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Abstract: This paper describes a novel planar repulsive maglev prototype. In this 
maglev system, the carrier is levitated by a planar 2D array of coils. The levitation 
forces are due to repelling between the magnets and the coils. Then, the general model 
of motion of the carrier with complete degree of freedoms(DOFs) is derived and 
analyzed. Next, for the sake of control, a PID controller is designed here to regulate the 
all DOFs of the planar maglev system. From the simulation results, satisfactory good 
performances including stiffness and precision have been demonstrated. The 
experiment of the proposed system is under preparation. Copyright © 2002 IFAC 
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1. INTRODUCTION 

 
In the real world, besides air bearings, free-floating 
levitation can be achieved by two methods: one with 
electrostatic levitation and the other with magnetic 
levitation (abbreviated as maglev). In the former, 
electrostatic charges of the same or the opposite 
polarity are deposited on two opposing objects. 
Levitation is achieved by the attractive force due to 
the opposite polarity or by repulsive force due to 
charges of the identical polarity. In the latter maglev 
system, attractive as well as repulsive levitation can 
be obtained in the same fashion. 
 
Recently, magnetic levitation is considered as one of 
the most suitable ways to achieve the high precision 
transportation. From the previous research results, 
some just discussed a single-axis maglev system 
(Wang and Ilene, 1993; Chen, et al., 2000), but some 
others (Kim, et al., 1997; Chen, et al., 1999) have 
expanded the single-axis system into a dual-axis 

double-decked or planar system. However, in the 
literature there are relatively fewer works which 
investigate the planer dual-axis maglev positioning 
system. In this paper, we build a novel planar maglev 
platform to achieve the objective of 2D high-
precision positioning. A new mathematical model is 
first derived, based on which a PID controller is then 
designed to achieve satisfactory system performance. 
To demonstrate the effectiveness of the entire system 
design, simulation results are provided for 
verification.  
 
In this paper, design, analysis and control of a novel 
planar maglev positioning system is presented. 
Several salient features of the current research work 
include: (1) successful development of analytical 
tools for predicting electromagnetic properties: field 
solutions can be easily desired using magnetic flux 
density and vector potential, (2) both electromagnetic 
and mechanical design for a maglev platform, and (3) 
theoretical validation through extensive numerical 
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simulation subject to a PID controller for achieving 
six-DOFs regulation. 
 
 

2.MAGLEV SYSTEM DESIGN CONCEPT 
 

In this section, some basic concepts about physics 
and electromagnetics are important for the design of 
the aforementioned maglev platform. To complete 
the overall system design, some mechanisms have to 
be evaluated before we can finalize the construction 
components of the entire system. The overall system 
configuration mainly consists of two parts, namely, a 
carrier embedded with a number of magnets, and a 
bottom plate decked with a 2D matrix array of 
cylindrical solenoids. 
 
 
2.1 Electromagnetic field -- Cylindrical Solenoid 

Design 
 
In the numerical analysis, when the levitation 
distance between the magnet to be levitated and the 
cylindrical solenoid underneath is very small, the 
magnetic flux in between approach a constant value. 
The arrangement of the cylindrical solenoids and 
their floating currents such that a rather uniform 
magnetic field over a planar surface slightly above 
the coil array, as shown in Fig. 1. Therefore, it seems 
that this structure with a permanent magnet becomes 
the most optimal choice to meet our special purpose. 
Under some thorough analysis, the specifications of 
the cylindrical solenoids are determined such that 
the resistance is Ω82. , the thickness of wire is 
0.361mm, the inductance is 325Ts, the number of 
turns is 380, and the vertical height is 10mm. 
 
