
COMMUNICATIONS IN DISTRIBUTED CONTROL ENVIRONMENT WITH
DYNAMIC CONFIGURATION

Raúl Alves, Miguel A. García

Dpt. of Systems Engineering and Automatic Control
University of Valladolid, Spain

Abstract: Distributed Control Systems (DCS) are based on assignments of control loops
and supervision points to different units. In a first approach, these assignments are made
statically and following given distribution criteria. This paper presents a proposal of
communications system over a DCS which allows the interchanging of assignments
between the control units. The objective is to provide a frame for dynamical load
balancing in the system with reactivity against meaningful variables in the system such
as changes in the process, traffic demands or computing load in every processor.
Keywords: Distributed control, dynamic configuration, protocols, load balancing

1. INTRODUCTION

The assignment of control loops to the control
units of a Distributed Control Systems (DCS) is a
main topic in which the first attempt is based on
the knowledge of the plant and their plausible
subsystems. This design is made off-line and has
not into account performance criteria. This paper
presents an implementation of a DCS with
capabilities of dynamical changing of
assignments. It is based on the DCS SICODI
(García,1999) with modifications for including
the new functionality. One related topic for this
purpose is the load balancing in the system.

The DCS SICODI executes in several PCs over
Windows NT connected with an Ethernet network
between them and with a simulation of the
process in the benchmark case. For this kind of
case, the concept of generic Local Control Unit
(LCU) allows to consider the same executable
both for control and supervision units, and even
for combinations of them and over the same type
of standard platforms. The deploy of
functionalities is based on the operation of
configuration of every LCU, in which depending
on the selections done the executable applies data
acquisition and control algorithms, or interface
elements to allow operators interaction.

Load balancing is a well known topic in
multiprocessor homogeneous systems, where
heuristics and algorithms for static and dynamic,
off-line and on-line solutions have been
developed. The proposed case of study supposes a
generalisation to heterogeneous multi-platforms
case from the point of view of DCSs.

The assignment of loops in a DCS is made
traditionally off-line due to its association with
the division of the factory in sections. The
personnel in charge of this task are the process
engineers as the persons with the best knowledge
of the process and the interactions between its
parts. Even the back-up policies are applied to the
basic configuration for complete substitutions and
with final results equivalent to the initial
situation. Nevertheless, general theoretical
approaches to the topic of distribution can be
found, such as the Decomposition-Coordination
methods (Singh, 1978) based on the off-line
minimisation of interactions and the presence of a
coordination module at a higher level. In the other
hand, cases of massive migrations are likewise a
well-known problem in cases of falling of any of
the LCUs, and normally covered by the presence
of back-up units associated to every one of them.

However, yet another cases can be considered
covering partial re-distributions in relation with
dynamic conditions of the systems. This type of
decisions can apply fine adjustments to the
assignments in the system, although in some
cases can derive in important modifications in the
long term once the results of progressive changes
are evaluated.

Anyway, the main case of study from the load
balancing point of view is one of uncertainties in
the assignment of control, and of changes in the
control structure and distribution. These cases can
appear when the definition of sections and parts
of a given plant is not an immediate task, and
multiple choices must be evaluated on-line in
order to obtain and compare their results. Besides,
changing circumstances of, for instance, raw
material, arrival conditions, failures or

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain

disturbances along the process, can be taken into
account by commuting between different control
policies and possibly transferring the control
between alternative LCUs. Redundant actions
from LCUs in flexible policies in which any of
them can assume the assignment depending on
availabilities are also related to this study.

Precedents of these cases can be found in
changing environments in which control or
communication conditions appear. (Grupen,
2001) presents a team of mobile robots devoted to
perimeter surveillance tasks in which distributed
control takes the form of location set points for
each robot. The changing conditions consist in
this case in possible invasions of the zone under
observation or modifications of the zone itself,
being the reaction a new assignment of set points
for the robots if it is considered more
appropriated than the original one.

The change of assignments can be focused from
the communications point of view. So approaches
taking into account explicitly this aspect are
likewise very promising, with cases in which
direct manipulations of the communication
traffics can obtain new and optimized
relationships between the nodes.

