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Abstract: In this paper reconfigurable robust Linear Quadratic Regulator (LQR)
and Kalman filter (KF) are developed for discrete-time systems subjected to faults,
explicitly taking into account uncertainty both in the model of the system and in
the estimated faults from the fault detection and diagnosis (FDD) part. Foreach
separate actuator (sensor) with which the system is robustly stabilizable (detectable),
a robust LQR gain (robust KF gain) is designed. After each occurrence of faults,
a reconfiguration of the LQR (KF) is performed by an appropriate mixing of the
pre-designed gains, resulting in the optimal robust LQR (KF) for the current faulty
system. The approach is computationally attractive and can handle sensor, actuator
and component faults. The approach is tested on an industrial actuator benchmark

model.
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1. INTRODUCTION

The problem of designing fault-tolerant con trol
systems is attracting more and more attention due
to the increasing demands imposed on the com-
plex modern con trol systems, which must have
increased surviv abilit yand availabilit yOne w ay
of ac hieving this is ly making sure that sensor, ac-
tuator and component faults are swiftly detected
and isolated, and the controller is reconfigured
aiming to prev entoverall system failures that
could lead to huge economical and even human
losses (Rauch, 1993).

The problem of con troller reconfiguration (CR)
has been addressed in the literature in different
forms. For an overview the reader is referred to
(Astrom et al., n.d.; P atton,1997). Most of the
existing techniques can be classified in the follow-
ing categories: multiple model control (Griffin and
Meybeck, 1997), the pseudo-inverse method (Gao
and Antsaklis, 1991; Noura et al., 2000), adaptive
control (Bodson and Groszkiewicz, 1997), predic-
tive control (Huzmezan and Maciejowski, 1999),

eigenstructure assignment (Konstantopoulos and
Antsaklis, 1996). Most of the approaches, how-
ever, possess the disadvantage that they require
precise information from the FDD scheme. T o
attac kthis problem, the robust approach to CT
can be utilized (Chen et al., 1999), but then only
a certain class of the possible system faults can
be addressed. In this paper a new approach is
presented to the design of CR schemes that can
explicitly tak einto account uncertainty both in
the system representation and in the information
pro vided by FDD scheme. It is applicable to a
large class of system faults, namely (partial and
total) additive and multiplicative sensor and ac-
tuator faults (both total and partial), as well as
faults resulting in constant offsets in the state and
in the output equations of the state-space model
that represents the system. Component faults can
be taken care of by designing the closed-loop sys-
tem robust with respect to them.

In this paper the system is assumed to be un-
certain. The uncertainty is allow edto en ter the
system in a quite general (possibly non-linear)



way, and is only restricted to be such that the
state-space matrices do not become unbounded.
The presented approach is based on an off-line
design of a robust LQR gain (robust KF gain)
for each separate actuator (sensor) with which the
system for which it remains robustly stabilizable
(detectable). These gains are then stored into the
memory of the CR devise for later reconfiguration
of the controller. After the isolation of any combi-
nation of faults, the optimal robust LQR and KF
gains for the faulty system are swiftly computed
by using the pre-designed gains.

The paper is organized as follows. In the next
Section the modeling of sensor and actuator faults
used throughout the paper is presented, and the
representation of uncertainty in the fault signals
is discussed. In Section 4 the problem formulation
is given, and the reconfiguration strategy is next
presented in Section 5. The performance of the
proposed approach is illustrated via a case study
with an industrial actuator benchmark model.
The paper is concluded in Section 6.

2. SENSOR AND ACTUATOR FAULT
MODELING

In this Section we present the models of faults
considered in the paper.

Actuator Faults Representation: Consider
the nominal (fault-free) system

Tpt1 = Axy + Buy,
Yk = C.]Tk,

(1)

with z € R*, v € R™, and y € RP. Next, consider
actuator faults represented by an abrupt change
in the control action from wu; to

v = up + o®(@ — ug) (2)

where @ is a vector that cannot be manipulated,
and o¢ £ diag{[o{, 0%, ..., op |}, o8 € R,
such that o = 1 represents a total fault of
i-th actuator, and o = 0 implies that the i-
th actuator operates normally. Then, the faulty
system is described as

x£+1 = Aa:£ + B(I — 0%)uy + Bo‘u

yk = Caf,

(3)

In addition, we consider also a different class of
faults, that act as an additional constant offset
to the state equation, independent on the control
action up and the state m£ We model them by
introducing an additional signal vy

m£+l = A$£+B(If

oc®)ug + Bo®a + Fyuy
Yk = Cz! ’ (4)
k k>

Note that actuator faults are represented in the
same way even when the (nominal) system (1) is
uncertain. In this case we just need to replace

the matrices A, B, and C by their uncertain
counterparts A(A), B(A), C(A), and F,(A), A €
A.

