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Abstract - Industrial controllers for web transport systems typically use decentralized
PID controllers but these techniques do not achieve good decoupling between tension
and speed. Multivariable centralized controllers have been shown to provide better
results but are not suitable for large scale systems due to their high orders. This paper
presents a multivariable decentralized control strategy applied to a large scale winding
system. It is based on overlapping decomposition method applied to the specific case of
web transport systems. Simulation results using two degrees of freedom H∞ controllers
show that disturbance rejection and decoupling between web tension and web velocity
are significantly improved. Copyright © 2002 IFAC
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I. INTRODUCTION

The main goal in industrial web transport
applications is to increase the web transport velocity
as much as possible while controlling the tension of
the web. The main concern is the strong coupling
between velocity and tension of the web. There exist
many sources of velocity disturbances like roller non-
circularity, web sliding. Due to the coupling
introduced by the elastic web, these disturbances are
transmitted to the web tension and may result in a
web break or fold. This type of system has recently
received a strong interest from the control
community. Several studies focus on web handling
control (Reid, et al., 1993; Wolfermann, 1995;
Angermann, et al., 2000), using PID, fuzzy or neural
approaches. Multivariable control strategies have
recently been proposed for industrial metal transport
systems in (Geddes, et al., 1998; Grimble, et al.,
1999) and for flexible webs in (Koç, et al., 2000a,
2000c, 2002; Knittel, et al., 2001). Some recent
studies focus also on robustness analysis, considering
uncertainties on radii, inertia and elastic modulus
(see Koç, 2000b; Laroche, et al., 2001).
Industrial winding systems are strongly coupled
systems, generally of large scale. They are a good
application for the recent improvements in
decentralized control theories (Stankovic, et al.,
2000). Moreover, traditional control strategies based
on PID do not achieve good decoupling (especially
for flexible webs). Furthermore, multivariable
centralized controllers, recently proposed for this
application (Koç, et al., 2000c, 2002), are only
powerful for reduced size systems, up to three
motors. Therefore, decentralized overlapping
multivariable control, allowing to highly decrease

coupling for large scale systems, is a innovative
strategy for winding systems. It is based on
multivariable control strategies without the
inconvenient of having too many inputs and outputs
for one controller.
In this paper we consider a nine motors system. The
model presented in section II has been validated on a
three motors bench (see figure 1) in our laboratory.
The decomposition method, whose principle is given
in (Stankovic, et al., 2000), is presented in section III
and adapted to our special case in section IV. For
each subsystem, the controller is designed with a one
degree of freedom (1DOF) H∞ method and a two
degrees of freedom (2DOF) H∞ method. Simulation
results are shown in section V. They show the
advantage of the overlapping method.

II. PLANT MODEL

The model is briefly presented. More details can be
found in recent publications (Koç, 2000b; Koç, et al.,
2002).
Web modeling is based on physical laws
(Brandenburg, 1973; Koç, et al., 2002) : Hooke’s law
allows for web elasticity; Coulomb’s law explains
contact between web and roll, including friction;
mass conservation law allows for coupling between
web speed and web tension; the second fundamental
relation of dynamics explains variations of rotating
roll speed. With adequate hypothesis (Koç, et al.,
2002), dynamical equations can be found for the
tension of each part of the web and for the speed of
each roll (equal of web velocity by non sliding
hypothesis). For instance, equations giving
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derivatives of T1 and V3 (see figure 2) are as
following:
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where E is the elastic modulus of the web; S is its
section; L1 is the length between the two first rolls; R3

is the radius of the third roll; J3 is its inertia; K3 is the
torque per tension ratio of the motor and f3 is the
friction function depending on rotating speed.
The non-linear model is made from the equations
above; the first equation being used for each roll; the
second one being used for each part of the web
between two rolls. The order of the resulting system
is then 2nr-1 where nr is the number of rolls.