As has been mentioned earlier, if the magnetic 
dipole sits on a horizontal place at a ting distance 
from the solenoid array then the subjected 
(vertical)levitation force is approximately constant 
over the entire plane. Thus, the force function can 
be desired from a simpler case with only single 
solenoid and a magnetic dipole over it, i.e., 
(Brzezina and Langerholc, 1974).  
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where 
0µ = air-magnetite coefficient (permeability) 

N  = the number of turns of the electric wire  
ZI = current of electric wire 

r  = width of magnet 
    α  = air gap of levitated object and solenoid 
 
 

2.2 Carrier Design 
 
From our forgoing research, NdFeB seems to be the 
best choice at present for the magnet material, 
because it has high coercivity and remanence. These 
characteristics of NdFeB magnet can produce larger  
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Fig. 1: The plane of the cylindrical solenoids 
 
magnetic forces when subject to a magnetic field. 
Therefore, in the present work we choose such kind 
of magnets to be those embedded in the carrier. To 
keep lightweight and to avoid magnetization, the 
carrier is made by the material of Aluminium. In 
order to meet the requirement of obtaining a planar 
two-dimensional positioning platform, the carrier is 
embedded with eight stabilizing permanent magnets 
on the aslant sides to provide the lateral forces and 
with four levitating permanent magnets on the bottom 
of the carrier to counteract the weight of the carrier. 
 
In the positioning system, existence of levitating 
force due to repelling usually causes destabilization 
in the lateral direction. Therefore, we design the 
stabilizing magnets affixed to the sides of the carrier 
in order to provide sufficient control force in the 
lateral direction. To serve this control purpose, the 
paired stabilizing magnets on each side are much 
better than a single one, since the former case can 
provide twice of the stabilizing force to the carrier 
than the latter case, and the arrangement of the 
aforementioned magnets is shown in Fig. 2. For a 
free-floating system, the total six DOFs of the carrier 
should be taken into consideration, namely, X, Y, Z, 
φ , θ  and ψ  where their definitions are shown in Fig. 3. 
 
 
2.3 System Modelling 
 
In order to achieve the high-precision positioning 
performance, we must control the translation and the 
attitude of the carrier properly. To fulfil this purpose, 
a complete analytical model which includes two 
lateral DOFs, one propulsion DOF, and three 
orientational DOFs will be first derived. Before we 
proceed with the modeling, several technical 
assumptions must be made to let the task be more 
tractable. 
 
Assumptions: 

A. Each magnet is considered as one single dipole 
carrying the same magnetic dipole moment and is 
located at the center of each magnet. 

B. The geometric arrangement of the array of 
cylindrical solenoids and the adjustment of their 
floating currents are such that there exists a plane 
above the top face of the array of solenoids with 
uniform magnetic field. 



     

C. Any pair of permanent magnets on any side of the 
carrier are far separated so that the influence in 
between can be neglected. 

 
Translation part; Consider the carrier to be 
represented by a uniform rigid-box shaped object 
with the center of mass coincident with the center of 
geometry. In the following context, we will assume 
that the carrier in Fig.2 suspends over the coils in 
Fig.1, in a way that the magnet with a label will be 
roughly sight on the coil with the same label. The 
principle of linear momentum leads to the force 
equation: 
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where A is the transformation matrix from the body-
fixed coordinate to an inertial coordinate, m is the 
weight of the carrier, and 

GR  is the position of mass 
center. According to Fig. 3, Eq. (2) can be expressed 
as follows: 
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where in the subscripts of the above notations the 
numerals correspond to the magnet labels, and S, L 
are to classify the interaction force into stabilization 
kind and levitation kind, respectively. 
 
Rotation part; The principle of angular momentum 
leads to torque equations for the rotational 
coordinates. Form Euler’s equations (Hang, 1992), 
the rotational dynamics with respect to the carrier 
body coordinate are as follows: 

ωωα IAAIMG ×+=  ,                    (4) 

where I is the moment of inertia of the carrier in the 
body coordinate, and ω , α  are the angular velocity 
and acceleration also expressed in the body 
coordinate, respectively. As a result, the angular 
acceleration can be obtained as:  
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where ri stands for the coordinate of the embedded in 
the carrier and Fi respect its subjected force so: 
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Because the carrier is of geometrically symmetric 
shape, the moment of inertia I represented with 
respect to the body fixed coordinate will satisfy the 
following: 0====== zyyzzxxzyxxy IIIIII , and hence 
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The angular velocity ],,[ zyx ωωωω = associated with 
Eulerian anglesφ , θ  and ψ  are: 
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For small angles, the angular accelerations can be 
approximated as follows: 

