcs, 
O ⊂  T × P is a set of transition output arcs, and 

0m ： P → PZ is the initial marking of the PN 
with Z as the set of nonnegative integers. The 

marking of G is a vector PZm ∈ that indicates the 
number of tokens in each place and is a state of the 
system. The readers may refer to (Murata, 1989) for 
further definitions such as enabled transitions, 
transition firing rules and the set of reachable 
markings of the PN G from an initial marking 0m , 
denoted as ))(( 0mGR∞ . 
 
Consider a set J of sequential processes. Typically, a 
type- j  sequential process js can be modelled as a 
sequence of transitions as )()....3()2()1( jjjjj ntttt     , 
where ∈j J . The Petri Net model, called job subnet, 
associated with a type- j production process is 
represented as jGJ . Let )(GR , abbreviated as R , be 
the set of resource types in the manufacturing system 
that corresponds to G . Assume that a unit of resource 
can only be involved in one operation at a time. 
Suppose that a type- r resource, ∈r R , may be 
involved in a number of activities, where each 
activity consists of a sequence of operations using 
type- r  resources sequentially and can be modelled 
as a resource activity circuit. All the resource activity 
circuits of a type- r resource, ∈r R , can be 
represented as a Petri Net model called resource 
subnet of type- r  resource as rGR . 
 
To execute an operation, resource(s) and part(s) 
involved in an operation have to be synchronized. 
Resource subnets rGR and job subnets jGJ are 
merged to form a PN that models the interactions 
among operations, resources and jobs in the 
manufacturing system. In a manufacturing system, 
each resources such as machine or robot have 
exogenous control points. To model control points in 
Petri Net, we define control places and controlled 
transitions as follows. 
Definition 2.2: A control place cp , represents a 
control point for enabling or disabling a transition 



     

such as a job loading transition or a resource 
allocation transition. A control place is denoted by a 
small square box There is a directed arc from cp to  
the corresponding controlled transition. A controlled 
transition may be fired as many times as the number 
of tokens in the control place. Let P  be the set of 
places, cP   be the set of control places, uT  be the set 
of uncontrolled transitions and cT  be the set of 
controlled transitions resource allocation and job 
loading operations, where Φ=∩ cPP .  
 
Definition 2.3: A CPPN is defined as an eight tuple 

cG = ),,,,,,,( 0 umOITTPP cuc , abbreviated as 
),( 0 umGc , where u  is a control policy defined 

based on control action of a given CPPN as follows. 
 
Definition 2.4: A control action a  is a vector in 

cPZ  that determines how many times that each 
transition in cT  may be fired concurrently. We will 
use )( cpa to denote the number of tokens in control 
place cp under control action a . A control policy u  

is a mapping u : )(0 cGMMMM → ∞)( cPZ  that generates a 
sequence{ na }of control actions for the 
CPPN cG based on its initial marking, where 

)(0 cGMMMM  is the set of admissible initial markings of 

cG and is defined as follows. 
 
Definition 2.5: The set of admissible initial markings 
of CPPN cG is defined as )(0 cGMMMM  

m{≡ | oPPppm −∈∀= 0)( and 0)( ≥pm
}oPp ∈∀ and is abbreviated as 0MMMM , where oP the set 

of all idle state places for all types of resources of cG .  
 
Note that )(0 cGMMMM denotes the system states of 
CPPN cG under which all resources are in idle state. 
The set of feasible initial markings for cG is denoted 
as )(0 cGM ={ m | )(0 cGm MMMM∈ and  there exists a 
control policy u under which ),( umGc is live.} and 
is abbreviated as 0M . Obviously, 00 MMMM⊆M . The set 
of reachable markings from )(00 cGm MMMM∈ under a 
control policy u is denoted as )),(( 0 umGR c∞ and is 
abbreviated as ),( 0 umR∞ . For an initial 
marking )(00 cGm MMMM∈ , the set of all admissible 
reachable markings of cG is denoted as mm {)( 0 ≡MMMM  

| t
U∈

∞∈
u

umRm ),( 0 , whereU is the set of all control 

policy of cG } and is abbreviated  as MMMM . 
 
