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Abstract: In this paper, a new MPC algorithm is dev elopedfor the polytopic
LPV systems subject to actuator saturation. First, set invariance of discrete-
time LPV systems subject to actuator saturation is analyzed and the invariant
set is determined by solving an LMI optimization problem. Then, based on set
invariance, a min-max MPC algorithm is proposed for LPV systems subject to
actuator saturation. A gain-scheduling MPC algorithm is also proposed for the
design of a parameter-dependent con troller.
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1. INTRODUCTION

Model predictive control (MPC) refers to a class
of control algorithms in which a dynamic process
model is used to predict and optimize process
performance. The first MPC techniques were de-
veloped in the 1970s because conven tional single-
loop controllers w ere unable to satisfy increas-
ingly stringent performance requirements (Clarke,
1994). It is well-known that the receding horizon
implementation of the open-loop optimal control
profile gives rise to a stationary feedback control
law (Bitmead et al., 1990). Although there are
many reported successful industrial applications,
it is very difficult to analyze the finite horizon
MPC algorithms theoretically since closed-loop
asymptotic stability depends on many tuning pa-
rameters in an unnecessarily complicated way and
no guarantee is pro vided (Bitmead et al., 1990).
F ortunately sev eral researc hers proved that the
constrained infinite horizon MPC algorithms can
ha vevery good stabilit y property. For example,
(Rawlings and Muske, 1993) sho ved that feasi-
bility of the infinite horizon MPC optimization
guarantees closed-loop stability by using only the
first N control moves and setting the remaining
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(infinitely many) moves to zero. Instead of setting
the control inputs to zero after a certain horizon,
(Scokaert and Rawlings, 1998) and (Chmielewski
and Manousiouthakis, 1996) used a fixed feedback
con trol law to obtain a finite parameterization
of the inputs over an infinite prediction horizon.
(Michalska and Mayne, 1993) proposed a similar
infinite horizon MPC algorithm for a class of non-
linear plants. (Kothare et al., 1996) studied the
robust MPC con trol problem for uncertain sys-
tems with time-varying parameter uncertainty by
the LMI technique. A gain-scheduling Quasi-Min-
Max MPC algorithm was presented for polytopic
LPV systems by (Lu and Arkun, 2000).

In the recen t years there has been significant
interest in linear parameter-varying (LPV) sys-
tems, which is motivated by the gain schedul-
ing control design methodology (Shamma and
A thans, 1990; Rugh, 1991). LPV systems are
systems that depend on unknown but measur-
able time-varying parameters. The measurement
of these parameters provides real-time informa-
tion on the variations of the plant’s characteris-
tics. Hence, it is desirable to design con trollers
that are scheduled based on this information. The
approach to gain-scheduling involv esthe design
of several LTI controllers for a parameterized
family of linearized system models and the in-
terpolation of the con troller gains. The class of



systems is different from its standard linear time-
varying (LTV) counterpart due to the causal de-
pendence of its controller gains on the variation
of the plant dynamics. LPV control theory has
been proven useful in simplifying the interpolation
and realization problems associated with conven-
tional gain-scheduling. Specially, it allows one to
treat the gain-scheduled controller as a single en-
tity, with the gain-scheduling achieved entirely by
the parameter-dependent controller (Apkarian et
al., 1995; Wu and Packard, 1995).

Actuator saturation can severely degrade the
closed-loop system performance and sometimes
even make the otherwise stable closed-loop sys-
tem unstable by some large perturbation. The
analysis and synthesis of controllers for dynamic
systems with actuator nonlinearities have received
increasing attention recently, see, for example,
(Hu and Lin, 2001; Lin, 1998) and the references
therein. Often, actuator saturation is dealt with
by either designing low gain control laws that,
for a given bound on the initial conditions, avoid
the saturation limits, or estimating the domain of
attraction in the presence of actuator saturation,
especially in the design of MPC controller. It is
known that attempts to penalize the control out-
put variables so that the actuator limits are never
violated for any expected reference commands
often leads to conservative designs in which the
control system for the most part operates far from
its full capacity. In general, most MPC control
algorithms are based on this scheme (Chmielewski
and Manousiouthakis, 1996; Kothare et al., 1996;
Rawlings and Muske, 1993).