Both in this kind of cases the techniques that have
been used are based on the reinforcement learning
theory. It consists on the dynamic application of
tests in lines of exploration based on gradient-
based approaches. The estimation of goodness of
results can be made with probabilistic measures
of success, giving place to finish results when
they are considered good enough. So these
techniques can be considered as learning by doing
in dynamic cases, with the possibility of adaptive
solutions in changing environments and specific
results for each case.

Application of reinforcement learning to batch
processes is also possible as can be seen in
(Martinez, 2000), where the time and conditions
of evolution to new states in the sequence are
improved in successive attempts until the arrival
to solutions according to ranges of specification.

For this balancing to be possible in DCSs, the
transference of control loops from one machine to
another must be solved. This is made by
designing communication protocols between the
LCUs, in such a way that dialogs are established
between them for this purpose. Related requests
are in charge of getting system and platforms
information for their on-line comparison.

SICODI has been adapted in order to achieve this
objective, creating a set of communication

protocols and functionalities allowing the transfer
of control loops and the monitoring of the whole
system. Such a monitoring is made from a server
application made ad hoc, from which it is
possible to integrate supporting units for partial
load distribution by using the atomic functionality
of transference of control loops without loose of
control during the transition.

The rest of this paper is structured as follows:
Section 2 is devoted to the architecture of the
system, while in Section 3 the levels of
communication developed are also shown in
detail. Section 4 explains the details of the
protocols for implementing the transference of
loops and section 5 explains how the basic cases
of load balancing can be configured in SICODI.
A little final section comments the future work to
be made.

2. SYSTEM ARCHITECTURE

This Section describes the system over which the
load balancing functionality is added. The
working environment is one of training
simulation and the functionalities are
implemented in the communication protocols of
the DCS.applied to the system.

2.1 Working environment

The starting point is a Training Simulator (García,
1999 II) composed by the DCS SICODI
consisting of a set of interconnected LCUs; a
dynamic simulation of the different plant
sections; and an Instructor Console (IC) from
which an instructor imposes changes to the
operators in front of the LCUs and evaluates their
responses. Fig. 1 shows the system architecture.

Fig. 1. Architecture of the DCS applied to the
Training Simulator

All the applications in the Training Simulator
have been developed for Windows NT operating
system over PC platforms. The simulation is
implemented in ACSL language and the IC is in
fact based on a LCU plus extra functionality
deployed under configuration. Only one of the

LCUs can act as IC at a time, acquiring special
access to the simulation in order to obtain more
information and the ability of imposing changes
hidden to the rest of LCUs but for their effects.

2.2 Distributed Control System

The DCS SICODI applied to the Training
Simulator consists on several units in which the
concept of generic LCU is developed by
configuration. This is possible due to the
homogeneous nature of field communications
with respect to the ones between LCUs, and the
not special hardware needs at field level.

Communication among the LCUs is made
through a server application in charge of the
delivery of packets between them, the collecting
of the status and the metrics of the
communications, and the execution of the backup
and load balancing mechanisms. In the other
hand, communication with the simulation is
provided by a link application for all the LCUs in
their accesses to the simulated plant.

Fig. 1 shows a typical configuration of the DCS,
with several LCUs in charge of control and
supervision, a backup LCU covering possible
failures, another one configured with IC
properties, and primary and secondary servers for
providing communications services.

3. LEVELS OF COMMUNICATION

The set of modules taking part of the Training
Simulator requires a connection between them in
order to support the communication needs. The
basic primitives for this purpose are sockets over
Ethernet. Different channels are devoted to every
case of communication attending their meaning
and importance. The three designed cases can be
considered levels taking into account the type of
interested modules and the relationship
established between them, as can be seen in Fig.
2. Server parts of the sockets are located in the
link application for the first level, and in the
server application for the second and third levels.

Fig. 2. Scheme of the system with the levels of
communication.