It is more interesting to consider also the case
when the quantities 0%, u, and v, are uncertain,
which is practically the case when they are pro-
vided by an FDD scheme. Suppose, without loss
of generosity, that a multiplicative uncertainty
representation is used to model these uncertain
quantities:

(I-0")=(I-6"YI+A,)
U = (I+ Av)ak

and that the FDD scheme provides us at each
sample with the means (I — 6%), 4, and 0.
Then the state-equation of the faulty system (4)
becomes
ol = AA)a] + BA)I + Ag)(I — 6" Ju+
B(AYI — (I — 6% (I + Ao )T + Ay)it (5)
Fo(A)(T + Ay,
This can be rewritten in the form

o = AD)T] + Br(A, AT — 6% Yuy+ (6)

(A, Ag, Ay, Ay, 6%, 1, Ug).
Thus, in what follows, it is assumed that the addi-
tional uncertainties A,, A,, and A, are included
into A, and we will not discuss them any more.
It is important to note here that By(A,A,) is
independent on the means %, 4, and 0y, and thus
remains the same after fault occurrences.

Sensor Faults Representation: Again, we con-
sider the nominal, fault-free, system (1). Sensor
faults, occurring in the system (1) represent incor-
rect reading from the sensors, i.e. the real output
of the system y; is different from what is mea-
sured. Let the measurement after sensor faults be

denoted as y,’; (y,’: # yr). In this paper sensor

faults are modeled as y,’: =y +0°(J — yr), where

o 2 diag{[a‘f, a5, .., UZ]}, o} € R,
o; =1 — total fault of i-th sensor
s.t. Y .
o; =0 — 4-th sensor operates normally

Then the faulty system with sensor faults is de-
scribed as

faulty meas.: y,’; =, —0°)Cxp+¢ (7)

with ¢ = ¢°y acting as a constant offset. Un-
certainties in ¢® and ¢ can be taken care of in
the same way as in the case of actuator faults,
described above.

3. PROBLEM FORMULATION

Consider the fault-free discrete-time system

Thy1 = A(A)xk + B(A)U,k + Té'k (8)
yr = C(A)zg + ny



where ¢ € R™ and 7, € RP are zero-mean
white process and measurement noises with co-
variances E{T¢ETTT} = Qrr = QL r > 0 and
E{m*} = Rkr = RE. > 0, respectively, and
A € A is uncertainty that represents plant-model
mismatch, possible component faults that could
unexpectedly enter the system during its opera-
tion, as well as imprecise information from the
FDD part (see previous Section).

Next, consider the performance index

Je(4,B,Q,R) £ Z lzetilly + llurrillz: (9
i=1

with @ = QT > 0 and R = RT > 0, and let the
model describing both sensor and actuator faults
be

xi?l = A(@)ax+ BAN —o"ue +b+8 (1)

vi = -0 )O(D)z] +ctm,

for some diagonal matrices 0¥, 0%, and constant,
but uncertain, vectors b and c. Below, two sep-
arate problems are considered, namely the LQR
and the KF reconfiguration problems. For the
state-feedback controller design (i.e. the LQR
problem) we consider only the state equation of
the model (10), while for the state-estimator de-
sign (the KF problem) we consider v = 0 and
b = 0 (to make sure that the state estimates are
unbiased). Clearly then, sensor faults affect the
KF, but not the LQR, while actuator faults affect
only the LQR, and not the KF.

a

Consider the following reconfigurable LQR and
KF:
Structure of the Reconfigurable KF
state: ﬁ:£+1 = Aoii + LReﬁ, (11)
innovation: e£ = y,{ —(I - US)CO:f:£ — co,
Structure of the Reconfigurable LQR
controller: wuj; = FR$£ + dp + 7. (12)

where ry is a reference signal, and where Ay, By,
Co, by, and ¢g are the mean values of the uncertain
quantities A, B, C, b, and ¢. The additional signal
uy, is introduced so that later on we can take care
of the offset b. The problem is then defined as
follows.
Problem Formulation: Reconfigure (redesign)
the LQR in cases of actuator faults (i.e. design Fr
and 4y), and the KF in cases of sensor faults (i.e.
design the gain Lg) in a computationally effective
way, such that

Fr = a.rgrg;n max Jr(A(A), B(AY(T —0),Q, R),

o . an ~

fiy, = arg min max [|B(A)Y(I — )iy — b||2

Lg = argmin max Jy(A(A),CT(A)I — 0°),Qkr, RxF).

