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Abstract: A design method for switched observers is presented. Global convergence
of the switched observer is addressed in the case of a persistently exciting control
signal. Hamiltonian modelling is used in the observer design. The observer is applied
to a Series Loaded Resonant converter. A global model of the converter is given.
Simulation is performed for illustration of the convergence properties.
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1. INTRODUCTION

A design method for non-linear observers is pre-
sented. Global convergence of a switched observer
is discussed in the case of a persistently exciting
control signal. Some steps, what is believed, to-
ward a convergence proof are presented. Hamil-
tonian modelling is used in the observer design.
The observer is applied to a Series Loaded Reso-
nant, SLR, converter. The SLR converter, see Fig.
2, is described in section two by a Hamiltonian
state space description

úx(t) = [J(x)−R] ∂H∂x (x) +B(x)u(t),
y(t) = B(x)T ∂H∂x (x),

where J(x) is a skew-symmetric structure ma-
trix, R is a positive semi-deÞnite symmetric ma-
trix possibly dependent on x, and H(x) is the
Hamiltonian function. Hamiltonian modelling of
switched electric circuits of different topologies
has been introduced by Escobar et al (1999) and
Ortega et al (1998).

The switched nature of the converter and the ob-
server depends on the division of the state spaceX
in three subspaces Ωi, i ∈ {−1, 0, 1}, see Fig. 1 and
sec.2.1.1. In each of these subspaces the function

x 4 - x 5

x 2
Ω 0 

Ω −1

Ω 1 − x 5 

x5

Fig. 1. Division of the state space X in three
subspaces Ωi, i ∈ {−1, 0, 1}

J(x) is a constant matrix. Choosing u(t) to be
the applied voltage across the resonant circuit,
VAB(t), implies that the functionB(x) is constant.
Following a trajectory, x(t), the description will
switch between the three linear models each time
the trajectory passes from one area Ωi to another
area Ωj , i 6= j. Such a system is said to be a
switched system.

The analysed SLR converter is shown in Fig.
2. Basic analysis of resonant converters can be
found in Erickson and Maksimovi´c (1995) and
Oruganti and Lee (1984). The SLR converter has
many advantages over the conventional convert-
ers controlled with pulse width modulation, such
as low switching losses at higher switching fre-
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quencies (zero-current switching, ZCS, or zero-
voltage switching, ZVS), easier electromagnetic
interference (EMI) Þltering, and reduced switch-
ing stresses. The SLR converter is applied in a
high voltage equipment with a capacitive load
property. The transformer in the resonant circuit
makes a signiÞcant contribution to the dynamics.
The high number of windings on the secondary
side of the transformer gives a high leakage ca-
pacitance, Cw. The capacitive load and the high
transformer ratio, n, will give a comparatively
large load capacitance, CL >> Cw, CL >> Cr,
making the load voltage, V0, only slowly varying.
The converter is controlled by four IGBT tran-
sistors Z1-Z4 determining the voltage across the
resonant circuit, VAB, between junctions A and
B.
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Fig. 2. The Series Loaded Resonant Converter

The presented result is part of a larger work of
developing a controller for the SLR converter. The
controller will be based on the states of the system
due to demands of high bandwidth both in the
servo function and in the regulator function. To
allow control by state feedback, different observers
have been developed. A switched Kalman Þlter
experiment is reported in Hultgren et. al. (1999).
In this report Kalman Þlter design is used for
each linear subsystem. The Þlter performed well
in simulations as well in practical experiments.
However, it is hard to analyse global stability. The
large changings of the systemmatrix and the noisy
environment makes that it is believed that the
approach of high gain observer is not applicable.

In the following section, the SLR converter is mod-
elled by port controlled generalised Hamiltonian
modelling. In section 3 the design of the pro-
posed switched Hamiltonian observer is presented
together with a discussion of observer stability.
The issue of global convergence of the estimates
is treated in more details in Hultgren and Lenells
(submitted 2001). In the 4th section some simu-
lation showing the observer convergence are pre-
sented. The conclusions are presented in the last
section.