3.1 Level 1: Communication LCU-Simulation

This level of communication is devoted to the
communication of every LCU with a link
application in charge of administering the
accesses to the simulation. Information in this
channel consists on controlled variables taken
from the simulation for the LCU to which they
are assigned, and manipulated variables received
from the LCUs for being ordered and passed to
the simulation as control results every sample
period. Likewise, information to and from the
Instructor Console uses this channel. This
communication level has high priority as it is
expected for the nature of the information in it.

3.2 Level 2: Communication between function
blocks

The interchange of data from function blocks is
provided by this level of communication. It is
based on standards for function blocks such as the
IEC 61499 for distributed control (Christensen,
1999) or the Fieldbus Foundation specification.
The type of information transferred depends on
the type of connected blocks, covering the data
acquisition for being treated remotely, control
structures between LCUs (cascade, feedforward),
and alarms treatment and acknowledging through
the system. Besides, it allows the design of event-
driven sequences in which data from remote
blocks are evaluated or modified. The priority of
this communication level is high as corresponding
to control data flow, although a distinction can be
considered in favour of the level 1.

3.3 Level3: Communication for representation

This level of communication is in charge of the
communication between the LCUs for
interchanging of data in order to be represented
under requests of LCUs in which they are not
assigned. The types of representations that can be
configured are tables, bar diagrams, synoptics and
trends including past values. Besides, this level of
communication supports the remote modification
in cases such as the change of set point, toggle
between auto and manual, or the change of
manipulated value in manual, for loops not
assigned to the LCU from which the changes are
imposed. The data received for these purposes in
the LCUs are maintained in dynamic storage with
a life linked to the interval in which the requests
are active. With all these services and a correct
complementary configuration of the LCUs, the
objective of a unified representation in the system
independently of assignments can be achieved.
The priority for the communication in this level is
low, thus avoiding conflicts with the information

in the other levels and taking into account the
lower importance of this information in
comparison with the one in the others.

4. TRANSFERENCE OF LOOPS

A set of protocols has been implemented with the
objective of interchanging the workload between
LCUs in a wide sense. Basically, this workload
consists on control loops assigned to the different
LCUs, together with the event-driven sequences
associated to them.

The loops assigned to a LCU appear with all their
parameters in the configuration file of the LCU
and, together with the process values obtained
during the execution, in the corresponding part of
the distributed database. The server maintains the
information of assignments in the system,
distinguishing the cases of transferable loops
(most of them in cases such as simulated plants
and even in real plants with fieldbuses) and fixed
ones associated to specific hardware.

The implemented protocols cover the
functionalities of transference of loops between
LCUs and the monitoring from the server
together with information about the available
LCUs, loops assigned to them at every moment,
and even the configuration of the criteria for the
load balancing. The protocols are grouped in a set
of actions that must be taken in the appropriated
order, as explained in the next paragraphs.

4.1 Stopping the system

The first step for proceeding to carry any transfer
involving the configuration of control in the
LCUs out is to stop the simulation time and the
treatments of control. This is possible thanks to
the simulation environment in which it is applied,
although once the transferring mechanisms are
implemented and optimised, their use in real
systems and conditions are applicable with
minimal interferes or loose of control during the
transient interval. Thus stopping the system is a
particular advantage in simulation environments
which can be exploited for acquiring knowledge
and tools useful for any kind of distributed
system.

A protocol has been developed in order to allow
the server to put a request of stopping in the
system. The different LCUs execute the stopping
and confirm their status to the server, as shown in
the chronogram of Fig. 3. The five steps of this
process are:

- Step 1: The server decides to stop the system
and sends a request packet to the LCUs.
- Step 2: The LCUs receive the stopping request
and send to the server an acknowledgement
packet.
- Step 3: Once the server has received the
acknowledgement from all the LCUs, it sends the
stopping packet to them. The LCUs make their
arrangements for cancelling their control timer.
- Step 4: Once the LCUs end their internal
actions, they send a ready packet to the server.
- Step 5: Once the server has received all the
answers from the LCUs, it considers the system
stopped and allows the beginning of transfers
between the LCUs in stopped system conditions.