Lr A€A

It can be shown that the last optimization prob-
lem leads to an unbiased state estimator. How-
ever, minimum variance estimation error is only
achieved in the case when no uncertainty is
present in the system.

4. RECONFIGURATION STRATEGIES

Actuator Faults: In this section we will present
a possible reconfiguration strategy, that achieves
a optimal closed-loop performance after the oc-
currence of any combination of actuator faults for
which the system remains stabilizable. Denote

B(A) = [bi(A), b2(A), ..., bm(A) ],
with b;(A) € R**!. Initially, it is assumed that
the pairs (A(A),b;(A)), i =1,...,m, are control-
lable for all A € A, which will later on be released.
In (Kanev and Verhaegen, 2001) it was shown that
defining
U(A(A),B(A),Q, R, X,Y, ) =

X (A(A)X + BY)T x@'/? yTR/?
A(A)X + BY X 0 0 (13)
QY/2x 0 ~T 0
R2y 0 0 ~T

then given the state-space model (4, B, C, D), the
control action uy =YX 'z*, where X = X7 >0
and Y are such that U(A(A), B(A),Q, R, X,Y,~) >
0 for all A € A, minimizes the cost function (9),
achieving maxaea Ji(4, B,Q, R) = vl X 'x.

Consider the matrix representing total faults in
all actuators but the ¢-th:

Bi(A) =10, ..., 0, b;(A), 0, ..., 0].

Noting that U(A4, B,Q, R, X,Y,v) > 0 is equiva-
lent to U(A,B,Q, R, X/v,Y/v,1) > 0, we assume
that for each B;, i = 1,...,m, we have found
matrices X; = X! > 0 and Y;, such that for all
A € A it holds that

where R; = diag{0,...,7;,...,0}, r; > 0. This
then implies that given the faulty model

x£+1 = Am£ + Bjuy, (15)

the state feedback up = YiX;1x£ quadratically
stabilizes the system and, moreover, optimizes the
cost function Ji(A4, B;, Q, R;), defined in (9), so
that

We will first show how one can combine the locally
optimal state-feedback gains F; = Y; X~ ! to form
the global optimal state-feedback F'. Later on we
will use this to present the reconfiguration rule

that achieves an optimal state-feedback gain in
cases of actuator faults.

Theorem 4.1. (RLQR design). Consider the faulty
systems (15) for ¢ = 1,...,m, each of them
coupled with a state-feedback gain matrix F; =
Y; X', such that (14) holds for all A € A,
guaranteeing bound on the cost functions as in
(16). Then the state-feedback control

wp = (iEY) (ixi)_lxk (17)



where E; £ B B; is a matrix that has zeros
everywhere except in entry (i,7) where it has a
one, quadratically stabilizes the nominal system
(8) and optimizes the performance index achiev-
ing

max min Ji (4, B,Q, R) = m(z])" (Y xi)~'af, (18)

i=1

for R=3", R; = diag{ri,...,rm}.

The proof to Theorem 4.1 can be found in (Kanev
and Verhaegen, 2001) and is not listed here due
to space limitations.

This theorem is very useful for the purposes
of controller reconfiguration in cases of actuator
faults. Indeed, let us consider the faulty system
(10) (note that the constant offset term b does not
affect the solution), and thus we consider initially
@ = 0), and let © be the set of the indexes of all
actuators that are not completely lost, i.e.

Q2 i ie{l,2,...,m}, o%(i,i) Z1}. (19)

Then we have the result.

Theorem 4.2. (RLQR Controller reconfiguration).

Consider the faulty systems (15) coupled with
LQR regulators with gains F; = YiX;1. The
control action

up = (I - UG)T(ZEiYi) (ZXi)ilxﬁ (20)

i€ i€Q

where E; = BZ B;, applied to the faulty system
(10) with b = 0 quadratically stabilizes the system
for any A € A and optimizes the performance
index, achieving

—1

min max Jy = vol(Q)x{(%Xi) g, (21)
where Ry = (3 ,cq Ri)(I — 0%)?, and vol(Q)
represents the number of elements in the set (19).

The proof can be found in (Kanev and Verhaegen,
2001).