The approach in the present paper consists of
looking at the infinite horizon LQ regulation as
a receding horizon regulation strategy for LPV
systems with actuator saturation. More specifi-
cally, we minimize on-line a quadratic cost with
actuator saturation considered. The minimization
is over linear state feedback gain matrices.

2. PROBLEM FORMULATION AND
PRELIMINARIES

Consider a discrete-time polytopic LPV system
subject to actuator saturation,

Try1 = A(pr)zr + B(pr)o(ur), (1)
21 = C(pr)zr + D(pr)o(ug), (2)

where € R” denotes the state, u € R™ the con-
trol input, z € RP the control output and [A(py),
B(pr), C(pr) D(pr)] = 3=, pr.j[Aj, Bj, Cj, Dj).
The time-varying parameter p € R" varies inside
the simplex P, i.e., >0 prj =1, 0<py; <1
The function o : R™ — R™ is the standard
saturation function defined as follows

o(ur) = [o(ur1) o(urz) - o(uem)]’,

where o (uy,;) = sign(ug,;) min{1, |ux ;|}. The aim
of this paper is to find an LTV state feedback

u, = Frry, (3)
and an LTV parameter-dependent state feedback

up = piFy ik, (4)

i=1
which asymptotically stabilizes the LPV systems
(1) at the origin, by the MPC approach. Control
law (4) is the so-called gain-scheduled controller.

In this paper, we will consider the infinite horizon
MPC algorithm for the systems subject to actua-
tor saturation. That is, if we assume that in the
kth-step the state x|, = xy, is known, then we will
design the control ugyy,! > 0, which minimizes
the following worst-case performance:

{Jk = zzg+lkzk+lk} -(5)
[=0

In the receding horizon framework, only the first
computed control move uy, is implemented. At
time k + 1, the optimization is solved again with
new measurements from the plant. The purpose of
taking measurements at each time step is to com-
pensate for unmeasured disturbances and model
uncertainty. This is the main feature of the reced-
ing horizon control.

Let f; be the i-th row of the matrix F. We define
the symmetric polyhedron

LF)={zeR":|fix] <1,i=1,2--,m}.

min max
Uk 41|kl >0 Prt1k €EP

For a matrix P > 0 and a real p > 0, the ellipsoid
Q(P,p) = {z € R* : 2T Pz < p}, is inside L(F) if
and only if

fi(P/p)ytfF <1, i=1,2,---m.

Let V be the set of m x m diagonal matrices whose
elements are either 1 or 0. There are 2™ elements
in V. Suppose that each element of V is labeled
as F;, i =1,2,---,2™ and denote E; =1 — E;.
Clearly, E; is also an element of V if E; € V.
Lemma 1. (Hu and Lin, 2001) Let F, H € R™*"
be given. For x € R, if ||Hz||co < 1, then

o(Fz) € co{E;Fx + E; Hx : i€ [1,2™]},

where co{-} denotes the convex hull of a set. This
means that we can rewrite o(F'z) as

o
o(Fzx) = Z n:(E;F + E; H)z,

i=1

where 1), is a state-dependent parameter satisfying
gm
0<m <1, Yi,m=1



Lemma 2. Given two matrices A € R™*"” B €
R™*™ and two positive semi-definite matrices
P € R™*™ @ € R**" such that ATPA —Q <
0, and BTPB - (Q <0, then ATPB + BTPA —
2Q <0.