][

][

][

ψφψφψψθφφθθα

ψθφφθψθψψφφα

φθφθψα

&&&&&&&&&&

&&&&&&&&&&

&&&&&&

+++−=

−+−−=

+−=

z

y

x

              (9) 

For small angular motions, the terms in brackets on 
the right hand side (RHS) of Eq.(9) are negligible 
compared to the major terms && , && &&ψ φ θ  and , i.e., pitch, 
roll and yaw accelerations. Such approximation can 
be validated, for example, when the magnets on the 
carrier are 1cm apart and the air gap between the 
magnets and top face of the solenoids is about 1mm 
corresponding to angular displacements of the order 
of 5 mrad. The equations describing the angular 
motions can therefore be approximated as follows: 

θφψ &&&&&& zzzyyyxxx ITITIT ===                      (10) 

 

Fig. 2: Various views of the carrier 
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Fig. 3: Control force acting on the carrier 
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Based on Eqs.(3) and (10), we then are able to derive 
the dynamics of the carrier successfully. Then, we 
redefine the control inputs, currents of the solenoids 
underneath the carrier, as 

12111 IIu == , 22212 IIu == , 

3231 IIuA == ,
4241 IIu B == ,

5251 IIuC == , 

6261 IIuD == , where the Iij is the currents of the 
solenoid with label ij referring to Fig.1. Finally, the 
full DOFs equations of motion can be obtained as: 
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where 
yyxx II  ,  and zzI represent the moment of inertia 

of the carrier with respect to principal X ,Y and Z axes, 
respectively, KF( )( ) are destabilizing force constants, 
KI( )( ) are constants related to the stabilizing forces 
and the driving currents. More detailed modelling 
process and parameter definitions can be found in 
(Shiu, 2001). 
 
 
2.4 Platform 
 
The bottom part of the platform is devised to provide 
levitation force to the carrier. Recalling the lateral 
instability due to repelling in the vertical direction, to 
prevent the carrier from falling damage as a result of 
surge movement, some safety measure is undertaken 
by setting up the surrounding blocking boards. The 
bottom part of the platform consists of a dented plate 
used to dock the array of cylindrical solenoids 
systematically, and one to more spacers need to 
accommodate the driver circuits, as shown in Fig.4. 
Obviously, the design of this positioning system can 
be geometrically expandable since the size of the 
solenoid array and the space of holding the pertaining 
driver circuits are variable. Finally, the four 
sideboards are set to enclose the entire electrical 
circuits and to hold cooling fans for heat radiations. 
 
 

3.CONTROLLER DESIGN  
 
Mathematically, the PID control can be expressed by: 

           
iiiiiii E

dt
d

DdtEIEPU ⋅+⋅+⋅= ∫.              (12) 

where Pi, Ii and Di are the proportional gain, integral 
gain, and differential gain, respectively, and E is the 
value of the state error.  

The procedure of this method, namely, the 
generalized Ziegler-Nichols method (Zhuang and 
Atherton, 1994), is briefly described below:  

 

Fig. 4: The devices of the platform and assembly 
 
(1) After linearizing the dynamic model in Eq.(11) 

around some operating points, we can derive an 
open-loop transfer function G(s). 

(2) Choose the controlled variable weighting factors 
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(4) When the oscillation just commences with 
i,PK  at 

icK ,
, we can define the critical frequency 

cΩ  from 
the oscillation period 

cT  and the critical controller 
gain 

icK ,
 for the given system. 