Fig. 3. Chronogram of the stopping of the system

4.2 Transference of loops between LCUs

The transference of loops in a DCS is the action
by which the configuration of assignments is
modified. As corresponding to the distributed
environment in which it takes place, the
transference of loops takes the form of a set of
communication packets derived from a protocol
that covers and order the successive actions.

When a control loop is assigned to a LCU, a set
of configuration parameters are deployed locally
in it in order to apply its control capabilities
appropriately. In case of transference of the
control loop to another LCU, actions must be
taken for the control loop to finish its execution in
such a LCU and for it to be applied from an
alternate LCU. For such a purpose the
configuration parameters must be sent from the
original LCU to the one in charge of the
assignment from that moment on, together with
the elimination commands in the previous LCU
and the activation commands in the new one.

In the same way that in the case of the stopping of
the system, all these objectives are implemented
as a communication protocol with which the
LCUs and the server establishes a dialog between
them until all the changes are propagated and
accepted by the nodes taking part of the
operation. As an example, Fig. 4 shows a
simplified chronogram of the necessary steps for

transferring the loop marked with the ordinal 35
from the LCU no. 1 to the LCU no. 2. In outline,
these steps consist on:

Fig. 4. Chronogram of the transference of a loop
from one LCU to another one.

- Step 1: The server decides to transfer one loop
(or a set of them) from one LCU to another one
and puts in the system the request of transference.
A set of lists maintains a centralised updating of
the loops to be transferred, from and to what LCU
must be made, and the status of such a
communication. In fact, this set of lists must be
ready even before of the stopping of the system.
After the stopping, a call is made to the function
that puts in the system the request packet for the
loops under transference according to the items in
the lists.
- Step 2: The LCUs receive the request, being
ignored by the LCUs with no assignment of the
loops under transference. In case of positive
assignment, a packet is made with the
configuration parameters of the loop under
transference in a due form, being sent
immediately after its packing.
- Step 3: The packets are received in the server,
being merged and modified for their sending to
the LCUs together with the information of the
selected LCU for the new assignment.

- Step 4: Once the message for adding loop
arrives the LCUs, it is partially unpacked for
obtaining the number of the selected LCU for the
transferred loop. If the LCU is the selected one, it
unpacks the rest of the message and gets the
configuration parameters of the loop. In order to
avoid inconsistencies and the risk of more than
one LCU trying to have the loop assigned, the
new LCU does not begin to carry the new loop
on. Instead of this, the LCU adds its availability
in the list of pending actions, notifies the server
and waits its licence for beginning the
assignment.
- Step 5: Once the server receives the notification
of the LCU trying to obtain the assignment, it
sends to the rest of the LCUs the request of
elimination of such a loop from their own
assignments.
- Step 6: The LCUs receive the request of
elimination. If they have not the associated loop
assigned, they ignore it. In case of assignment,
the LCU begins the action by adding it to the list
of pending actions as the LCU with the new
assignment made with its availability. Once this
adding is made, the LCU sends an
acknowledgement message to the server.
- Step 7: With all the confirmations collected by
the server, it begins the actions for the new
assignment to be effective, notifying to the LCUs
related to the assignment that it is allowed.
- Step 8: The rest of LCUs receive likewise the
notification and get the number of the
corresponding loop. All of them (including the
LCUs involved in the assignment) update the lists
of representation requests in order to redirect
them (or to eliminate them in case of self-
assignment). Just before it, the LCU with the old
assignment prepares all the data of past values of
operation and collected in its corresponding part
of the distributed database (supported in its
platform) in order to send them to the server.
Once this is made, the LCU with the old
assignment modifies its configuration file taking
into account the elimination, and sends two
messages to the server: one for the
acknowledgement of the actions made, and yet
another for the updating of the inner lists of
assignments in all the LCUs, in which the
searching of information under request is based.
- Step 9: The arrival to the server of both the
acknowledgements of the action of transference
from the LCUS with the old and the new
assignment are considered the successful signal
for the whole operation from the server.