Definition 2.6: ),( 0 umGc is live if all the transitions 
in cG can be fired infinitely from 0m  under the given 
u . A control action a  is called a valid control action 
if there exists some control policy that keeps the 
CPPN live after execution of a . 
 

3. LIVENESS CONDITIONS BASED ON TOKEN 
FLOW PATHS 

 
A feasible condition to maintain the liveness of a 
CPPN under some control policy is to have sufficient 
resources available. A feasible initial marking for a 
given CPPN cG  can be calculated based on the 
concept of minimal resource requirement (MRR). 
The MRR for the existence of a control policy u  that 
keeps cG  live is defined as follows. 
 
Definition 3.1: )(*

0 cGM  = { m | )(0 cGm M∈ and for 

any )(m 0 cGM∈′ with mm <′ , there does not exist 
any control policy u ′  under which ),( umGc ′′  is live} 
denote the set of minimal feasible initial markings 
of cG . )(*

0 cGM is abbreviated as *
0M when it is 

clear from the context. 
There are two equivalent ways to represent )(*

0 cGM . 

One  is represented by a vector ∈*N RZ and the 
other is represented by a marking )(*

0
*

cGm M∈ , 

with )())0(( ** rNpm r = and )0(rp denotes the idle 
state place corresponding to type- r resources. 
 
As a CPPN is constructed by merging a number of 
mutually interacting resource subnets and job subnets, 
we will first decompose cG into a number of 
decomposed subnets, jG , one for each J∈j . A 
minimal resource requirement for firing all 
transitions in cG  can then be calculated based on 
MRR of jG  J∈∀ j . 
 
Definition 3.2: *

jN , a vector in RZ , denotes the set 
of resources required for firing the sequence, 

)()....3()2()1( jjjjjj ntttts = of transitions. Let tR , a 

vector in RZ , denotes the resource requirement for 
firing transition t . 

*
jN = )1(jtR ⊕  )2(jtR ⊕ )3(jtR ⊕ … ⊕ )( jj ntR , 

where ⊕ takes the larger of the two vectors element 
by element. A MRR *N  for cG can be obtained by 

calculating *N = *
1N ⊕ *

2N ⊕  *
3N ⊕  ... ⊕  *

JN . 

Theorem 3.1: There exists a control policy u such 
that ),( umGc  is live if and only if there exists a 

*
0

* M∈m and a sequence of control actions that bring 

m  to a marking 0M∈′m  with *mm ≥′ , 
where )( 0mm MMMM∈ . 
 
Theorem 3.1 implies that as long as the set of 
resources that can be released from the current 
system state dominates the MRR, the liveness of the 
system can be maintained. By exploiting the structure 
of the sequential production processes, release of 
resources can be evaluated based on the acyclic 
marked graph jMG  associated with type-



     

j production process. A procedure to 
obtain jMG based on decomposition of a given 

CPPN cG has been proposed in (Hsieh,1994). Please 
refer to (Hsieh,1994) for details.  Let jrP denote the 
set of places to which a resource in use by type-
j production process may be released and return to 

idle state. 
 
Definition 3.3:The total number of tokens in a token 
flow path π  in an acyclic type- j marked 

graph jMG under submarking jm is denoted 

as )( jmπ  =∑
π∈p

j pm )( . 

 
Definition 3.4: Let )( rojr pΓ denote the set of token 
flow paths for type- r resources ending with a 
place rop ∈  jrP .  
 
As each acyclic Marked Graph jMG , J∈j , is a 
deterministic Petri Net, the number of type- r  
resources that may stay at or be released to the idle 
state place of type- r  resources under control 
action a and marking m is∑ ∑

∈ ∈ ∈π

π
ΓJj

j
Pp p

m
jrro rojr

)(min
)(

. 

Combining the above result with Theorem 3.1, the 
following Corollary holds. 
 