Lemma 8. Suppose that matrices 4; € R™*" § =
1,2,---,r, and two positive semi-definite matrices
P e R @ € R"™*™ are given. The following
matrix inequality holds

r r
(ZmA?) P (Zp@) ~Q<0, (6)
=1 =1
where Z::l pi = 1, 0 S Pi S 1, if

ATPA, —Q<0,Vi=1,2,---,r. (7)

3. A SATURATED MPC ALGORITHM

For LPV system (1), we first establish a set in-
variance condition for the control law wjyy =
Fyzp - We then propose an MPC algorithm
with actuator saturation considered. In what fol-
lows, we denote Az}j = A; + .Bl(.E]F']c + E;Hk-),
and CA'Z'J’ =C; + Di(Eij + EJ_Hk)

3.1 Set Invariance Condition

Theorem 4. Let xy = ), be the state of system
(1) measured at time k and state feedback matrix
F}, be given. The ellipsoid Q(Py,) is invariant if
there exists a matrix Hy € R™*" gatisfying the
following matrix inequalities
Al PA; ;- P+ ClCi 5 <0,
ielr],jel1,2™,  (8)
and Q(Py,v,) C L(H}). Moreover, for any zp €
Q(Py,7}), the performance objective function (5)
satisfies Ji < 7.

Proof. Choose a Lyapunov function as

T
V(wgsyr) = mk+l\kpkxk+l|k> [ >0.

By Lemma 1, we have

AV (@rrak) = 2pyx (AR p PeAriae — Po)Tesan

N , om N
where Apijx = D21 D j=1 Prtik,ifk,;Ai; and
Mi|k,; 18 dependent on Z-

On the other hand, (8) implies that the following
matrix inequalities hold

AT, PyA;j— Py <0, Vie[Lr], je[L,2m].
By Lemma 3, we have

AV (2Zpix) <0, Vappe € QUPr,v)\{0}.

Thus if wakpkxk\k < « then xZJr”kPkmkHw <~
forl > 1, i.e. Q(Pg,) is an invariant set. This also
implies that system (1) is asymptotically stable
at the origin with all Q(Py,7) contained in the
domain of attraction.

Note that

o0
T
T = Jeu + w Petyge,
=0

where J; = Z,Z;r”kaJrl\k + AV(ﬂkarl\k)- By

Lemma 1, we can rewrite (2) as

r 2m

Zptilk = Z Zpk+l|k,inl|k7jci,jxk+l|k'

i=1 j=1

Hence

T T B
Tkt = Tp i (Ak+”kPkAk+l\k - Plc) Ttk

r 2™ ~
~ A s
Ay = Zzpk+l|k7inl\k,j [ A”} ,
i=1 j=1 bJ
~ P, 0
b, = {0’“ [} :

By Lemma 3, it is easy to see that if (8) hold, then
Jky < 0, which implies J;, < :L“{Pk:rk <. [ |

If we don’t consider the optimal performance in-
dex (5), Theorem 4 is the set invariance condition
for discrete-time LPV systems subject to actuator
saturation. For the special case r = 1, Theorem
4 recovers the set invariance condition of a LTI
discrete-time system subject to actuator satura-
tion (Hu and Lin, 2001).

3.2 MPC Algorithm

Based on Theorem 4, we can use the following op-
timization problem minimizing the upper bound
of the performance function (5) for a given xy, :

.t. 9
Pk>I(I)1,%'}:,Hk A ( )

a) x{kak <,
b) matrix inequalities (8),
C) |hk7lm| <1, Vr e Q(kary)) i = [l)m]a

where hy, ; denotes the i-th row of Hy.