Note that non-zero offset term in Equation (10)
could be viewed as just changing the initial con-
ditions, which does not affect the the solution
to the optimal control problem (20). Though it
cannot destabilize the system, it can lead to an
unwanted steady-state tracking error in cases of
reference trajectory tracking problems. Its effect
could be reduced by using the additional signal
i, in Equation (12). For this purpose one must
solve the robust least-squares problem

— . _ave
uk—argn}tinglé%HB(A)(l oMay — bll2. (22)

For solving this problem one could, for example,
make use of the approach propose in (?). It should

be noted, that a simple analytical solution exists
to the optimization problem (22) whenever v, = 0
and there is no uncertainty in the estimation of o®
and @ (consult equation (4)). In this case the offset
term reduces to b = B(A)o*4, and the optimal
can be computed as follows

iy = — [B(A)(I - a“)]TB(A)a“a
) B(A)on

= —(I-0%)'B(A)'B(A)s®
or iy = —(I — o) toa.

Next we release the strong Assumption introduced
in the beginning of this Section and consider the
general case when the system is not controllable
by each separate actuator. Denote the set Sp of
all faulty B matrices for which the system remains
controllable as

S 2{B(I—-0"): (A, B(I —0")) is controllable},

and the index set Z representing all columns of
the matrix B for which the system is controllable,
ie. Z 2 {i: (A B,) is controllable}. Further, let
B = By + Bp with By € Sg and Bp ¢ Sp.
Finally, define the set

SBP = SB N {Z BiOéi Loy € {0, 1}}
2T

Thus, for any Br € Spg,., the pair (A, By) is con-
trollable, but the indexes of the non-zero columns
are not in the set Z. Let the number of elements
of Sp, be vol(Sp,). Then the following state-
feedback gains are designed off-line:
(i) For all i € T we design gains F; = Y;X; ' for
the (controllable) systems (15).
(ii) For all Br € Sp, we design a state-feedback
gains F; = V;X; 1, i=1,...,vol(Sg,).
The number of matrices that need to be stored in
general, assuming that ¢ = vol(Z), cannot exceed
the number 2(gq + 2™ 7).

Consider the general fault scenario
B(I — ¢%) = Br(I —o™T) + Bp(I — o*F),
with

T ¢ {diag(arlA’T, .. .,orf,‘;T) c 0T =1foralli ¢TI}

1
P e {diag(af’P, .. .,Uf}L’P) : U?’P =1forallieZ}

Case o7 # I and Bp(I — o P)(I — oA T) € Sp,.
The controller gain should be taken as Fg = (I —
o4P)Fp, where Fp is the optimal gain designed
for the system with Br = Bp(I — o®P)(I —
UA’P)T €SB,

Case (¢ # I) and Bp(I — o®P)(I — oHP) € Sp,
take

—1
Fp = (I—o®T)t ((1 — P + ZEY) (Xp + ZX) :

i€ET i€T

Case (6T # I) and Bp(I — o®P)(I — oHP) ¢ Sp,
then the optimal controller for the system can-
not be formed from the off-line designed state-



feedback gains. However, in this case a stabilizing
controller is

-1
Fr=(I-o%h)t (Z EzYz> (Z Xi) )
=V i€l
which could be used until the optimal controller
is being designed on-line.

Sensor Faults: Next, we will derive similar re-
sults to the actuator-faults case, but now in the
case of sensor faults. The reconfiguration strategy
that will be proposed uses the faulty innovation
e£ = y,]; - C’i"ﬁ and reconfigures the Kalman
filter gain in such a way, that consistent state
estimate is obtained. Using the duality between
the Kalman Filter and the LQ regulator, the re-
sults that follow are equivalent to those for LQR
controller reconfiguration and are just briefly dis-
cussed.

Consider the system (8) with u, = 0, and denote
T
C(A) = [c] (A), 5 (A), ..., ¢ (A)]

P
with ¢; € RY*™, 4 = 1,...,p. Next, let C;(A) =
[0,...,0, ¢l (A), 0, ...
in all sensors, but the i-th. Consider the set of
faulty systems

Te1 = A(A)zg + &
yl (k) = Ci( D)k + mix
with their corresponding robust Kalman filters

#,, = Aozl + Lily! (k) — C%%),  (24)

where Lyxp; = X;(};‘JYKF,ia and X1T<F,i =
Xkri> 0,and Ygp; are such that for all A € A

the following LMIs are feasible:
UA",C,Qkr, Rir,i Xkr,i, Yiri, 1) > 0

for Rip, = diag{0,...,0,7kF,,0,...,0},rkp; >
0. Now, assume that a combination of sensor faults
have occurred, resulting in the faulty system (10).
Define

Qs 2 {i: ie{1,2,...,p}, 0°(i,i) # 1}
as the set of the indexes of all sensors that are

not completely lost. Then we have the following
result.