2. HAMILTONIAN MODELLING

To be able to use Hamiltonian modelling for global
characterization of the complete SLR converter we
have to use generalised Hamiltonian modelling.
Consider the Hamiltonian formulation without
energy dissipation

µ
úq(t)
úp(t)

¶
= J


∂

∂q
H(q, p)

∂

∂p
H(q, p)

+µ 0G(q)
¶
u(t),

where J =
µ
0 I
−I 0

¶
and G(q)u(t) = τ(t) is the

generalised force acting on the system. Add the
equation

y(t) = GT (q) ∂∂pH(q, p) = G
T (q) úq(t).

Then the power fed to the system is

u(t)Ty(t) = τT (t)(GT (q))−1GT (q) úq(t) = τT (t) úq(t),

and the power balance of the system is

dH
dt =

µ
∂

∂q
HT ∂

∂p
HT

¶µ
úq
úp

¶
= y(t)Tu(t).

The class of Hamiltonian systems can be gener-
alised to systems described in local coordinates as

úx(t) = J(x)∂H∂x (x) +B(x)u(t),

y(t) = BT (x)∂H∂x (x),

where J(x) is the skew-symmetric structure ma-
trix.

In this generalised case the number of capacitors
and inductors in a circuit can be different giving
an odd number of states in the generalised Hamil-
tonian model.

Energy dissipation can be included in the port-
controlled Hamiltonian systems by terminating
some of the ports using resistive elements giv-
ing the model structure of a port-controlled
Hamiltonian system with dissipation

úx(t) = [J(x)−R(x)] ∂H∂x (x) +B(x)u(t),
y(t) = BT (x)∂H∂x (x),

where R(x) is the positive semi-deÞnite symmetric
dissipation matrix.

The power balance is given by

dH
dt (x(t)) = y(t)

Tu(t)−∂H
∂x

T
(x(t))R(x(t))∂H∂x (x(t)).

2.1 Modelling the converter

The Hamiltonian modelling starts with the stor-
age function, H(x), giving the energy of the sys-
tem as a function of the states. In electric circuits
a natural choice of state variables are the charges
on the capacitors, qi, and the magnetic ßows in the



inductors, ϕi. The gradient vector, ∂H/∂x, and
the circuit topology give information to parame-
trize the skew-symmetric structure matrix, J(x),
the energy dissipation matrix, R, and the control
matrix, B.

2.1.1. Hamiltonian states It is possible to Þnd a
global Hamiltonian model for the SLR converter,
covering all the subspaces. The energy storing
components in the circuit are the capacitances
Cr, Cw, and CL and the inductances Lr and Lm.
The total storage function is given by:

H(qr, qw, qL,ϕr,ϕm) =

1
2(

q2
r

Cr
+ q2

w

Cw
+ q2

L

CL
+ ϕ2

r

Lr
+ ϕ2

m

Lm
) = 1

2x
T (t)Dx(t),

where xT =
¡
qr qw qL ϕr ϕm

¢
and D−1 =

diag(Cr, Cw, CL, Lr, Lm).

The physical interpretation of the gradient vector,
∂H/∂x, of the storage function is

∂H
∂x =

µ
∂H

∂qr

T ∂H

∂qw

T ∂H

∂qL

T ∂H

∂ϕr

T ∂H

∂ϕm

T
¶T

= Dx =


voltage across Cr
voltage across Cw
voltage across CL
current through Lr
current through Lm

 .
The derivative of the state variables according to
the Hamiltonian modelling is

úx(t) =


úqr
úqw
úqL
úϕr
úϕm

 =


current through Cr
current through Cw
current through CL
voltage across Lr
voltage across Lm

 .