4.3 Re-starting the system

The last part in all the operations of reassignment
is the new starting of the system after the
transferences and acknowledgements. Basically,

LCU 1 LCU 2SERVER

S REQLOOP 35;

1S: ACKREQLOOP
35 INFO;

S ADDLOOP 2
35 INFO;

2S: ACKADDLOOP 35;

S REQLOOP 35;

S DELLOOP 35;
S DELLOOP 35;

1S: ACKDELLOOP 35;
S DOTRANS 35;

S DOTRANS 35;

2S: ACKDOTRANS 35;

1S: ACKDOTRANS 35;

2A: 35;

1E: 35;

1H: 35 0 10 2.5 2.45...;

S ADDLOOP 2
35 INFO;

the starting consists on the release of the time
variable and their consequent operations of
acquisition and control each sample period. These
operations must be coordinated between the
LCUs in the system together with the simulation
itself. The chronogram of the re-starting is shown
in Fig. 5, and consists on three steps:

Fig. 5. Chronogram of the re-starting of the
system

- Step 1: The server takes the decision of re-
starting and sends a packet to the LCUs.
- Step 2: The LCUs receive the packet of re-
starting and activate the timers in such a way that
they recover their normal operation. Once this is
made, they send to the server a packet of
acknowledgement.
- Step 3: Once the server has received the
acknowledgement of re-starting from all the
LCUs, the system is considered in on-line mode
again. Synchronisation protocol is in charge of
the new adjusting of the LCUs to a common time.

5. BASIC IMPLEMENTATION

The case of SICODI applied to the Training
Simulator is specially appropriated for this kind
of techniques, due to the homogeneity of field
level and the ease of access from all the LCUs to
the simulation. Changes in the control structure
can be applied on-line, supported during transient
intervals by the level of communication between
blocks and finally derived to a reassignment of
loops in the LCUs of the system. Besides, for the
cases of hybrid configurations with both
assignments and representation, traffic conditions
are subjected to relevant changes due for instance
to requests for that representation. Under given
circumstances and if another criteria are not
against it, reassignments for balancing the
requirements of traffic can be an option to be
considered. The dynamic nature of these cases
appears in the changing conditions of the
execution and in the event-driven requests applied
by the operators from their sites. All these
properties together with the changes in the
simulated processes give place to a platform of
development and evaluation for different load
balancing criteria.

Criteria for on-line load balancing and selection
of LCU for assignments are already available in
SICODI, although based in simple decisions such
as the number of assignments or the traffic in

every level. These criteria complement the basic
one for backups, which is based in priorities of
the LCUs forcing correspondences between
groups of LCUs and corresponding backups, with
the particular case of one-to-one associations. The
algorithms implementing these criteria are located
and centralized in the server application, from
which the decisions are taken.

The monitoring of the system from the server,
based on representations of the LCUs together
with their assignments and loops under request
between them, is extended to the possibility of
on-line configuration of the different criteria,
even with weighted combinations of them as can
be seen in Fig. 6.

Fig. 6. Monitoring from the server and on-line
configuration of load balancing criteria

6. FURTHER RESEARCH

The benchmark system is already working with
the simulation of sections of sugar plants and
applying basic criteria of load balancing. The
implementation of criteria based on reinforcement
learning is under study with promising results.

REFERENCES

Christensen J. H. (1999). Basic Concepts of IEC
61499.

García M.A., Prada C. (1999). SICODI: A
Configurable Real-Time Distributed Control
System. 7th IEEE International ETFA'99.

García M.A., Acebes F., Prada C.(1999 II). A
Dynamical Training Simulator for Beet-Sugar
Factories. CITS Procee Antwerp. Ver Bartens

Grupen R. (2001). Task-Level Design for
Concurrent Control Interactions – Distributes
Multi-Robot Strategies in Open Environments.
Univ. of Massachusetts, CS Dpt., int. report.

Martinez E.C. (2000). Batch Process Modeling
for Optimization Using Reinforcement
Learning. Computers&Chemical Engineering.

Singh M.G., Titli A. (1978). Systems:
Decomposition, Optimisation and Control.
Pergamon Press.

	COMMUNICATIONS IN DISTRIBUTED CONTROL ENVIRONMENT WITH DYNAMIC CONFIGURATION
	Raúl Alves, Miguel A. García