Corollary 3.1: There exists a control policy u such 
that ),( umGc  is live if 

))0(()( *

)(
min r

j
j

Pp p

pmm
jrro rojr

≥π∑ ∑
∈ ∈ ∈π ΓJ

, 

where )( 0mm MMMM∈ . 
 
 

4. ROBUSTNESS ANALYSIS OF DEADLOCK 
AVOIDANCE ALGORITHM  

 
In this Section, we characterize the tolerable machine 
failure based on the condition of Corollary 3.1. To 
convey the idea, consider the inequality stated in 
Corollary 3.1: 
 

))0(()(min *

)(
r

j
j

pPp

pmm
rojrjrro

≥π∑ ∑
∈ ∈π∈ ΓJ

             (1)           

 
Inequality (1) implies that )(min

)(
j

p
m

rojr

π
Γ∈π

remains 

intact as long as the change )( pm jδ of the decrease 
in the number of tokens of a place p does not reduce 
the sum of tokens in any of the token flow 
path )( rojr pΓ∈π such that  

)(min)(
)(

j
p

j mm
rojr

π≤′π
Γ∈π

, where jm ′ denote the 

perturbed marking after )( pm jδ units of tokens have 

been removed from jm . Based on this observation, 

the following definition is required to convey the 
above concept. The set of all token flow paths is 
devided into two categories: critical paths and non-
critical paths. Removing one token from a place in a 
non-critical path has no effect on the liveness 
property of a CPPN. Removing one token from a 
place in a critical path will reduce the number of 
tokens that will be released and may destroy the 
liveness property of the CPPN. 
 
Definition 4.1: Under control action a and marking m , 
a token flow path in )( rojr pΓ with the total number 

of tokens along the path equal to )(min
)(

j
p

m
rojr

π
Γ∈π

is 

called a critical path. The set of critical paths in 
)( rojr pΓ  is denoted as )( ro

c
jr pΓ ={ π | )( jmπ = 

)(min
)(

j
p

m
rojr

π
Γ∈π

 and )( rojr pΓ∈π }. 

 
Definition 4.2: )( pn

jrΓ = ( jrΓ - )( pc
jrΓ ) )( pjrΓh  

represents  the set of non-critical paths for Type- r  
resources in jMG under control action a and 
marking m , where jrPp ∈ . 
Based on the above definition, the main result is 
stated as follows. 
 
Theorem 4.1: Given a CPPN ),( umGc  under control 
action a and marking m , where )),(( 0 umGRm c∞∈  

and ∈0m *
0M , for any change ∈mδ )(mpδM  with 

pj pm δ=δ )( for some J∈j , the number of type- r  

resources that will be released to rop  is decreased by 
=δγ ),( jro mp pδ * ),,,( jro mppjα -

),,,( jro mppjβ , where 

),,,( jro mppjα =0 and ),,,( jro mppjβ =0 if 

h )()( pp
jrro

c
jr ΓΓ  = Φ ,  and h )()( pp

jrro
n
jr ΓΓ = Φ , 

),,,( jro mppjα =1 and ),,,( jro mppjβ =0  if 

h )()( pp
jrro

c
jr ΓΓ  ≠ Φ ,  and h )()( pp

jrro
n
jr ΓΓ = Φ , 

),,,( jro mppjα =0 and ),,,( jro mppjβ =0  if 

h )()( pp
jrro

c
jr ΓΓ  = Φ ,  and h )()( pp

jrro
n
jr ΓΓ ≠ Φ , 

and
0)(min)(min

)(  )()(  
≥δ−π−π

ΓΓΓ ∈π∈π
pj

p
j

pp
mm

ro
c
jrjrro

n
jr h

 

),,,( jro mppjα =1 and 

),,,( jro mppjβ =

)(min)(min
)(  )()(  

j
p

j
pp

mm
ro

c
jrjrro

n
jr

π−π
ΓΓΓ ∈π∈π h

 if 

h )()( pp
jrro

c
jr ΓΓ  = Φ ,  and h )()( pp

jrro
n
jr ΓΓ ≠ Φ , and 

0)(min)(min
)(  )()(  

<δ−π−π
ΓΓΓ ∈π∈π

pj
p

j
pp

mm
ro

c
jrjrro

n
jr h

, 

),,,( jro mppjα =1 and ),,,( jro mppjβ =0 if 

h )()( pp
jrro

c
jr ΓΓ  ≠ Φ ,  and h )()( pp

jrro
n
jr ΓΓ ≠ Φ . 