The feasibility of optimization problem (9) en-
sures the existence of a stabilizing state feedback
control law wupix = Fgopyqr which is able to
steer the state from z to zero, i.e., xj is con-
tained in the domain of attraction of the origin,
and minimizes the performance index. On the
other hand, for a given constant control matrix
F}, designed without considering actuator satura-
tion, optimization problem (9) can also be used
to determine if z; is contained in the domain of



attraction of the origin in the presence of actu-
ator saturation. Note that optimization problem
(9) can also be used to determine the invariant
ellipsoid. In (Hu and Lin, 2001), the authors
presented an approach such that the invariant
ellipsoid Q(Py,7,) is as large as possible, i.e.,
leading to a large domain of attraction for the
closed-loop system. Here, in order to minimize the
performance function (5), we are interested in the
minimum value of v,. In what follows, we will
show that optimization problem (9) can be solved
by an LMI optimization problem.

Let Qr = (Pu/v)*, Vi = FrQr and Zy = HipQy.
Also, denote the i-th row of Zj be z;;. Then,
Condition a) is equivalent to

T 1 :vf
xy, Prap < v <= > 0. (10)
T Qk
Condition b) is equivalent to
—Qr * 0k

AiQk + BZ(EJYk- + Ej_Zk) _Qk: 0 < 0,
CiQyr + Di(Eij + Ej_Zk) 0 —oI
Viell,r], je[l,2™]. (11)

Condition c¢) is equivalent to

hii(Pe/v) i <1
[1 Zk,i

T
Zpi @k

So, optimization problem (9) can be transformed
into the following one with LMI constraints,

] >0,Viel,m]. (12)

min s.t. 13
Qr>0,Yy,Zy b ( )

LMIs (10), (11) and (12).

Theorem 5. Let zp = my); be the state of the
system (1) measured at time k. Then the state
feedback control matrix Fj at time k that min-

imizes the upper bound of performance function
(5) can be solved by

F, =Y,Q, ",

where (Qr > 0,Y}) is a solution of optimization
problem (13).

The MPC algorithm solves on-line the optimiza-
tion problem (13) at each time instant and imple-
ments only the first element of the optimal control
profile. The optimization is repeated at the next
sampling time by updating the initial condition
with the new state.

In (13), if we require Y, = Z, then we recover

the MPC algorithm presented in (Kothare et
al., 1996), which can be described as:

i t. 14
omin v, (14)

a) LMI (10),
—Qr * *
b) | AiQr +BiYy —Qr 0
CiQr+D;Y, 0 —~I

<0, Vie[l,r],

c) {;le g}:} >0, Vie[l,m].
Note that the constraints in (14) are only sufficient
for z; € (Q,;l, 1) and hence the control ug), =
Fywy, will never reach saturation limits. In (13),
we permit the control to saturate and hence
our algorithm would result in a less conservative
closed-loop performance. For this reason, we refer
to our algorithm (13) as saturated MPC algorithm.
On the other hand, it is known that low-gain
controllers that avoid saturation will often result
in low levels of performance, especially for the
cases where the disturbance is intermediate or
small amplitude.

3.8 Feasibility and Stability

In the receding horizon framework, only the first
computed control move uy, is implemented. At
time k + 1, the optimization is re-solved with
new measurements i jx41 from the plant. The
purpose of taking measurements at each time step
is to compensate for unmeasured disturbances and
model uncertainty. This is the main feature of
the receding horizon control. The following lemma
ensures that the solvability of the MPC algorithm
at time k > 0, provided that the optimization
problem (9) is solvable at k& = 0.

Lemma 6. The existence of solution (P, Fy, Hy,
) to optimization problem (9) with a given
zp at time k implies the existence of solution
(Pes1, Fry1, Hiq1, vy 1) to optimization problem
(9) at time k + 1.