Fig. 1.  Experimental setup
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Fig. 2.  Scheme of the three motors plant

From the physical system, a linear model is obtained
around an operating point:
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where state matrices E, A and B are parameter
dependant. State vectors and state matrices for a three
motors plant are shown in Appendix 1.
This model has been already validated on a three
motors system (see Koç, 2000b, Koç, et al., 2002).
A nine motors system is build from the physical
model for simulation purpose.

III. DECENTRALIZED OVERLAPPING
CONTROL STRATEGY

Overlapping in decentralized control gives extra
degrees of freedom that improves performances
compared to disjointed decomposition (Ikeda, et al.,
1986).

3.1 Expansion

Firstly, the initial system model is decomposed with
an appropriate input, output and state expansion that

respects the inclusion principle (Ikeda, et al., 1986;
Stankovic, et al., 2000) : the system with coupling is
expanded into a new space, called expanded space,
where the subsystems are disjointed.
For instance, let us consider a linear system S of the
state model given in (3).
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Considering the overlapped subsystems S1 and S2
indicated by dashed lines in the model above, system
S is expanded into Se (4). System Se has to respect
the inclusion principle and the restriction principle as
mentioned in (Ikeda, et al., 1986) :
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with : x1e = [x1
T x2

T]T, x2e = [x2
T x3

T]T, u1e = [u1
T u2

T]T

u2e = [u2
T u3

T]T, y1e = [y1
T y2

T]T, y2e = [y2
T y3

T]T

3.2 Contraction

The next step consists in designing controllers for
each disjointed subsystem, leading to a decentralized
controller for the expanded model. Let’s assume the
controller has the following form:
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The simple controller composed diagonally of
controllers C1 and C2 do not have the contractibility
property. State model is then rearranged in order to
be contractible (7). This model includes blocks
called low coupling.
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                    low coupling
Under the inclusion condition, this controller is
contracted into the initial space, leading to the
implementation controller (8). This controller
includes entries called high coupling (coefficient 1/2
in (8) )
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3.3 Stability proofs

Under the inclusion condition of the controller,
stability of the closed loop in the extended space
leads stability in the initial state. As stability in the
expanded state is easier to determine, this theorem is
generally used and a standard Lyapunov vector
function method can be used, as in (Ikeda, et al.,
1986).

IV. APPLICATION TO WEB WINDING
SYSTEMS

4.1 Decomposition

The decomposition step is of high importance.
Indeed, the final result, i.e. the properties of the
system with the final controller, highly depends on
the decomposition. One simple rule may be that the
decomposition should respect as much as possible the
couplings: subsystems should have low coupling
with each others. Of course, the decomposition must
make sense. In our case, several trials have been done
(respecting the expansion and restriction principles);
only the best solutions are presented.

The number of subsystems comes from a trade-off on
their order. In our case, subsystems including 3
motors appeared to be a good trade-off.

4.2   1DOF H∞ controller design method

The H∞ method is now used to control complex
systems. This approach has specifically shown good
results in designing multivariable controllers for two
and three motors winding systems (Koç, et al.,

2000a, 2002; Koç, 2000b). We then naturally use it
for local controller design. The mixed sensitivity
method is shortly presented in the Appendix 2; more
information can be found in (Zhou, et al., 1995).
The obtained controller (using this method) for a 3
motors system or subsystem is of order 15.

4.3   2DOF H∞ controller design method

In the mixed-sensitivity methods, disturbance
rejections and tracking properties are interdependent.
To consider these two issues separately, we have
chosen a 2DOF H∞ control strategy. Typically the
two parts of such controller K = [Kf   Kb]

T (figure 3)
are designed in two steps: disturbances rejection is
optimized with Kb and tracking specifications are
improved with Kf . However, as we use 2DOF H∞

method, these two parts of the controller are
computed in one step.
In our application, a 2DOF H∞ controller is designed
with output weighting and model matching (figure
3). Model Mo is the desired transfer function Tyr.
Compared to 1DOF strategy, the order of the 2DOF
controller is only increased by the order of Mo. In our
case, Mo is of order 2.