 



     

Based on Theorem 4.1, we characterize the set of 
tolerable single place token loss that leaves the 
system live as follows. 
 
Definition 4.3: 
Let 

)}2()({)( satisfiesmandmmmm pp δ∈δδ≡ δMMδ . 

∑ ∑
∈ ∈ ∈π

−π
ΓJj p

j
pP jrro rojr

m )(min
)(

pδ * ),,,( jro mppjα +

),,,( mppj roβ ≥ ))0((*
rpm , R∈∀ r        (2) 

 
It follows directly from Theorem 4.1 and the above 
definition that the following theorem offers a 
sufficient liveness condition for tolerable token loss 
of a single place. 
 
Theorem 4.2: Given a CPPN cG  that can be kept 
live under DAC under control actio a and marking 
m , where ))(( 0mGRm c∞∈ and ∈0m *

0M , for any 
change mδ ∈ )(mpMδ , there exists a control policy 

u′  under which ),( ummGc ′δ− is live. 
 
 

5. AN ILLUSTRATIVE EXAMPLE 
 
To access the robustness property, the following 
example that has been considered in (Banaszak, 1990) 
and  (Hsieh, 1994) is reproduced here.  Consider the 
system with marking 1m and control action a  as 
shown in Figure 1.  As there is only one type of 
production process, J = }1{ . For this example, in 
(Hsieh, 1994), the author has demonstrated that this 
controlled Petri Net can be kept live under some 
deadlock avoidance control (DAC) algorithm. The 
following scenario is created to check the robustness 
property of the deadlock avoidance algorithm. 
 
Note that },,,,{))2(( 543211213 πππππ=Γ p , where 

)2(1232101 ppppp=π with 6)( 11 =π m , 
)2()1( 12321102 ppppp=π  with 9)( 12 =π m , 

)2()1( 1232113 pppp=π  with 8)( 13 =π m , 
)2()1( 123124 ppp=π  with 8)( 14 =π m and 

)2()1( 12135 pp=π  with 1)( 15 =π m . 
As )( 15 mπ = )(min 1

))2(( 1213

m
p

π
Γ∈π

, 5π is a critical token 

flow path. 
 As >π )( 1mi )(min 1

))2(( 1213

m
p

π
Γ∈π

for }4,3,2,1{∈i  , 

321 ,, πππ and 4π are not critical token flow paths. 
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Fig. 1. Token allocation under a marking and control 

action. 
 
A machine in failure mode can be modelled as 
removal of tokens from a place in the Petri Net 
model. Therefore removing one or two units of 
machines from place 3p still preserves the liveness 
property of the resulting Petri Net. 
 
 

CONCLUSIONS 
 
Uncertainties such as machine failure poses 
challenges in design and control of manufacturing 
systems as resource failures may reduce the number 
of available resources which may in turn result in 
deadlocks or lead to dead states. As existing papers 
assume reliable machines in development of 
deadlock avoidance algorithms, there is a gap 
between the development of theory and application 
to real manufacturing systems. To bridge this gap, 
feasibility of tailoring existing deadlock avoidance 
algorithms for manufacturing systems with reliable 
resources to systems with unreliable resources 
requires is studied in this paper. The main results 
show that the existing DAC algorithm possesses 
desirable robustness properties that is capable of 
dealing with unreliable machines.  The concept of 
critical path is proposed to quantitatively characterize 
the safety margins with which the system remain can 
still be kept live using the remaining properly 



     

functioned resources. The results of this paper shows 
that it is feasible to tailor existing deadlock 
avoidance algorithms to systems with unreliable 
machines. 
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