2.1.2. State subspaces The circuit operates in
three different modes. Each mode corresponds to
a conducting state of the rectiÞer. The rectiÞer has
three possible conducting states; not conducting,
conducting in positive direction and conducting in
negative direction. Each of the conducting states
corresponds to one of three different subspaces,
Ωs, where s ∈ {−1, 0, 1} of the state space system:
Ω1, pos. cond.: ∂H∂qL ≤ ∂H

∂qw
∧ ∂H
∂ϕr

> ∂H
∂ϕm

,

Ω0, not cond.: − ∂H
∂qL

< ∂H
∂qw

< ∂H
∂qL
,

Ω−1, neg. cond.: ∂H∂qw ≤ − ∂H
∂qL

∧ ∂H
∂ϕr

< ∂H
∂ϕm

.

As has been written above, J(x) is constant in
each of the subspaces, this motivates the notation
J(s), s ∈ {−1, 0, 1} , where s = −1 when x ∈ Ω−1
etc..

2.1.3. Modelling The modelling is straight for-
ward in the subspace Ω0. In the subspaces Ω1,

and Ω−1 the modelling is more delicate. Here we
describe the modelling in Ω1 in more detail.

In Ω1 the load is connected via the rectiÞer in
parallel with the winding capacitance, Cw, and
the magnetising inductance Lm. Kirchhoffs laws
give the following two equations, the Þrst for
the node connecting the resonant inductor and
the transformer and the second for the parallel
connection of Cw and CL: úqw + úqL =

ϕr
Lr
− ϕm

Lm
,

qw
Cw

= qL
CL

and úqw
Cw

= úqL
CL
. These equations imply:

úqw = Cw
Cw+CL

³
ϕr
Lr
− ϕm

Lm

´
, which is the second

equation in the state model below. In a similar
way the third row is derived. The circuit topology
gives some freedom, 0 ≤ α ≤ 1, for the úϕr
equation:

úϕr =
qr
Cr
− (1− α) qwCw − α

qL
CL
−Rrϕr + VAB.

There is a similar freedom for the úϕm equation.
By choosing α = I = CL

Cw+CL
this freedom is used

to shape a skew-symmetric matrix

J(1) =


0 0 0 1 0
0 0 0 1− I −(1− I)
0 0 0 I −I
−1 −(1− I) −I 0 0
0 1− I I 0 0

 .
The modelling in Ω−1 is made under similar
considerations. It is possible to formulate a global
model, as shown in the next subsection

2.1.4. Global model A global model is:

úx(t) = (J(s)−R)Dx(t) +BVAB(t),
where s ∈ {−1, 0, 1} , and s is deÞned in 2.1.2 and
J(s) =
0 0 0 1 0
0 0 0 1− s2I − ¡1− s2I¢
0 0 0 sI −sI
−1 − ¡1− s2I¢ −sI 0 0
0 1− s2I sI 0 0

 ,

R =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 Rr 0
0 0 0 0 0

 , and B =

0
0
0
1
0

 .

2.1.5. Controllability, observability and minimal
realisations of the system There is a need for
Þve states in Ω0. However, in Ω−1 and Ω1 it is suf-
Þcient with four states. It is strongly believed that
the use of Þve states in all subspaces makes the
modelling more clear. However it can be seen that
with the control signal matrix B =

¡
0 0 0 1 0

¢T
the system is not controllable in any subspace. In
Ω0 the load is physically disconnected from the
control signal. In the subspaces Ω1 and Ω−1 the



states of the capacitances Cw and CL are depen-
dent due to that the capacitors are parallel con-
nected. It can also be seen that with a suggested
measurement signal matrix C =

¡
0 0 0 cLr 0

¢
the system is not observable in Ω0 because the
load is physically disconnected from the measure-
ment of the system. In Ω1 and Ω−1 the system
can be described by a fourth order system and
will then be observable.

The chosen realisation is a minimal one in the
sense that the model should be able to track all
the states in the switched system. In fact the use
of Þve states in the model has been a crucial step
taken in order to make a global model.