(5) From the generalized Ziegler-Nichols tuning 
formulas (Niederlinski, 1971), we can determine 
the controller parameters as listed in table 1: 

 
Table 1: Generalized Ziegler-Nichols tuning rules 

 
controller 
parameter 

PK  
iT  dT  

P icKa ,1    
PI 

icKa ,2
 cT8.0   

PID 
icKa ,3
 

cT5.0  
cT12.0  

 
where 5.05.0 1 ≤≤ a , 45.045.0 2 ≤≤a , 

6.06.0 3 ≤≤a  and the choice of the coefficients 

ia  depend on the ratio
cici ,/ϖα Ω= with ci ,ϖ  

being the critical frequency of 
iiG . If 1<<iα , 

ia  can be chosen at the higher value of the 
suggested range, and if 

iα  is near to one, ia  
should be chosen at the lower value of the range. 

(11) 
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(6) Check whether the relative control quality is 
satisfied. If not, change ic  appropriately, and 
then return to step 2. 

 
From this algorithm, the PID controller gains can be 
determined as P={1700,1550,2000 1450,1850,1150}, 
I={200,200,160,80,200,40} and D={50,50,40,20,50,10}. 
 
 

4. SIMULATION RESULTS 
 
In this section, we will give some simulation results 
based on the mathematical model and controller we 
have derived so far. Some necessary system data are 
given as follows: 
 

Table 2: Simulation data 
 

Carrier Mass   0.172kg 
  XI  0.000344kg.m2 
  YI  0.000344 kg.m2 

Moment of Inertia 

  ZI  0.0005504 kg.m2 
        2mm Levitating PM gap 

Stabilizing PM gap         3mm 
NdFeB PM dipole moment 8106759 −×.  A.m2 
The distance between levitating PM and 
principal axes of each free body 

a=b=10mm, 
c=25mm 

 
Recall that the six state are X, Y, Z,θ ,φ  and ψ  as we 
mentioned in section 2, and the control inputs are u1, 
u2, u3, u4, u5 and u6. First, Fig. 5 shows the time 
responses corresponding to the situation with the 
largest initial rotational error, i.e., 0.0005 rad in our 
mechanical system. When the carrier undergoes its 
largest rotational error, the corresponding transitional 
error should be zero in an ideal case. However, in 
these simulations we consider the non-ideal case here. 
Such non-ideal situation may result from the 
machining error, such as when the bottom plate 
which holds the cylindrical solenoids and sensors are 
not completely plane surface and so on. Next, Fig. 6 
presents the responses due to 50g load that applied to 
the carrier. In that case, we can observe that all the 
six state signals converge to zero asymptotically as t 
goes to infinity. Comparing Fig. 5 and Fig. 6, 
respectively corresponding to empty load and 50g 
load, we can find difference between the two cases. 
When the carrier is with 50g load, the control 
voltages are larger than those in the case with empty 
load. This is rather reasonable for the performance of 
the PID controller that may adapt to the change of the 
environment to ensure the system regulating 
performance. 
 
In Fig. 7, a pulse disturbance is applied to the 
levitated free body after the six stages converge to 
zero. It is found that all the states will remain to 
converge to the steady state, which implies that the 
PID controller is able to can tolerate quite large 
disturbance. 

5. CONCLUSION 
 
In this paper, we proposed a precision six DOFs 
maglev positioning system. This maglev system can 
be readily used in a clean room, since it will not 
generate wearing particle and no lubrication is 
required. The dynamics of the maglev system have 
been thoroughly analyzed and then a complete model 
is also derived. By this, we can understand the 
dynamics in detail between the levitated free body 
over a large number of cylindrical solenoids. 

 

The system has been treated as a multi-input multi-
output system, and a PID controller have been 
designed here. From the simulation results, the 
feasibility and effectiveness have been clearly 
demonstrated. And, the full experiment of the 
proposed system is on the way of preparation 
 

  

 

 
Fig. 5: The six DOFs of the carrier with maximum 

lateral rotation initial condition 
 



     

 

 
Fig. 6: The six DOFs of the carrier with 50g load 
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