)

,fori=1,....p, (23)

Theorem 4.3. (Reconfigurable RKF). Consider the

faulty systems (23) for ¢ = 1,...,p, each of
them coupled with a Kalman filter (24). Then the
Kalman filter

&1, = Aoz} + Lr(y! (k) — (I — 0%)Codf — ),

(25)
with gain
-1 T
Lgr = ( Z XKF,i) ( Z EiYKF,i) (I-0o%)" (26)
i€Qg i€Qg
where E; = CiC’ZT , provides an unbiased state

estimate for the faulty system (10) with uy = 0,

T
, 0] represent total faults

with process noise covariance matrix Qxpr and
measurement noise covariance matrix

2
Rir = ( Z RKF,i) (I —0%)7,
i€Qg
and minimizes the variance of the estimation error

eizxﬁ—a@ﬁ.

For proof consult (Kanev and Verhaegen, 2001).

Notice, that here detectability of the system with
each separate measurement is assumed, which
assumption can similarly be released as in the
actuator faults case.

5. EXPERIMENTAL PART

In this section we will illustrate the developed
approach via a case study with an industrial
benchmark example, taken from (Blanke et al.,
1995). A linear, continuous-time model of the
system can be written in state-space as
&(t) = Acx(t) + Beu(t) + Facfa(t) + Te&(t) (27)
y(t) = ch(t) + Dcu(t) + Fsc fs (t) + n(t)v
where f,(t) = [fL, £2]7(t) is the vector of actuator
faults, fs(t) = [fL, f2]*(¢) is the vector of sensor
faults, £(t) is a (estimated) disturbance signal

(regarded as fault), and n? = [n, 7] is a
vector of the measurement noises. The matrices
in Equation (27) are given by

Ky K
p— v

0
Ty
Kgn ftot + Ky Kgn
Tiot
0

0

Ac(0) =

—

ot

0|, Be(8) = {Kﬁ%qn} ,

Liot
0 0

z|

0
01 0 1
Ce(0) = |:0 0 as] » De(0) =02x3, Te(0) = [Nlt - ] ;
o
0

By
Ty
Fac(9) = | KqKon Kgn
Liot Iiot
0 0

The nominal values of the parameters are fi,; =
19,7.1073, I,y = 2,53.1073, K, = 0,54, K, =
0,9, N = 89, as = 0,987, n = 0,85, T}, =
8,8.107%. The parameter f;,; can vary from
+200% to —50%, I;,¢ can vary in the interval
+15%, K, can vary +5%, and 7 can take values
from 0.70 to 0.85. Note that the faulty model from
Equation (27) can immediately be recast into the
form (10) due to the multiplicative nature of the
considered faults. The model is discretized with
sampling frequency 1/T5 = 100 [H z].

,Fsc(e):[l 0].

0 as

The fault scenario used in the simulation is given
in Table 1. Two simulations have been performed
to demonstrate the capabilities of the reconfig-
urable LQR and KF. The objective of the first
simulation is that the second output tracks a
constant reference trajectory r = 1, while for the
second simulation the goal is that the state esti-
mation error remains “small”. The results from



Table 1. Simulated fault scenario.

fault | start/stop time value
f2 0,7 0,9] [s x3(0,7Ts) — x3(tTs)
I3 1,2 2,3] [s 5 [Nm]
f2 2,7 3,0] [s 1[A]
fi 3,3 3,9] [s —0.5u(tTs) + u(3,3Ts)
fsl [4,2 4, 7][s] —y1(tTs) + y1(4,275)

T

Fig. 1. Simulation results: above: the two outputs
y1 (k) and y2(k), below: the estimation errors
and the control action.

the simulation are presented in Figure 1, where
control action u(k) and the two system outputs
y1(k) and yo(k) are reported for the first sim-
ulation, and the state estimation errors are de-
picted for the second simulation. It can clearly be
seen from the plots how after each occurrence of
the faults f, and &, the control action abruptly
changes to compensate for the effect of the fault
on the output, and as a result the two outputs
remain practically insensitive to the faults. The
control action, however, does not change due to
occurrences of sensor faults (fs), in which case
the KF is reconfigured.

6. CONCLUSIONS

In this paper we develop reconfiguration strategies
for automatic robust LQR/KF redesign in cases
of faults in the sensors, actuators, or other system
components. For each separate actuator (sensor)
with which the system is robustly stabilizable
(detectable), a robust LQR, controller gain (robust
Kalman filter gain) is pre-computed, and then an
appropriate mixing of these gains is invoked after
fault occurrences, so that optimality is preserved
for the faulty system. Component faults can be
taken care of by designing the LQR (KF) robust
with respect to them. The main advantage of the
proposed method is that it can explicitly deal
with uncertainty in the information provided by
the FDD scheme. The approach is illustrated in a

case study with an industrial actuator benchmark
model.
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