3. SWITCHED HAMILTONIAN OBSERVER

The states are estimated with a switched Hamil-
tonian observer. The measurement signal, y(t),
is the resonant current which is proportional to
the magnetic ßow in the resonant inductance,
y(t) = cϕr(t). The process is given by

dx(t)
dt = (J(s)−R)Dx(t)+BuAB(t), s ∈ {−1, 0, 1} ,
y(t) = Cx(t), where C =

¡
0 0 0 c 0

¢
.

The observer is given by
d�x(t)
dt = (J(σ)−R)Döx(t)+K(σ)C (x(t)− öx(t))+
BuAB(t), σ ∈ {−1, 0, 1} ,
whereKT (σ) =

¡
k1(σ) k2(σ) k3(σ) k4(σ) k5(σ)

¢
is the gain of the observer.

3.1 Convergence of the observer estimates

The convergence discussion of the observer is
presented in two parts. The Þrst part is under
the condition that the switching is synchronous
in the observer and in the process and the second
part is when also asynchronous switching may
occur. The convergence discussion is not complete,
some mathematical subtilities will be adressed
in Hultgren and Lenells (submitted 2001), for
instance the existens of solutions.

3.1.1. Synchronous switching Under the condi-
tion that the switching in the observer is synchro-
nous with the switching in the process, σ = s, the
derivative of the estimation error, e(t) = x(t) −
öx(t), is given by

de(t)
dt = ((J(s)−R)D−K(s)C) e(t) =
((J(s)−R)−K(s)CD)De(t),
where CD =

¡
0 0 0 cLr 0

¢
.

A natural choice of a Lyapunov function is the
energy-like function, compare the deÞnition of H
in section 2.1.1 above,

V (e(t)) = 1
2e(t)

TDe(t).

V : R5 → R, V (0) = 0, and V (e) > 0 when
e 6= 0. Assume V is regular enough. If e = 0 is
an equilibrium point, Lyaponov stability theorem
tells that a sufficient condition for stability of e(t)
is that dV (e(t))dt ≤ 0 (Khalil 1996).
The derivative of the Lyapunov function is
dV (e(t))

dt =

−1
2e(t)

TD
£
2R+CTDK

T (s) +K(s)CD
¤
De(t).

A sufficient condition for stability of e(t) is¡
2R+CTDK

T (s) +K(s)CD
¢ ≥ 0.

This expression can be used to design the ob-
server.

Apparently R ≥ 0. If k4(s)cLr > −Rr and
k1(s) = k2(s) = k3(s) = k5(s) = 0 then

dV (e(t))
dt =

−1
2 (2k4(s)cLr + 2Rr)

³
e4

Lr

´2
≤ 0.

We believe, see Hultgren and Lenells (submitted
2001), that the LaSalle�s theorem (Khalil 1996)
can be used in order to prove global convergence
in the case the control works in normal mode.
This means that the system runs in a cycle:
(Ω−1,Ω0,Ω1,Ω0,Ω−1, ...).

3.1.2. Asynchronous switching When running
the observer there will be estimation errors, hence
there is mostly asynchronous switching.

The derivative of the Lyapunov function is in this
case given by
dV (e(t))

dt = −1
2e(t)

TD[2R+CTDK
T (σ)

+K(σ)CD]De(t) +∆s,σ.

The Þrst term is the same as in the synchronous
case. Below it is shown that the second term
∆s,σ is negative deÞnite and this will imply that
the estimates will converge also in the case of
asynchronous switching.

∆s,σ = eTD [J(s)− J(σ)]Döx where
s,σ ∈ {−1, 0, 1} .
∆s,σ = I

¡
s2 − σ2¢ [(e4 − e5) öx2 + (öx5 − öx4) e2]

+ (s− σ) [(e5 − e4) öx3 + e3 (öx4 − öx5)] .
DeÞning

DxT =
¡
ur uw uL ir im

¢
, and

DöxT =
¡
vr vw vL jr jm

¢
,

it follows that
∆s,σ

I = (s− σ) [(ir − im) ((s+ σ) vw − vL)−
(jr − jm) ((s+ σ)uw − uL)].