Proof. Assume that (Py, Fy, Hy,;,) is a solution
of the optimization problem (9) with the given x
at time k, then, by the proof of Theorem 4, we
have

T T
T PeTrrape < T Pexee <

for any permissible p; and the resulting state
Tpy1)r under the control ugy = Fiwy,. This
implies that if pr, = pj at time k and the resulting
state is $Z+1\k+1 under the control u, = Fjxy,
consequently, we have

*T *
Trit kgt P i < Vi

Note that the unique constraint relating to the
initial state zpy1 = $Z+1\k+1 in optimization

problem (9) at k + 1 is #{,; Prtps1 < Ypyq-This



implies that (P, Fy, Hy,7,) is also a solution of
(9) at k+ 1, and thus (9) is feasible at k + 1. W

Theorem 7. For a given xy, if it is feasible for opti-
mization problem (13), then the receding horizon
state feedback control obtained by (13) asymptot-
ically stabilizes the system (1) at the origin.

Proof. Choose a Lyapunov function as V(zy) =
o1 Pyxy, where P, > 0 is obtained by solving
optimization problem (9). The stability can then
be easily proved with the routine way in (Kothare
et al., 1996) and hence the proof is omitted. MW

4. GAIN-SCHEDULING CONTROL LAW
DESIGN

The approach to gain-scheduling involves the de-
sign of several LTI controllers for a parameterized
family of linearized system models and the inter-
polation of the controller gains.

In general, the time-varying parameter vector py
can be measured or estimated on-line. In this case,
we can design a scheduling control law

Uik = Fypzppar 12>0, (15)

where Fyj, := Fi(Diqir) = D=1 Phtilk,j Fr.j, and
F},; is the “local” state feedback matrix of the
local model [Aj, B;] at step k. It is shown that
this kind of control laws can stabilize a larger class
of LPV plants than the single control law (3).
Note that Fj in (3) is a constant matrix for all
[ > 0, while ﬁ'l‘k in (15) is a time-varying matrix
function of pyyq, although Fj, ;’s are constant for
all j=1,2,---,r.

With control law (15), the closed-loop system can
be rewritten as

r

Thrisik = Y Prrthi(Aitp it Bio (Fpzpe)),
i=1

i
2otk = D Pt (CisaitDio (Feii))-
i=1

Let ﬁ”k = E;:1 Pr+ik,jHr,j- By Lemma 1, we
have

2™
$k+l+1\k22 E M|k, sPh-+1k,iPk1lk,j As,i Ttk
s=1 i,j=1
2™
2k = E 2 M|k, sPk-+11k,iPk+11k,5 Cs,i,i Thti]k
s=1 =1

where fisﬂ"j = Ai-f-Bi(EstJ-f-E;HkJ): ésﬂ',j =
Ci-f-Di(ESFkJ-l-E;HkJ), ENS [1,2m], 1,] € [1,7‘].

Remark 1. It can be seen that the above sys-
tem can be further simplified if the subsystem

(A;, B;,C;, D;) possesses a common input matri-
ces B and D, namely B; = B, D; = D for all i. In
this case, the closed-loop system can be simplified
to

2™ r

Lh+i+1|k = E M\k,s E pk+l|k7iAs,i,i$k+l|k:
s=1 i=1
2™ r

2tk = E Mik,s E Phtt[k,i CsiiTht|k-
s=1 i=1

Theorem 8. Let xy = ), be the state of system
(1) measured at sampling time k and local state
feedback matrices Fy ;, j = 1,2,---,r, be given.
The ellipsoid Q(Py,) is invariant if there exist
matrices Hy ; € R™*" satisfying

AL iPeAsij— P+ CLCei <0,

i,j €[L,r], s€[1,2™], (16)

and Q(Py,v;) C (Vj= £(Hk,;). Moreover, for
any zr € Q(Pg,7v;), the performance objective
function (5) satisfies Jy < 7.

The proof is similar to that of Theorem 4.

Corollary 9. For the special case with B; = B and

D; = D for all i, the ellipsoid Q(P%, ) is invariant

if there exist r matrices Hy ; € R™*" satisfying
Azzi,ipkfis,i,i - Pk + ésjjmés,i,i < 0,

i€ [1,7“],8 € [1>2m]> (17)

and Q(Py,v;) C (Vj= £(Hk,;). Moreover, for
any zr € Q(Pg,7v;), the performance objective
function (5) satisfies Jy, < 7.