Wp

 Kf (s)

 Kb (s)
G(s)

r
u

z1

z3

z2

y

e

Wt

Wu }z

M0

{ dw

Fig. 3. Scheme of weighted model matching for
2DOF H∞ controller design

The weighting functions Wp, Wu, and Wt appear in the
closed loop transfer matrix:
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where Senb = ( I + GKb )
-1 is the sensitivity function:

and Tenb = I – Senb is the complementary sensitivity
function:
To compare 1DOF and 2DOF strategies, we use the
same weighting functions.
The order of the resulting controller is 17 (15 for the
1DOF controller).

V. SIMULATION RESULTS

Figure 4 shows the tension signal at the middle of the
web in the case of two control strategies: the first one
does not include any overlapping whereas the second
one, includes overlapping. All the local controllers
are 1DOF H∞ controllers. Whereas the tension
reference remains constant equal to 1.5 kg, speed
reference changes by steps every 10 seconds, leading
to tension perturbations. In the case of overlapping
control, the perturbations are largely attenuated.
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Fig. 4. Comparison between responses with and
without overlapping

Simulation results of the decentralized overlapping
control are shown on figures 5 to 7 during a velocity
decrease in the cases of 2DOF H∞ controllers and
standard H∞ approach.

Fig. 5. Unwinding tension of the overlapping
system

Fig. 6. Winding tension of the overlapping system

Fig. 7 . Web velocity of the overlapping system

Performances are slightly improved using a 2DOF
H∞ design, but not as much as the effect of the
overlapping control. Indeed, overlapping already
improves decoupling The overlapping control
strategy has already taken into account the coupling
between two successive subsystems. Furthermore,
one can notice that tension signal is substantially
smoothed, which means that the stress on the system
is reduced. Moreover, robustness to variation of
elasticity modulus has been tested in simulation. It
appears that the control strategy with overlapping has
significantly improved robustness with respect to
variations of the Young modulus of the web (Gigan,
2001).

VI. CONCLUSIONS

Decentralized control with different overlapping
strategies has been applied to a nine motors web
handling system, in which the estimated model is of
order 33. Each subsystem includes 3 motors; and has
its own local controller of order 17.
Decentralized control strategies without overlapping
are unable to achieve proper decoupling between
tension and velocity. When introducing overlapping,
it becomes possible to obtain a good decoupling
whereas tracking is also of high quality.
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APPENDIX 1 – Linear model of the 3 motors plant
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Vi,  Ri, Ji and fi are the linear velocity, the radius, the inertia and the viscous friction coefficient of the roll i
respectively. Ti and Li are the web tension and the web length between the roll i and the roll i+1. Ku, Kt, Kw are the
torque constants of each motor. V0 is the nominal linear web velocity. E0 is a parameter depending on elasticity
modulus E, on web section S and on nominal tension T0 : E0 = ES + T0. All parameters varying during the winding
process are expressed as functions of time.

APPENDIX 2 – Mixed sensitivity method

Refering to figure 8 where G(s) is a LTI model of the plant, the controller K(s) is computed in order to minimizes
H∞ norm of transfer between reference r and fictive output z. By tuning weights We(s), Wu(s) and Wy(s), transfer
functions Sen = ( I + G K )-1, K Sen and T = I - Sen are forced to have adequate shapes.
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Fig. 8. Weighted model of the system
Weighting function Wp has high gain at low frequency in order to reject low frequency disturbances. The form of

Wp is as following [10]:  
0
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=      where M is the maximum peak magnitude of Sen : MSen ≤∞ ,

(11)
and ωB is the required frequency bandwidth, ε0 is the steady-state error allowed. Wu is used to avoid the large
control signals and Wt tunes the roll-off.

APPENDIX 2 – Overlapping control scheme
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Fig. 9. Partitioning in 4 overlapping subsystems