When calculating the value of ∆s,σ the following
equations are needed:

for s = 0, not conducting mode, úqL = 0, uL > 0
and −uL < uw < uL,
for s = 1, positive conducting mode, úqL > 0,
úqL = I (ir − im) and uL = uw ≥ 0,
for s = −1, negative conducting mode, úqL > 0,
úqL = −I (ir − im) and uL = −uw ≥ 0.
There are corresponding relations for the observer,
σ ∈ {1, 0,−1}.

3.1.3. Study of ∆s,σ It can be shown that
the disturbance term ∆s,σ < 0 for all s,σ ∈
{−1, 0, 1} , s 6= σ. Here we only present the case
when s = 1 and σ = 0,

∆1,0 = (ir − im) (vw − vL)
+ (jr − jm) (uL − uw) < 0.

This holds because s = 1 implies uL = uw, and
ir − im > 0, and σ = 0 implies vw < vL. The
negative deÞniteness of the other Þve cases can be
shown in a similar way.

The negative deÞniteness of dV/dt at asynchro-
nous switching means that there are no invariant
solutions in the case of asynchronous switching,
implying that the invariant solutions have to be
found in the synchronous switching case. This
indicates that if the observer converge in the syn-
chronous case it will also converge in the asyn-
chronous case.

Observe that the estimates converge also in the
case when R = 0 and K = 0.

4. SIMULATIONS

Some simulations are shown for illustration of
the convergence result. First some simulations are
shown with initial errors in e1, e2, e4, and e5, Fig.
3 - Fig. 8. At last one simulation is shown with
an initial error also in e3, Fig. 9. In that case
the convergence is much slower due to the very
large capacitance in the load, it is about 500
times larger than the resonance capacitance. The
simulation parameters are, see Fig. 2, VC = 500,
Cr = 2µF, R = 0, Lr = 32µH, Lm = 300µH,
Cw = 200nF, and CL = 1mF.

In Fig. 3 and Fig. 4 the Lyaponov function and
the estimation errors are presented in the case
of zero Hamiltonian observer gain, K = 0. The
convergence here only depends on the ∆s,σ-term.
In Fig. 5 the process values in this simulation
can be seen. The design k4(s)cLr > −Rr and
k1(s) = k2(s) = k3(s) = k5(s) = 0 is presented in
Fig. 6 and Fig. 7. The convergence of the observer

in the case when the rectiÞer is conducting and
the observer model of the rectiÞer is conducting
in the opposite direction is shown in Fig. 8.

In Fig. 3, 6, 8, and 9 is s − σ plotted, hence it is
possible to see when the estimator and the process
are described by the same model or by different
models.
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Fig. 3. The Lyapunov function, V·500.
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Fig. 4. The estimation errors, K=0.
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Fig. 6. The Lyaponov function, V · 500. K > 0.
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Fig. 7. The estimation errors, K > 0.
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Fig. 8. The Lyaponov function, V · 10. K = 0.
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5. CONCLUSION AND FUTURE WORK

Hamiltonian modelling combined with Lyaponov
theory can be used for convergence analysis and
observer design for the switched series loaded
resonant converter. Hamiltonian modelling gives
natural candidates for Lyaponov functions.

It is possible to give a global model of the SLR
converter by use of the Hamiltonian method.

The treated nonlinear observer converge also in
the case when R = 0 and K = 0. This is not
true in the linear case, s = σ. This can be seen for
instance in Fig. 8, There V is constant when s = σ,
which means that the process and the observer are
described by the same linear model.

Future work will be devoted to generalise the
result of this report and give it as a mathematical
theorem. We will also try to design a controller
for the resonant converter by use of the method
of this report.
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