In what follows, we will present a less conservative
condition. Let

2 -2
= _ ) Petik,io t=17,
Pr+ik,t = ’ L.

k-t { 2Dkt 1)k, iPht1|k,j > T = 15,7 <1 € [L,7],

At:{fw, i t=1i?
> (Asij + Asji)/2, t =1, j <i€[l,r],

ct:{@m, i t=1i?
> (Csij +Csj,i) /2, t =g, <i € [1,r],

Then we have
r(r+1)/2
0< Prrifre <1, D Prripe = 1.
t=1

Hence
2m r(r+1)/2
AV($k+l\k):fL{+l|k anlk,s Z Prottlkt AL 1 Pr
s=1 t=1
r(r4+1)/2

ym
X E ks E Pri|k,tAs,t — Pk-} Tht1)k>
s=1 t=1



r(r+1)/2 _ T
it P
R ) STV i e ]

r(r+1)/2

Zn”ks Z Dhollk,t [ —:’t] - }Cl?k+l|k'

Theorem 10. Let xy = xy); be the state of system
(1) measured at sampling time k and local state
feedback control matrices Fy ;, j = 1,2,---,r, be
given. The ellipsoid Q(Py, ) is invariant if there
exist matrices Hy ; € R™*" satisfying

AT As,i,i - P+ C Cs i < 07

1€ [1,7‘],8 S [1,2m], (18)
(Ast J + AZ] z) (As,i,j + les,j,i) - 4Pk
(Cst i + CsTj z)(CS7iyj + CSJJ) <0,
i<jel,r],sel,2™], (19)

and Q(Py,v;) C (j— £(Hk,j). Moreover, for
any zr € Q(Pg,7,), the performance objective

function (5) satisfies Jy < 7.

Remark 2. In Comparison with Theorem 8, the
number of matrix inequalities in Theorem 10 is
reduced by r(r — 1)2™ 1. In the special case
of B; = B, Vi, another r(r — 1)2™~! matrix
inequalities in (19) can be removed as in Corollary
9.

Let Yk,j = FkJ’Qk and Zk7j = Hk'JQk‘) JE€ [1)7']'
Then (18) and (19) are equivalent to the following
LMIs

—Q * ok
AiQr + Bi(EsYr,i + ES Zii) —Qr 0 | <0,
CiQr + Di(EsYr i+ E; Zyi) 0 —~I
€[1,r], s€[1,2™], (20)

—4Qk ko x
AiQr + Bi(EsYy ; + EJ Zy j) —Qr 0
+A4;Qr + Bj(EsYy i + ET Zi ) k <0,

CiQr + Di(EsYy j + EJ Zy, j)
+CiQr + Dj(EsYr i + EJ Zy ;)
i<jell,r],

0 —I
s€[1,2™]. (21)

Theorem 11. Let xj, = xp);, be the state of system
(1) measured at sampling time k. Then gain-
scheduled state feedback control law (15) at step
k that minimizes the upper bound of performance
function (5) can be solved by

Fk7j = Yk’lezl, Vj € [1,7‘],

where (Qr > 0,Y% ;) is the solution of the follow-
ing LMI optimization problem

min s.t. 22
Qr>0,Y% 5,2k 5 ik ( )

a) LMI (10),

b) LMI (20), (21),

(2
1 2
o) |, j Bt >0, Vie[l,m], Vje[L,r]

5. CONCLUSIONS

In this paper, we have addressed the model pre-
dictive control algorithm for the linear parameter-
varying systems subject to actuator saturation.
The set invariance and the optimal control prob-
lem for the LPV systems subject to actuator
saturation have been solved by solving an LMI
optimization problem. An MPC algorithm based
on the set invariance is proposed. The gain-
scheduling MPC algorithm is also studied by using
the linear matrix inequality techniques.
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